帳號:guest(18.219.96.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳富其
作者(外文):Fu-Chi Wu
論文名稱(中文):利用偶合劑提升直接甲醇燃料電池觸媒有效利用率之研究
論文名稱(外文):Study of Using Silane Coupling Agents to Improve the Catalysts Utilization in Direct Methanol Fuel Cells
指導教授(中文):萬其超
王詠雲
指導教授(外文):Chi-Chao Wan
Yung-Yun Wang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:927621
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:105
中文關鍵詞:直接甲醇燃料電池觸媒有效率用率偶合劑
外文關鍵詞:Direct Methanol Fuel CellCatalyst UtilizationSilane Coupling Agent
相關次數:
  • 推薦推薦:0
  • 點閱點閱:109
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於具有高能量密度(4825.7 kWh/l)、可快速填充燃料、以及可簡化電池系統設計的優點,使得直接甲醇燃料電池近年來受到全世界廣大的注意,頗有機會在最近幾年內商業化,尤其是應用在消費性可攜式電子產品上。然而,在直接甲醇燃料電池商業化前有兩個必須克服的難題,那就是甲醇橫渡與觸媒有效利用率偏低。
為了瞭解影響觸媒有效被利用率的因素,我們先從電池之工作原理探討何謂有效的觸媒著手,再從觸媒漿料之基本分散原理分析觸媒漿料之分散現象,並且回顧相關文獻。從分析中發現,若直接利用漿料中的全氟磺酸化離子高分子,作為觸媒顆粒的保護基以形成立體障礙排斥作用,將可達到最佳的分散效果。然而,在正常情形下,全氟磺酸化離子高分子與觸媒顆粒無法形成有效的立體障礙排斥效應,原因是兩者化學特性上的差異甚大,使得彼此間的吸附性差,於是,需要增進兩者之吸附性以提升觸媒有效被利用率。
本研究重點在利用偶合劑來改質白金觸媒顆粒,使全氟磺酸化離子高分子可稼接在白金表面上鍵結,形成立體障礙排斥效應促進白金觸媒漿料之分散以提升觸媒的有效利用率。我們利用ESCA及NMR來驗證整個偶合反應、EQCM來探討偶合劑在白金表面之自組裝速率及阻礙效應、EXAFS來探討經偶合劑處理前後電極之白金顆粒的分散情形。我們並將電極組裝成MEA進行放電效能測試,再以CV分析經白金觸媒之有效被利用率。由實驗結果發現,使用偶合劑處理確實可提升觸媒之有效利用率,證實了該構想的可行性。
Direct methanol fuel cell (DMFC) is receiving great attention worldwide in recent years due to following features: high energy density of liquid methanol (~ 4825.7 kWh/l), quick re-fueling, and simple cell design. DMFC is among the most promising type of fuel cells to be commercialized in the near future, especially for use in 3C application. However, two major obstacles of DMFC need to be overcome. Naturally, methanol crossover and low catalyst utilization.
To understand the factors that affect catalyst utilization, we firstly investigated what an effective catalyst is from the operating mechanism of DMFC. Then, we analyzed the dispersion of catalyst paste, and reviewed past effects to seek the solution to improve catalyst utilization. We have hence developed a logical and simplest way to improve dispersion and subsequent catalyst utilization by using PFSI, which is one of the main components of catalyst paste, as the protecting agent instead of adding any other agent. However, it is difficult to form the steric stabilization between chemically dissimilar Pt nanoparticle and PFSI. The affinity between particle and PFSI needs to be enhanced.
In this study, we have created a bonding between particles and PFSI by using silane coupling agents to improve catalyst utilization. Firstly, we identified the coupling reactions by using ESCA and NMR, and then characterized the self-assembly rate, blocking effect, dispersion, MEA performance, and catalyst utilization before and after coupling agent treatment by using EXAFS and electrochemical methods. The results indeed proved the validity of our concept and the use of coupling agent can help improve the catalyst utilization.
Chapter 1 Introduction
1-1 Development of Direct Methanol Fuel Cells
1-2 Principle and Construction of Direct Methanol Fuel Cell
1-2-1 Electro-oxidation of methanol
1-2-2 PFSA Membranes and Methanol Crossover
1-2-3 Membrane-Electrode Assembly and the Fabrications
1-3 Purpose and Scope of this study

Chapter 2 The Concept of Using Coupling Agents to Improve Catalyst Utilization
2-1 Dispersion and Utilization of Catalyst
2-1-1 The Effective Catalyst in DMFC
2-1-2 The Catalyst Utilization
2-2 Literature Review
2-3 Concepts to Improve Catalyst Utilization
2-3-1 Dispersion Phenomena
2-3-2 Grafting PFSI on Catalyst by Silane Coupling Agents

Chapter 3 Experimental Methods
3-1 Evaluation of Solubility Parameter
3-2 Preparation of SCA-modified Pt-Catalyst Paste
3-3 MEA Preparations
3-4 Characterizations
3-4-1 Observations of Nano-scaled Morphology and Chemical Composition
3-4-2 Investigations of Dispersion Phenomena
3-4-3 Identifications of Coupling Reactions
3-4-4 Examination of Primary Pt Clusters Size
3-4-5 Self-Assembly Rate and Blocking Effect of SCA
3-4-6 MEA Polarization Test
3-4-7 Evaluation of Catalyst Utilization

Chapter 4 Mechanism and Characterization of Silane Coupling Reaction
4-1 Investigation of Coupling7
4-1-1 The Reaction Between Pt nanoparticle and SCA
4-1-2 The Reaction Between SCA and PFSI
4-2 Investigation of Self-Assembly Rate and Blocking Effects
4-2-1 Evaluation of Self-Assembly Rate
4-2-2 Blocking Effects of SCA

Chapter 5 Characterization and Catalyst Utilization of SCA-Modified Electrodes
5-1 Dispersion of Pt Nanoparticles in Catalyst Layer
5-2 Performance of SCA-Modified MEA
5-3 Evaluation of Catalyst Utilization

Chapter 6 Conclusions

Appendix
A-1 Details of the Zeta Potential and DLS Measurement
A-2 Solubility Calculations of SCAs and PFSI
A-3 Detail Fitting Results of EXAFS Spectra

References
[1] L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: Fundamentals and applications”, Fuel Cells 2001, 1, 5.
[2] X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld, “Recent advance in direct methanol fuel cells at Los Alamos National Laboratory”, J. Power Sources 2000, 86, 111.
[3] A. S. Arico, S. Srinivasan, and V. Antonucci, “DMFCs: From fundamental aspects to technology development”, Fuel Cells 2001, 1, 133.
[4] S. Wang, G. Sun, G. Wang, Z. Zhou, X. Zhao, H. Sun, X. Fan, B. Yi, and Q. Xin, “Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure”, Electrochim. Comm. 2005, 7, 1007.
[5] G. Sandstede, E. J. Cairns, V. S. Bagotsky, and K. Wiesener, “History of low temperature fuel cells”, in Handbook of Fuel Cell, Vol. 1 (Eds: W. Vielstich, H. A. Gasteiger, A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 12.
[6] M. S. Wilson and S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel cells”, J. Appl. Electrochem. 1992, 22, 1.
[7] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “High Performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells”, J. Electrochem. Soc. 1992, 139, L28.
[8] T. Iwashita, “Methanol and CO electrooxidation”, in Handbook of Fuel Cell, Vol. 2 (Eds: W. Vielstich, H. A. Gasteiger and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 41.
[9] M. P. Hogarth and G. A. Hards, “ Direct methanol fuel cell: Technological advances and further requirements”, Platinum Metals Review 1996, 40, 150.
[10] H. A. Gasteiger, N. Markovic, P. N. Ross, and Jr., E. J. Cairns, “Temp-dependent MeOH electro-oxidation on well-characterized Pt-Ru alloys”, J. Electrochem. Soc. 1994, 141, 1795.
[11] A. B. Anderson, E. Grantscharova, and S. Seong, “Systematic theoretical study of alloys of Pt for enhances direct methanol fuel cell performance”, J. Electrochem. Soc. 1996, 143, 2075.
[12] S. Wasmus and A. Kuver, “Methanol oxidation and direct methanol fuel cells: A selective review”, J. Electroanal. Chem. 1999, 461, 14.
[13] G. Sandstede, E. J. Cairns, V. S. Bagotsky, and K. Wiesener, “History of low temperature fuel cell, in Handbook of Fuel Cell, Vol. 1 (Eds: W. Vielstich, H. A. Gasteiger, and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 12.
[14] X. Ren, T. E. Springer, and S. Gottesfeld, “Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol fuel cell performance”, J. Electrochem. Soc. 2000, 147, 92.
[15] R. Jiang and D. Chu, “Comparative studies of methanol crossover and cell performance for a DMFC”, J. Electrochem. Soc. 2004, 151, A69.
[16] A. Heinzel and V. M. Barragan, “A review of the state-of-art of the methanol crossover in direct methanol fuel cells”, J. Power Sources 1999, 84, 70.
[17] A. S. Arico, P. Creti, V. Baglio, E. Modica, and V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell”, J. Power Sources 2000, 91, 202.
[18] R. G. Hockaday, “Micro-fuel cell power devices”, US Patent 6326097, 2002.
[19] G. Q. Lu and C. Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell”, J. Power Sources 2004, 134, 33.
[20] M. Nakao and M. Yoshitake, “Composition perfluorinate membranes”, in Handbook of Fuel Cell, Vol. 3 (Eds: W. Vielstich, H. A. Gasteiger, and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 32.
[21] K. D. Kreuer, “Hydrocarbon membranes”, in Handbook of Fuel Cell, Vol. 3 (Eds: W. Vielstich, H. A. Gasteiger, and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 33.
[22] J. S. Wainright, M. H. Litt, and R. F. Savinell, “High temperature membranes”, in Handbook of Fuel Cell, Vol. 3 (Eds: W. Vielstich, H. A. Gasteiger, and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 34.
[23] C. Vogel, J. Meier-Haack, A. Taeger, and D. Lehmann, “On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1)”, Fuel Cells 2004, 4, 320.
[24] L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, “Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes”, Fuel Cells 2004, 4, 196.
[25] J. Huslage, T. Rager, B. Schnyder, and A. Tsukada, “Radiation-grafted membrane electrode assemblies with improved interface”, Electrochim. Acta 2002, 48, 247.
[26] K. K. Kocha, “Principles of MEA preparation”, in Handbook of Fuel Cell, Vol. 3 (Eds: W. Vielstich, H. A. Gasteiger, and A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 43.
[27] C. Lim and C. Y. Wang, “Development of high -power electrodes for a liquid-feed direct methanol fuel cell”, J. Power Sources 2003, 113, 145.
[28] D. N. Prugh and L. R. Brion, “Production of catalyst coated membranes”, WO Patent 03/073540 A2, 2003.
[29] X. Ren, M. S. Wilson and S. Gottesfeld, “High performance direct methanol fuel cell”, J. Electrochem. Soc. 1996, 143, L12.
[30] G. Li and P. G. Pickup, “Ionic conductivity of PEMFC electrodes: Effect of Nafion loading”, J. Electrochem. Soc. 2003, 150, C745.
[31] M. S. McGoven, E. C. Garnett, C. Rice, R. I. Masel, and A. Wieckowski, “Effect of Nafion as a binding agent for unsupported nanoparticle catalysts”, J. Power Sources 2003, 115, 35.
[32] L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, and E. S. Smotkin, “Carbon supported and unsupported PtRu anodes for liquid feed direct methanol fuel cells”, Electrochim. Acta 1998, 43, 3657.
[33] A. S. Arico, A. K. Shukla, K. M. El Khatib, P. Creti, and V. Antonucci, “Effect of carbon-supported and unsupported PtRu anodes on the performance of solid-polymer-electrolyte direct methanol fuel cells”, J. Appl. Electrochem. 1999, 29, 671.
[34] Z. N. Farhat, “Modeling of catalyst layer microstructure refinement and catalyst utilization in a PEMFC”, J. Power Sources 2004, 138, 69.
[35] W. Sun, B. A. Pepply, and K. Karan, “An improved 2-D agglomerate cathode model to study the influence of catalyst layer structural parameters”, Electrochim. Acta 2005, 50, 3359.
[36] C. Marr and X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell”, J. Power Sources 1999, 77, 17.
[37] U. A. Paulus, Z. Veziridis, B. Schnyder, M. Kuhnke, G. G. Scherer, and A. Wokaun, “Fundamental investigation of catalyst utilization ar the electrode/SPE interface. Part I Development of a model system”, J. Electroanal. Chem. 2003, 541, 77.
[38] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, “Investigation of Pt utilization and morphology in catalyst layer of polymer electrolyte fuel cell”, J. Power Sources 1999, 79, 75.
[39] W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, and Q. Xin, “Nano-structured PtFe/C as cathode catalyst in direct methanol fuel cell”, Electrochim. Acta 2004, 49, 1045.
[40] Y. Sugawara, M. Uchida, Y. Fukuoka, and N. Eda, “Design for an electrode”, US Patent 6242260, 2001.
[41] A. Hamnett, “The components of an electrochemical cell”, in Handbook of Fuel Cells, Vol. 1 (Eds: W. Vielstich, H. A. Gasteiger, A. Lamm), JOHN WILEY & SONS, Chichester, England, 2003, Ch. 1.
[42] S. J. Paddison, “Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes”, Annu. Rev. Mater. Res. 2003, 33, 289.
[43] M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, “Mechanisms of proton conductance in polymer electrolyte membranes”, J. Phys. Chem. B 2001, 105, 3646.
[44] S. J. Paddison, “The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes”, J. New Mater. Mater. Electrochem. Sys. 2001, 4, 197.
[45] M. S. McGoven, E. C. Garnett, C. Rice, R. I. Masel, and A. Wieckowski, “Effect of Nafion as a binding agent for unsupported nanoparticle catalysts”, J. Power Sources 2003, 115, 35.
[66] G. Li and P. G. Pickup, “Ionic conductivity of PEMFC electrodes: Effect of Nafion loading”, J. Electrochem. Soc. 2003, 150, C745.
[47] Q. Wang, M. Eikerling, D. Song, and Z. Liu, “Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells”, J. Electroanal. Chem. 2004, 573, 61.
[48] A. P. Saab, F. H. Garzon, and T. A. Zawodzinski, “Determination of ionic and electronic resistance in carbon/polyelectrolyte fuel cell composite electrode”, J. Electrochem. Soc. 2002, 149, A1541.
[49] A. P. Saab, F. H. Garzon, and T. A. Zawodzinski, “The effects of processing conditions and chemical composition in electronic and ionic resistivities of fuel cell electrode composites”, J. Electrochem. Soc. 2003, 150, A214.
[50] T. R. Ralph, G. A. Harcs, J. E. Keating, S. A. Campbell, D. P. Wilkinson, M. Davis, J. St Pierre, and M. C. Johnson, “Low cost electrodes for proton exchange membrane fuel cells”, J. Electrochem. Soc. 1997, 144, 3845
[51] H. N. Dinh, X. Ren, F. H. Garzon, P. Zelenay, and S. Gottesfeld, “Electrocatalysis in direct methanol fuel cell: In-situ probing of PtRu anode catalyst surface”, J. Electroanal. Chem. 2000, 491, 222.
[52] C. L. Green and A. Kucernak, “Determination of the Pt and Ru surface areas in PtRu alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts”, J. Phys. Chem. B 2002, 106, 1036.
[53] Z. Tang, D. Geng, and G. Lu, “Size-controlled synthesis of colloidal Pt nanoparticle and their activity for the electrocatalytic oxidation of carbon monoxide”, J. Col. Interf. Sci. 2005, 287, 159.
[54] Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, “Synthesis of novel stable nanometer-sized metal (Pd, Au, Pt) colloids protected by a pi-conjugated polymer”, Langmuir 2002, 18, 277.
[55] M. Schonert, K. Jakoby, C. Schlumbohm, A. Glusen, J. Mergel, and D. Stolten, “Manufacture of robust catalyst layer for the direct methanol fuel cell”, Fuel Cells 2004, 4, 175.
[56] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, “Ordered nanoporous arrays of carbon supporting high dispersions of Pt nanoparticles”, Nature 2001, 412, 169.
[57] T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijuma, H. Shimizu, Y. Takasawa, and J. Nakamura, “Efficient usage of hight dispersed Pt on CNTs for electrode catalysts of polymer electrolyte fuel cells”, Catal. To. 2004, 90, 277.
[58] H. Tang, J. Chen, L. Nie, D. Liu, W. Deng, Y. Kuang, and S. Yao, “High dispersion and electrocatalytic properties of Pt nanoparticles on graphitic carbon nanofibers (GCNFs)”, J. Col. Interf. Sci. 2004, 269, 26.
[59] D. Guo and H. Li, “High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles”, J. Electroanal. Chem. 2004, 573, 197.
[60] Z. D. Wei and S. H. Chan, “Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for MeOH electrooxidation”, J. Electroanal. Chem. 2004, 569, 23.
[61] G. Park, T. Yang, Y. Yoon, W. Lee, and C. Kim, “Pore size effect of the direct methanol fuel cell catalyst supported on porous materials”, Inter. J. Hydrogen Energy 2003, 28, 645.
[62] Y. Liu, X. Qiu, Z. Chen, and W. Zhu, “A new supported catalyst for methanol oxidation prepared by a reverse micelles method”, Electrochem. Comm. 2002, 4, 550.
[63] W. C. Choi, S. I. Woo, M. K. Jeon, J. M. Sohn, M. R. Kim, and H. J. Jeon, “Platinum nano-clusters studded in the micro-porous nanowalls of ordered meso-porous carbon”, Adv. Mater. 2005, 17, 446.
[64] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, “Investigation of Pt utilization and morphology in catalyst layer of polymer electrolyte fuel cell”, J. Power Sources 1999, 79, 75.
[65] Y. Yoon, G. Park, T. Yang, J. Han, W. Lee, and C. Kim, “Effect of pore structure of catalyst layer in a PEMFC on its performance”, Inter. J. Hydrogen Energy 2003, 28, 657.
[66] S. -J. Shin, J. -K. Lee, H. -Y. Ha, S. -A. Hong, H. -S. Chun, and I. -H. Oh, “Effect of the catalyst ink preparation method on the performance of polymer electrolyte fuel cells” J. Power Sources 2002, 106, 146.
[67] M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, “New preparation method for polymer electrolyte fuel cells”, J. Electrochem. Soc. 1995, 142, 463.
[68] J. Choi, K. Park, H. Lee, Y. Kim, J. Lee, and Y. Sung, “Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell”, Electrochim. Acta 2003, 48, 2781.
[69] H. Mizuhata, S. Nakao, and T. Yamaguchi, “Morphological control of PEMFC electrode by graft polymerization of polymer electrode onto Pt/C”, J. Power Sources 2004, 138, 25.
[70] O. Nishikawa, T. Sugimoto, S. Nomura, K. Doyama, K. Miyatake, H. Uchida, and M. Watanabe, “Preparation of the electrode for high temp PEMFCs using novel polymer electrolytes based on organic/inorganic nanohybrids” Electrochim. Acta 2004, 50, 667.
[71] O. Nishikawa, K. Doyama, K. Miyatake, H. Uchida, and M. Watanabe, “Gas diffusion electrode for polymer electrolyte fuel cells using novel organic/inorganic hybrid electrolyte: Effect of carbon black addition in the catalyst layer”, Electrochim. Acta 2005, 50, 2719.
[72] J. A. Widegren and R. G. Finke, “A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions”, J. Mol. Catal. A: Chem. 2003, 198, 317.
[73] X. Wang and I. Hsing, “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells“, Electrochim. Acta 2002, 47, 2981.
[74] J. D. Aiken III and R. G. Finke, “Polyoxoanion- and tetrabutylammonium- stabilized Rh(0)n nanoclusters: Unprecedented nanocluster catalytic lifetime in solution”, J. Am. Chem. Soc. 1999, 121, 8803.
[75] H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, A. S. Tilling, and K. Seevogel, “Nanoscale colloidal metals and alloys stabilized by solvents and surfactants Preparation and use as catalyst precursors”, J. Organometal. Chem. 1996, 520, 143.
[76] A. S. Arico, A. K. Shukla, K. M. El Khatib, P. Creti, and V. Antonucci, “Effect of carbon-supported and unsupported PtRu anodes on the performance of solid-polymer-electrolyte direct methanol fuel cells”, J. Appl. Electrochem. 1999, 29, 671.
[77] C. Vogel, J. Meier-Haack, A. Taeger, and D. Lehmann, “On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1)”, Fuel Cells 2004, 4, 320.
[78] L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, “Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes”, Fuel Cells 2004, 4, 196.
[79] K. Kanamura, H. Morikawa, and T. Umegaki, “Observation of interface between Pt electrode and Nafion membrane”, J. Electrochem. Soc., 2003, 150, A193.
[80] R. A. L. Jones, “Colloidal dispersion”, in Soft Condensed Matter, OXFORD, NY, USA, 2002, Ch. 4.
[81] C. W. Macosko, “Suspension rheology”, in Rheology Principles, Measure, and Applications, VCH, NY, USA, 1994, Ch.10.
[82] M. S. Wilson and S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel cells”, J. Appl. Electrochem. 1992, 22, 1.
[83] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “High Performance catalyzed nembranes of ultra-low Pt loadings for polymer electrolyte fuel cells”, J. Electrochem. Soc. 1992, 139, L28.
[84] M. S. Wilson and S. Gottesfeld, “Low Pt loading electrodes for polymer electrolyte fuel cell fabricated using thermoplastic ionomers”, Electrochim. Acta 1995, 40, 355.
[85] S. H. de Almeida, and Y. Kawano, “Thermal behavior of Nafion membranes”, J. Therm. Anal. Cal. 1999, 58, 569.
[86] W. Sun, B. A. Pepply, and K. Karan, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters”, Electrochim. Acta 2005, 50, 3359.
[87] V. Chechik, R. M. Crooks, and C. J. M. Stirling, “Reactions and reactivity in self-assembled monolayers”, Adv. Mater. 2000, 12, 1161.
[88] Z. Csogor, M. Nacken, M. Sameti, C. Lehr, and H. Schmidt, “Modified silica particles for gene delivery”, Mater. Sci. Eng. C 2003, 23, 93.
[89] F. Liu, Y. Chang, F. Ko, T. Chu, and B. Dai, “Rapid fabrication of high quality self-assembled nanometer Au particles by spin coating method”, Microelect. Eng. 2003, 67, 702.
[90] P. X. Zhu, M. Ishikawa, W. S. Seo, A. Hozumi, Y. Yokogawa, and K. Koumoto, “Nucleation and growth of hydroxyapatite on an amino organosilane overlayer”, J. Biomed. Mater. Res. 2001, 59, 294.
[91] D. Nystrim, P Antoni, E. Malmstrom, M. Johansson, M. Whittaker, and A. Hult, “Highly-ordered hybrid organic-inorganic isoporous membranes from polymer modified nanoparticles”, Marcromol. Rapid Comm. 2005, 26, 524.
[92] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: An approach to SERS substrates”, Science 1995, 267, 1629.
[93] D. E. Van Krevelen, in Properties of polymers, third edition, ELSEVIER, AMSTERDAM, 1990. Ch. 7.
[94] A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure”, Phys. Review B, 1998, 58, 7565.
[95] M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, and R. G. Nuzzo, J. Am. Chem. Soc., 119, 1997, 7760.
[96] E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, “Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells”, J. Electroanal. Chem. 1988, 251, 275.
[97] D. K. Schwartz, “Mechanisms and kinetics of self-assembled monolayer formation”, Annu, Rev. Phys. Chem. 2001, 52, 107.
[98] J. W. ten Brinke, S. C. Debnath, L. A. E. M. Reuvekamp, and J. W. M. Noordermer, “Mechanistic aspects of the role of coupling agents in silica–rubber composites”, Comp. Sci. Tech. 2003, 63, 1165.
[99] Y. Hibi and Y. Enomoto, “Lubrication of Si3N4 and Al2O3 in water with and without addition of silane coupling agents in the range of 0.05-0.10 mol/l”, Tribo. Int. 1995, 28, 97.
[100] T. Jesionowski and A. Krysztafkiewicz, “Influence of silane coupling agents on surface properties of precipitated silicas”, Appl. Surf. Sci. 2001, 172, 18.
[101] S.-J. Park, J.-S. Jin, and J.-R. Lee, “Influence of silane coupling agents on the surface energetics of glass fibers” J. Adhesion Sci. Tech. 2000, 14, 1677.
[102] M. Ozcan, J. P. Matinlinna, P. K. Vallittu, and M.-C. Huysmans, “Effect of drying time of 3-glycidyloxypropyl-trimethoxysilane on the shear bond strength of a composite resin to silica-coated base-noble alloys”, Dent. Mater. 2004, 20, 586.
[103] C. L. Lee, Y. Y. Wang and C. C. Wan, “Pd Nanoparticles as a New activator for Electroless Copper Deposition”, J. Electrochem. Soc. 2003, 150, C125.
[104] K. Kanamura, H. Morikawa, and T. Umegaki, “Observation of interface between Pt electrode and Nafion membrane”, J. Electrochem. Soc. 2003, 150, A193
[105] B. Hwang, L. S. Sarma, J. Chen, C. Chen, S. Shih, G. Wang, D. Liu, J. Lee, and M. Tang, “Structural models and atomic distrobution of bimetallic nanoparticles as investgated by X-ray absorption spectroscopy”, J. Am. Chem. Soc. 2005, 127, 11140.
(此全文未開放授權)
封面(書名頁)
摘要
致謝
目次
縮寫表
第一章
第二章
第三章
第四章
第五章
第六章
附錄
參考文獻
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *