帳號:guest(3.139.104.214)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳皇綺
作者(外文):Chen, Huang-Chi
論文名稱(中文):桿狀病毒結合新型生化反應器在軟骨組織工程之應用
論文名稱(外文):Combination of Baculovirus and Novel Bioreactor in Cartlage Tissue Engineering
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:927617
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:83
中文關鍵詞:桿狀病毒軟骨細胞工程軟骨生長因子生化反應器
外文關鍵詞:baculoviruschondrocytesengineered cartilagegrowth factorbioreactor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
桿狀病毒/昆蟲細胞表現系統(baculovirus/insect cell expression system)為一重組蛋白表現系統,主要以表現需要轉譯後修飾之蛋白為主。近年來,該病毒已被發現可以進入哺乳動物細胞之中,並表現外來基因,有做為基因治療載體之潛力。本研究主要探討桿狀病毒在軟骨組織工程應用上之可行性,並結合新型生化反應器,促使工程軟骨生長。
基於以上目的,首先,我們須探討桿狀病毒轉導(transduction)是否對軟骨細胞造成影響,因此我們將桿狀病毒轉導後之軟骨細胞接種至PLGA支架上,並於兩相旋轉軸反應器(Rotating-shaft bioreactor, RSB)中培養,觀察工程軟骨的生長是否受桿狀病毒轉導之影響。此外,我們也利用帶有骨生長因子(BMP-2)基因之桿狀病毒(Bac-CB),誘導軟骨細胞表現BMP-2,進而促使軟骨細胞分泌細胞外間質,以生成軟骨組織。最後,我們結合兩相旋轉軸反應器與Bac-CB轉導之軟骨細胞,依不同培養時間,培養出不同品質之工程軟骨,並探討工程軟骨品質對紐西蘭白兔關節損傷之修復情形。
結果顯示,桿狀病毒轉導之軟骨細胞與未轉導之軟骨細胞在培養過程中其存活率均高達90%,且生成之工程軟骨無論在外觀與細胞外間質含量均無顯著差異,並沒有觀察到桿狀病毒對軟骨細胞造成傷害與影響其生成軟骨組織之能力。此外,以Bac-CB來轉導軟骨細胞,確實可誘導軟骨細胞表現BMP-2,且該生長因子亦對軟骨組織生長有明顯助益。最終,我們將Bac-CB轉導後之軟骨細胞配合兩相旋轉軸反應器所得之不同品質工程軟骨,植入紐西蘭白兔之損傷關節,結果也說明了在反應器中培養三周可得到最佳之工程軟骨品質,且對軟骨組織修復有明顯之效果。綜而言之,結合兩相式旋轉軸反應器與桿狀病毒,在紐西蘭白兔隻動物模式下,確實可做為軟骨組織修復之工具。
Baculovirus/insect cell has been used as protein expression system expressing the protein which needs post-translational modifications. In recent years, baculovirus was reported to be capable of transducing mammalian cells and expressing the foreign genes, implying the potential of baculovirus as a gene delivery vector. In this study, we explored the feasibility that baculovirus as a gene delivery vector transduced into chondrocytes cultured with rotating-shaft bioreactor (RSB) could stimulate cartilage formation.
We seeded the baculovirus-transduced chondrocytes into PLGA scaffold and cultured the chondrocytes/scaffold in the RSB for examining the effects of baculovirus transduction on engineered cartilage growth. Also, we constructed a recombinant baculovirus encoding BMP-2 (Bac-CB) to transduce chondrocytes, thus inducing chondrocytes to produce BMP-2 and stimulating themselves to form cartilage. Finally, we combined RSB and Bac-CB-transduced chondrocytes to form engineered cartilage with different qualities (according to cultured time) and implanted the engineered cartilage in the full-thickness defect of New Zealand rabbit’s knee to explore which quality in the engineered cartilage can repair the full-thickness defect well.
The results showed that baculovirus-transduced and mock-transduced chondrocytes both grew with high viability (90%) and form cartilage similar to native cartilage, indicating that baculovirus transduction did not hinder cartilage formation. Also, the Bac-CB transduced chondrocytes expressed high level of BMP-2, stimulating chondrocytes to secrete large amount of extracellular matrix (ECM) and form engineered cartilage. Moreover, the engineered cartilage with different quality produced by RSB showed different repair. The in vitro culture time dictates the construct properties, cell differentiation status, and subsequent in vivo repair, and constructs derived from 3-week culture result in the best repair. Since baculovirus is generally regarded as a safe vector and no adverse effects were observed in this study, and RSB provides a defined dynamic environment for the maturation of cartilaginous constructs, the combination of baculovirus-mediated gene transfer and RSB culture represents a promising, cost-effective method to produce tissue engineered cartilages for in vivo cartilage repair.
目錄
摘要 I
Abstract II
目錄 IV
圖表目錄 VII
第一章 緒論 1
第二章 文獻回顧 4
2-1 關節軟骨之生理與構造 4
2-2 軟骨組織工程 5
2-3 基因治療 7
2-4 桿狀病毒表現系統 10
2-5 實驗動機及目的 12
第三章 材料與方法 18
3-1 建構與放大重組桿狀病毒 18
3-2 桿狀病毒有效價數的測定 19
3-3 軟骨細胞之取得及培養 19
3-4 桿狀病毒轉導策略 20
3-5 支架之製備方法 21
3-6 3D培養之方法 21
3-7 流式細胞儀之分析 22
3-8 細胞存活率分析 23
3-9 反轉錄聚合酶連鎖反應 23
3-10 即時偵測同步定量反轉錄聚合酶連鎖反應 24
3-11 即時偵測同步定量聚合酶連鎖反應分析 24
3-12 機械應力測試 25
3-13支架中細胞數目與細胞外間質分析 25
3-14 動物實驗方法 27
3-15 組織切片染色 28
3-16 酵素免疫分析法 (ELISA) 29
3-17 組織修復的評分方法 30
3-18 統計分析 30
第四章 結果與討論(1)
--桿狀病毒在軟骨組織工程應用上之初步評估--
4-1 桿狀病毒轉導時間之影響 37
4-2 細胞接種密度之影響 38
4-3 桿狀病毒轉導對軟骨組織生成之影響 39
4-4 分化狀態與EGFP衰退之關係 41
4-5 討論 42
第五章 結果與討論(2)
--桿狀病毒(Bac-CB)與反應器(RSB)之協同作用對軟骨組織生成之影響--
5-1最佳轉導病毒劑量與最佳軟骨細胞代數之評估 49
5-2 RSB與Bac-CB的協同作用(synergistic effects)對工程軟骨之影響 50
5-3細胞外間質之分佈情形 51
5-4基因表現與細胞外間質之成分分析 51
5-5討論 52
第六章 結果與討論(3)
--工程軟骨品質對體內組織修復之影響--
6-1 培養時間對工程軟骨性質之影響 61
6-2培養時間對軟骨細胞特異基因之影響 62
6-3軟骨修復(week 4) 62
6-4軟骨修復(week 8) 63
6-5組織評分(Histologic scores) 64
6-6討論 64
第七章 結論與未來展望 74
參考文獻 76
[1] Freed, L.E., Langer, R., Martin, I., Pellis, N.R. and VunjakNovakovic, G. (1997) Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94, 13885-13890.
[2] Saini, S. and Wick, T.M. (2003) Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 19, 510-521.
[3] Bruno, E.M., Bilgen, B. and Barabino, G.A. (2005) Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng. 11, 1699-1709.
[4] Ho, Y.C., Chen, H.C., Wang, K.C. and Hu, Y.C. (2004) Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng 88, 643-651.
[5] Chuah, M.K., Brems, H., Vanslembrouck, V., Collen, D. and Vandendriessche, T. (1998) Bone marrow stromal cells as targets for gene therapy of hemophilia A. Hum Gene Ther 9, 353-365.
[6] Lee, K., Majumdar, M.K., Buyaner, D., Hendricks, J.K., Pittenger, M.F. and Mosca, J.D. (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol. Ther. 3, 857-866.
[7] Hurwitz, D.R., Kirchgesser, M., Merrill, W., Galanopoulos, T., McGrath, C.A., Emami, S., Hansen, M., Cherington, V., Appel, J.M., Bizinkauskas, C.B., Brackmann, H.H., Levine, P.H. and Greenberger, J.S. (1997) Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 8, 137-156.
[8] Devine, S.M., Bartholomew, A.M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., Sturgeon, C., Hewett, T., Chung, T., Stock, W., Sher, D., Weissman, S., Ferrer, K., Mosca, J., Deans, R., Moseley, A. and Hoffman, R. (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol 29, 244-255.
[9] Gazit, D., Turgeman, G., Kelley, P., Wang, E., Jalenak, M., Zilberman, Y. and Moutsatsos, I. (1999) Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: A novel cell-mediated gene therapy. J. Gene Med. 1, 121-133.
[10] Check, E. (2002) A tragic setback. Nature 420, 116-118.
[11] Lundstrom, K. (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21, 117-122.
[12] Marshall, E. (1999) Gene therapy death prompts review of adenovirus vector. Science 286, 2244-2245.
[13] Thomas, C.E., Ehrhardt, A. and Kay, M.A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346-358.
[14] Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995) Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U.S.A. 92, 10099-10103.
[15] Boyce, F.M. and Bucher, N.L.R. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 93, 2348-2352.
[16] Sarkis, C., Serguera, C., Petres, S., Buchet, D., Ridet, J.L., Edelman, L. and Mallet, J. (2000) Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl. Acad. Sci. U.S.A. 97, 14638-14643.
[17] Dwarakanath, R.S., Clark, C.L., McElroy, A.K. and Spector, D.H. (2001) The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284, 297-307.
[18] Ma, L., Tamarina, N., Wang, Y., Kuznetsov, A., Patel, N., Kending, C., Hering, B.J. and Philipson, L.H. (2000) Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 49, 1986-1991.
[19] Ho, Y.-C., Chen, H.-C., Wang, K.-C. and Hu, Y.-C. (2004) Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol. Bioeng. 88, 643-651.
[20] Kost, T.A., Condreay, J.P. and Jarvis, D.L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567-575.
[21] Hu, Y.-C. (2005) Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 26, 405-416.
[22] Hu, Y.-C. (2006) Baculovirus vectors for gene therapy. Adv. Virus. Res. 68, 287-320.
[23] Pieroni, L., Maione, D. and La Monica, N. (2001) In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther. 12, 871-881.
[24] Hu, Y.-C., Tsai, C.-T., Chung, Y.-C., Lu, J.-T. and Hsu, J.T.-A. (2003) Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb. Technol. 33, 445-452.
[25] Stockwell, R.A. (1967) The cell density of human articular and costal cartilage. J Anat 101, 753-763.
[26] Buckwalter, J.A. and Mankin, H.J. (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47, 477-486.
[27] Jourdian, G.W. (1968) Studies on glycosaminoglycan (acid mucopolysaccharide) chemistry. Univ Mich Med Cent J, 246-248.
[28] Goggins, J.F. (1972) Studies of acid mucopolysaccharide metabolism in connective tissues. Oral Surg Oral Med Oral Pathol 33, 824-834.
[29] Bartold, P.M., Wiebkin, O.W. and Thonard, J.C. (1981) Glycosaminoglycans of human gingival epithelium and connective tissue. Connect Tissue Res 9, 99-106.
[30] Roughley, P.J. and Lee, E.R. (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28, 385-397.
[31] Hildebrand, A., Romaris, M., Rasmussen, L.M., Heinegard, D., Twardzik, D.R., Border, W.A. and Ruoslahti, E. (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302 ( Pt 2), 527-534.
[32] Schonherr, E., Broszat, M., Brandan, E., Bruckner, P. and Kresse, H. (1998) Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys 355, 241-248.
[33] Kaname, S. and Ruoslahti, E. (1996) Betaglycan has multiple binding sites for transforming growth factor-beta 1. Biochem J 315 ( Pt 3), 815-820.
[34] Reinboth, B., Thomas, J., Hanssen, E. and Gibson, M.A. (2006) Beta ig-h3 interacts directly with biglycan and decorin, promotes collagen VI aggregation, and participates in ternary complexing with these macromolecules. J Biol Chem 281, 7816-7824.
[35] James, C.B. and Uhl, T.L. (2001) A Review of Articular Cartilage Pathology and the Use of Glucosamine Sulfate. J Athl Train 36, 413-419.
[36] Poole, A.R., Kojima, T., Yasuda, T., Mwale, F., Kobayashi, M. and Laverty, S. (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res, S26-33.
[37] Langer, R. (2000) Tissue engineering. Mol Ther 1, 12-15.
[38] Williams, G.M., Klein, T.J. and Sah, R.L. (2005) Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs. Acta Biomater 1, 625-633.
[39] Akmal, M., Anand, A., Anand, B., Wiseman, M., Goodship, A.E. and Bentley, G. (2006) The culture of articular chondrocytes in hydrogel constructs within a bioreactor enhances cell proliferation and matrix synthesis. J Bone Joint Surg Br 88, 544-553.
[40] Willers, C., Chen, J., Wood, D., Xu, J. and Zheng, M.H. (2005) Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 11, 1065-1076.
[41] De Franceschi, L., Grigolo, B., Roseti, L., Facchini, A., Fini, M., Giavaresi, G., Tschon, M. and Giardino, R. (2005) Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. J Biomed Mater Res A 75, 612-622.
[42] Griffon, D.J., Sedighi, M.R., Schaeffer, D.V., Eurell, J.A. and Johnson, A.L. (2006) Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2, 313-320.
[43] Subramanian, A. and Lin, H.Y. (2005) Crosslinked chitosan: its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J Biomed Mater Res A 75, 742-753.
[44] Ishaug-Riley, S.L., Okun, L.E., Prado, G., Applegate, M.A. and Ratcliffe, A. (1999) Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 20, 2245-2256.
[45] Tsai, W.B., Chen, C.H., Chen, J.F. and Chang, K.Y. (2006) The effects of types of degradable polymers on porcine chondrocyte adhesion, proliferation and gene expression. J Mater Sci Mater Med 17, 337-343.
[46] Paek, H.J., Campaner, A.B., Kim, J.L., Aaron, R.K., Ciombor, D.M., Morgan, J.R. and Lysaght, M.J. (2005) In vitro characterization of TGF-beta1 release from genetically modified fibroblasts in Ca(2+)-alginate microcapsules. Asaio J 51, 379-384.
[47] Zhang, Y., Cheng, X., Wang, J., Wang, Y., Shi, B., Huang, C., Yang, X. and Liu, T. (2006) Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344, 362-369.
[48] Chou, C.H., Cheng, W.T., Lin, C.C., Chang, C.H., Tsai, C.C. and Lin, F.H. (2006) TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 77, 338-348.
[49] Yoo, H.S., Lee, E.A., Yoon, J.J. and Park, T.G. (2005) Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26, 1925-1933.
[50] Angele, P., Muller, R., Schumann, D., Englert, C., Zellner, J., Johnstone, B., Yoo, J., Hammer, J., Fierlbeck, J., Angele, M.K., Nerlich, M. and Kujat, R. (2008) Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A.
[51] Csaki, C., Schneider, P.R. and Shakibaei, M. (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 190, 395-412.
[52] Chang, C.H., Liu, H.C., Lin, C.C., Chou, C.H. and Lin, F.H. (2003) Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24, 4853-4858.
[53] Bueno, E.M., Bilgen, B. and Barabino, G.A. (2005) Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 11, 1699-1709.
[54] Duke, P.J., Daane, E.L. and Montufar-Solis, D. (1993) Studies of chondrogenesis in rotating systems. J Cell Biochem 51, 274-282.
[55] Marlovits, S., Tichy, B., Truppe, M., Gruber, D. and Schlegel, W. (2003) Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor. Int J Artif Organs 26, 319-330.
[56] Chen, H.C., Lee, H.P., Ho, Y.C., Sung, M.L. and Hu, Y.C. (2006) Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 27, 3154-3162.
[57] Chen, H.C., Lee, H.P., Sung, M.L., Liao, C.J. and Hu, Y.C. (2004) A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Biotechnol Prog 20, 1802-1809.
[58] Chen, H.C., Chang, Y.H., Chuang, C.K., Lin, C.Y., Sung, L.Y., Wang, Y.H. and Hu, Y.C. (2008) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials.
[59] Lee, H.P., Chen, H.C., Lai, C.W., Chiang, S.F., Liao, C.J. and Hu, Y.C. (2005) Eggshell as a novel biomimetic reactor for in vitro tissue culture. J. Chin. Inst. Chem. Engr. 36, 321-330.
[60] Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A.J., Langer, R. and Freed, L.E. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17, 130-138.
[61] Lee, J.Y., Hall, R., Pelinkovic, D., Cassinelli, E., Usas, A., Gilbertson, L., Huard, J. and Kang, J. (2001) New use of a three-dimensional pellet culture system for human intervertebral disc cells: initial characterization and potential use for tissue engineering. Spine 26, 2316-2322.
[62] Pepper, M.S., Montesano, R., Vassalli, J.D. and Orci, L. (1991) Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement of a transforming growth factor-beta. J Cell Physiol 146, 170-179.
[63] Grande, D.A., Mason, J., Light, E. and Dines, D. (2003) Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 85-A Suppl 2, 111-116.
[64] Nixon, A.J., Brower-Toland, B.D., Bent, S.J., Saxer, R.A., Wilke, M.J., Robbins, P.D. and Evans, C.H. (2000) Insulinlike growth factor-I gene therapy applications for cartilage repair. Clin Orthop Relat Res, S201-213.
[65] Semba, I., Nonaka, K., Takahashi, I., Takahashi, K., Dashner, R., Shum, L., Nuckolls, G.H. and Slavkin, H.C. (2000) Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev Dyn 217, 401-414.
[66] Ikeda, T., Kamekura, S., Mabuchi, A., Kou, I., Seki, S., Takato, T., Nakamura, K., Kawaguchi, H., Ikegawa, S. and Chung, U.I. (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 50, 3561-3573.
[67] Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M.D., Kohn, D. and Trippel, S.B. (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12, 1171-1179.
[68] Chan, Z.R., Lai, C.W., Lee, H.P., Chen, H.C. and Hu, Y.C. (2006) Determination of the baculovirus transducing titer in mammalian cells. Biotechnol Bioeng 93, 564-571.
[69] Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92, 10099-10103.
[70] Bilello, J.P., Cable, E.E., Myers, R.L. and Isom, H.C. (2003) Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther 10, 733-749.
[71] Kost, T.A. and Condreay, J.P. (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20, 173-180.
[72] Sarkis, C., Serguera, C., Petres, S., Buchet, D., Ridet, J.L., Edelman, L. and Mallet, J. (2000) Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 97, 14638-14643.
[73] Leisy, D.J., Lewis, T.D., Leong, J.A. and Rohrmann, G.F. (2003) Transduction of cultured fish cells with recombinant baculoviruses. J Gen Virol 84, 1173-1178.
[74] Ikenoue, T., Trindade, M.C., Lee, M.S., Lin, E.Y., Schurman, D.J., Goodman, S.B. and Smith, R.L. (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21, 110-116.
[75] Hsu, C.S., Ho, Y.C., Wang, K.C. and Hu, Y.C. (2004) Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 88, 42-51.
[76] Kim, Y.J., Sah, R.L., Doong, J.Y. and Grodzinsky, A.J. (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174, 168-76.
[77] Farndale, R.W., Buttle, D.J. and Barrett, A.J. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883, 173-177.
[78] Enobakhare, B.O., Bader, D.L. and Lee, D.A. (1996) Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem 243, 189-191.
[79] Almarza, A.J. and Athanasiou, K.A. (2005) Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc. Ann Biomed Eng 33, 943-950.
[80] Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G. and Freed, L.E. (2001) Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 83, 121-128.
[81] Ponnazhagan, S., Mukherjee, P., Wang, X.S., Qing, K., Kube, D.M., Mah, C., Kurpad, C., Yoder, M.C., Srour, E.F. and Srivastava, A. (1997) Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation. J Virol 71, 8262-8267.
[82] Asahara, T., Kalka, C. and Isner, J.M. (2000) Stem cell therapy and gene transfer for regeneration. Gene Ther. 7, 451-457.
[83] Verma, I.M. and Somia, N. (1997) Gene therapy-promises, problems and prospects. Nature 389, 239-242.
[84] Robbins, P.D. and Ghivizzani, S.C. (1998) Viral vectors for gene therapy. Pharmacol Ther 80, 35-47.
[85] Hitt, M.M., Addison, C.L. and Graham, F.L. (1997) Human adenovirus vectors for gene transfer into mammalian cells. Adv Pharmacol 40, 137-206.
[86] Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.H., Chan, S. and Caskey, C.T. (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full- length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 93, 5731-5736.
[87] Kost, T.A. and Condreay, J.P. (2002) Recombinant baculoviruses as mammalian cell gene delivery vectors. Trends Biotechnol. 20, 173-180.
[88] Cheshenko, N., Krougliak, N., Eisensmith, R.C. and Krougliak, V.A. (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther. 8, 846-854.
[89] O'Reilly, D., Miller, L. and Luckow, V. (1992) Baculovirus expression vectors: a laboratory manual, pp. pp. 109-215, W.H. Freeman and Co, New York.
[90] Madry, H., Cucchiarini, M., Terwilliger, E.F. and Trippel, S.B. (2003) Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 14, 393-402.
[91] Li, Y., Tew, S., Russell, A.M., Gonzalez, K.R., Hardingham, T.E. and Hawkins, R.E. (2004) Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng. 10, 575-584.
[92] Dinser, R., Kreppel, F., Zaucke, F., Blank, C., Paulsson, M., Kochanek, S. and Maurer, P. (2001) Comparison of long-term transgene expression after non-viral and adenoviral gene transfer into primary articular chondrocytes. Histochem. Cell Biol. 116, 69-77.
[93] Olmsted-Davis, E.A., Gugala, Z., Gannon, F.H., Yotnda, P., McAlhany, R.E., Lindsey, R.W. and Davis, A.R. (2002) Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum. Gene Ther. 13, 1337-1347.
[94] Gelse, K., von der Mark, K., Aigner, T., Park, J. and Schneider, H. (2003) Articular cartilage repair by gene therapy using growth factor- producing mesenchymal cells. Arthritis Rheumatism 48, 430-441.
[95] Carlberg, A.L., Pucci, B., Rallapalli, R., Tuan, R.S. and Hall, D.J. (2001) Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2. Differentiation 67, 128-138.
[96] Nesic, D., Whiteside, R., Brittberg, M., Wendt, D., Martin, I. and Mainil-Varlet, P. (2006) Cartilage tissue engineering for degenerative joint disease. Adv. Drug Deliv. Rev. 58, 300-322.
[97] Carver, S.E. and Heath, C.A. (1999) Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 62, 166-174.
[98] Cucchiarini, M., Madry, H., Ma, C., Thurn, T., Zurakowski, D., Menger, M.D., Kohn, D., Tripple, S.B. and Terwilliger, E.F. (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. . Mol. Ther. 12, 229-238.
[99] Gelse, K. and Schneider, H. (2006) Ex vivo gene therapy approaches to cartilage repair. Adv. Drug Deliv. Rev. 58, 259-284.
[100] Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M.D., Kohn, D. and Trippel, S.B. (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12, 1171-1179.
[101] Obradovic, B., Martin, I., Padera, R.F., Treppo, S., Freed, L.E. and Vunjak-Novakovic, G. (2001) Integration of engineered cartilage. J Orthop Res 19, 1089-1097.
[102] Madry, H., Padera, R., Seidel, J., Langer, R., Freed, L.E., Trippel, S.B. and Vunjak-Novakovic, G. (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum. Gene Ther. 13, 1621-1630.
[103] Nixon, A.J., Haupt, J.L., Frisbie, D.D., Morisset, S.S., McIlwraith, C.W., Robbins, P.D., Evans, C.H. and Ghivizzani, S. (2005) Gene-mediated restoration of cartilage matrix by combination insulin-like factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 12, 177-186.
[104] Lee, D.K., Choi, K.B., Oh, I.S., Song, S.U., Hwang, S., Lim, C.L., Hyun, J.P., Lee, H.Y., Chi, G.F., Yi, Y., Yip, V., Kim, J., Lee, E.B., Noh, M.J. and Lee, K.H. (2005) Continuous transforming growth factor b1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation. Tissue Eng. 11, 310-318.
[105] Hidaka, C., Goodrich, L.R., Chen, C.T., Warren, R.F., Crystal, R.G. and Nixon, A.J. (2003) Acceleration of cartilage repair by genetically modified chondrocytes overexpressing bone morphogenetic protein-7. J. Orthop. Res. 21, 573-583.
[106] Madry, H., Cucchiarini, M., Stein, U., Remberger, K., Kohn, D. and Trippel, S.B. (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J. Gene Med. 5, 502-509.
[107] Zachos, T.A., Diggs, A., Weisbrode, S., Bartlett, J. and Bertone, A.L. (2007) Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model. Mol. Ther. 15, 1543-1550.
[108] Grayson, W.L., Chao, P.-H.G., Marolt, D., Kaplan, D.L. and Vunjak-Novakovic, G. (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 26, 181-189.
[109] Kasahara, Y., Iwasaki, N., Yamane, S., Igarashi, T., Majima, T., Nonaka, S., Harada, K., Nishimura, S. and Minami, A. (2008) Development of mature cartilage constructs using novel three-dimensional porous scaffolds for enhanced repair of osteochondral defects. J Biomed Mater Res A 86, 127-136.
[110] Tognana, E., Padera, R.F., Chen, F., Vunjak-Novakovic, G. and Freed, L.E. (2005) Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthritis Cartilage 13, 896-905.
[111] Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I. and Goldberg, V.M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76, 579-592.
[112] Park, J., Gelse, K., Frank, S., von der Mark, K., Aigner, T. and Schneider, H. (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J. Gene Med. 8, 112-125.
[113] Miot, S., Scandiucci de Freitas, P., Wirz, D., Daniels, A.U., Sims, T.J., Hollander, A.P., Mainil-Varlet, P., Heberer, M. and Martin, I. (2006) Cartilage tissue engineering by expanded goat articular chondrocytes. J Orthop Res 24, 1078-1085.
[114] Cucchiarini, M. and Madry, H. (2005) Gene therapy for cartilage defects. J. Gene Med. 7, 1495-1509.
[115] Phillips, J.E., Gersbach, C.A. and Garcia, A.J. (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28, 211-229.
[116] Moretti, M., Wendt, D., Dickinson, S.C., Sims, T.J., Hollander, A.P., Kelly, D.J., Prendergast, P.J., Heberer, M. and Martin, I. (2005) Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng 11, 1421-1428.
[117] Gelse, K., von der Mark, K., Aigner, T., Park, J. and Schneider, H. (2003) Articular cartilage repair by gene therapy using growth factor- producing mesenchymal cells. Arthritis Rheum. 48, 430-441.
[118] Wakitani, S., T. Goto, Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I., Goldberg, V. M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am 76 (4), 579-592.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *