帳號:guest(18.218.55.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳子立
作者(外文):Chen, Tzu-Li
論文名稱(中文):TFT-LCD生產鏈物料與產能規劃之研究
論文名稱(外文):Material and Capacity Planning for TFT-LCD Production Chain
指導教授(中文):林則孟
指導教授(外文):Lin, James T.
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:927812
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:232
中文關鍵詞:薄膜電晶體液晶顯示器階層式規劃架構關鍵物料規劃產能規劃陰影價格混整數規劃隨機規劃
外文關鍵詞:TFT-LCD manufacturingHierarchical planning frameworkCritical material planningCapacity planningShadow priceMixed integer linear programmingStochastic programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:395
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究第一目的為提出一套整合階層式生產規劃架構。隨著高科技的進步,新興的薄膜電晶體液晶顯示器(thin film transistor liquid crystal display;TFT-LCD)取代CRT顯示器,也帶動了TFT-LCD製造業的崛起。TFT-LCD面板產業是由三大生產製程階段所組成,分別為列陣(Array)製程、組立(Cell)製程和模組(Module)製程,每階段製程由多個工廠所組成,有如一小型垂直整合的供應鏈,或稱為生產鏈結構。生產鏈上具有許多特殊的生產製程特性與限制條件,而現行乃透過各生產規劃人員憑其經驗以試算表方式規劃出其所負責的規劃區塊,再透過規劃人員間彼此互相協調來完成可執行的生產計畫,不僅費時、複雜且反應慢,而造成了生產計畫與排程上的特殊問題。本研究提出的整合階層式生產規劃架構具有三大特色來整合所有規劃問題與解決上述問題:(1)階層式規劃(hierarchical planning)、(2)結合推拉式規劃流程(combined push-pull planning process) 、(3)模組化規劃方法(modular planning approach)。最後將回顧所有TFT-LCD生產規劃問題的相關文獻來確認出關鍵物料規劃(critical material planning)與產能規劃(capacity planning)的重要性。
本研究第二目的將探討在整合階層式生產規劃架構中最重要的關鍵物料規劃。模組製程是一個以物料導向為主的組裝生產系統,此段製程將前製程生產之面板與部分關鍵物料(例如:驅動IC、印刷電路板與背光模組),根據顧客不同之需求與偏好組裝成不同類型的成品。此外,模組製程存在有許多獨特特性,例如替代物料清單(alternative bill of material; ABOM)、顧客對於ABOM喜好程度(customer preference for ABOM)與物料採購比例(purchase quantity ratio)等,因此傳統的只針對單一物料清單做來計算物料需求量的物料需求規劃方法(material requirement planning; MRP)已無法適用於此產業的物料規劃問題。因此,本研究利用網路圖表達方式針對單期與多期關鍵物料規劃問題提出了非線性規劃模式來考量上述特性與限制來決定每個供應商最佳的採購量。最後,透過實際TFT-LCD案例來驗證本研究所提出關鍵物料規劃的模式,同時透過敏感度分析來探討顧客對於ABOM之喜好程度與採購比例此兩大因素對於規劃結果的影響與管理意義。
本研究最後目的將探討在整合階層式生產規劃架構中另外一個重要的產能規劃問題。由於下列三大趨勢,而使的產能規劃問題變成了TFT-LCD產業日益重要:(1)多階層、多世代與多廠區共存的生產鏈結構、(2)複雜的產品階層結構而造成了TFT-LCD面板可生產產品種類繁多且廣泛、(3)成長快速與劇烈變動的產品需求。在這些有限產能供給、特殊生產結構與快速成長需求的特性下,TFT-LCD產業必須面臨了因供給與需求不平衡而造成的產能規劃議題,包含了(1)產能分配決策:決定每個生產廠區的最大化利潤產品族組合以及每個廠區對於每個產品的最適生產數量;(2) 產能擴充決策:決定哪種類型的產能(各廠區總產能或各廠區對各產品族產能)在哪些廠區需要擴充或是要設立新的生產廠區來增加產能、該類型的產能有多少量需要被擴充或增加以及要透過購買多少機台或是附屬資源來擴充產能。本研究特別關注的是要如何透過附屬資源來擴充各廠區對各產品族產能。本研究建構了針對多廠區產能規劃的混整數規劃模式,由於該混整數規劃模式具有高度的計算複雜度,因此同時也提出了有效率的陰影價格為基啟發演算法來求解之,透過數值實驗結果可以發現陰影價格為基啟發演算法能夠在合理的時間內快速求得近似最佳解,且明顯優於傳統分枝界限法(branch-and-bound)。此外,由於需求預測都是由公司的業務人員獲市場分析員依據經驗法則來產生,因此造成產品需求預測具有不準確性,本研究進一步提出了以情境為基礎二階段隨機規劃模式來考慮在具有需求不確定性現象下產生穩健的產能規劃結果,並同樣的提出有效率的期望陰影價格分解演算法來求解大型問題,最後透過實際TFT-LCD案例來驗證隨機產能規劃在不確性環境下的穩健性。
The first purpose of this dissertation is to present a hierarchical planning framework for a thin film transistor–liquid crystal display (TFT-LCD) production chain in an assembly-to-order (ATO) environment. The TFT-LCD manufacturing process, or the TFT-LCD production chain, comprises three sequential steps, namely: the Array, Cell and Module processes. Many special characteristics and constraints, such as product grade constraints, site-eligibility constraints and key material availability constraints, are inherited in this production chain. The globally distributed nature of production planning and scheduling activities of TFT-LCD production leads to an urgent need for an integrated planning and scheduling framework to balance supply and demand problems. There are three main features of this integrated framework: (1) hierarchical planning (2) combined push-pull planning process (3) modular planning approach. A review of OR methods applied in TFT-LCD planning and scheduling for various planning modules are given and the importance of critical material planning and capacity planning is identified.
The second purpose of this dissertation is to study the critical material planning which is one of the most important planning modules in the proposed hierarchical planning framework. The module process is the material-oriented and discrete production environment that combines many critical materials such as integrated circuit (IC), printed circuit board (PCB), and backlight (BL) into the final TFT-LCD products according to different customer requirements and preferences. There exist many specific characteristics such as alternative bill of material (ABOM), customer preference for ABOM, and purchase quantity ratio occurring in the TFT-LCD industry. The traditional MRP mechanism that calculates the purchase quantity by exploding a fixed BOM structure is difficult to apply to CMP. In response to this challenge, this study formulates a single-period and multi-period CMP problem as nonlinear programming models represented by the network graph to optimize the purchase quantities of all suppliers under the existence of specific characteristics. Finally, a numerical example from a real TFT-LCD manufacturer is illustrated to clarify the multi-period CMP model and the managerial implications of the customer preference factors and the purchase quantity ratio are also correspondingly discussed.
The final purpose of this dissertation is to study the capacity planning problem in the hierarchical planning framework. Capacity planning is critical to TFT-LCD industry due to its complex product hierarchy and increasing product types; the coexistence of multiple generations of manufacturing technologies in a multi-site production environment; and the rapidly growing market demands. One key purpose of capacity planning is to simultaneously determine the profitable “product mix” and “production quantities” of each product group across various generation sites in a particular period and the optimal “capacity expansion quantity” of specific product groups at a certain site through the acquisition of new auxiliary tools. This study proposes a mixed integer linear programming model for the multi-site capacity planning. A shadow-price based heuristic is developed to find a near-optimal solution. Our computational study indicates that the proposed method performs better and is more robust than the conventional branch-and- bound (B&B) algorithm. In addition, since the demand forecasts faced by TFT-LCD manufacturers are usually inaccurate, we develop a scenario-based two-stage stochastic programming model to seek a robust capacity allocation and expansion policy against demand uncertainties. An expected shadow-price based decomposition is constructed to obtain a near-optimal solution in efficient manner. According to our numerical study using real industry cases, the stochastic capacity planning model significantly improve system robustness and outperforms traditional deterministic model under demand uncertainties.
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Aims 3
1.3 Research Organization 5
Chapter 2 Literature Review 6
2.1 Review of Material Planning Literature 6
2.2 Review of Capacity Planning Literature 9
2.2.1 Capacity planning and its hierarchy 9
2.2.2 Single-site v.s multi-site capacity planning 13
2.2.3 Deterministic v.s stochastic capacity planning 20
2.2.4 Capacity planning for different application industries 26
2.2.5 Solution approaches for capacity planning 32
2.2.6 Classification of capacity planning models 34
Chapter 3 A Hierarchical Planning Framework for TFT-LCD Production Chain 39
3.1 Characteristics of TFT-LCD Production Chain 40
3.2 Integrated Hierarchical Planning Process 46
3.2.1 The integrated hierarchical planning framework 46
3.2.2 Features of the framework 48
3.2.3 Views of the framework 50
3.3 Review of OR methods for various planning modules 62
Chapter 4 Critical Material Planning 75
4.1 CMP Problems 75
4.1.1 Unique characteristics of CMP 75
4.1.2 Difference between traditional MRP and CMP 79
4.1.3 Problem definition of CMP 82
4.2 Single-Period Critical Material Planning (SPCMP) 84
4.3 Multi-Period Critical Material Planning (MPCMP) 90
4.4 Computational Example and Discussion 95
4.4.1 An illustrated example 95
4.4.2 The impact of customer preference factors 102
4.4.3 The impact of purchase quantity ratio 103
4.5 Extensions 105
Chapter 5 Multi-Site Capacity Planning 110
5.1 Problem Statement 110
5.2 Multi-Site Capacity Planning Model 117
5.3 Shadow-Price based Heuristic 124
5.3.1 Capacity allocation phase 125
5.3.2 Capacity expansion phase 132
5.3.3 An illustrated example 136
5.4 Computational Study 143
5.4.1 Comparison between B&B and shadow-price based heuristic 145
5.4.2 Comparison of five different shadow-price selection rules 148
5.4.3 Robust tests under different demand and price levels 151
5.5 Impact of Parameters on Decisions, Costs and Profits 153
Chapter 6 Stochastic Multi-Site Capacity Planning under Demand Uncertainty 161
6.1 Problem Statement 161
6.2 Modeling Demand Uncertainty and Scenario Generation 163
6.3 Two-Stage Stochastic Programming Model of Multi-Site Capacity Planning 169
6.4 Expected Shadow-Price based Decomposition 175
6.4.1 Scenario-dependent capacity allocation phase 177
6.4.2 Scenario-independent capacity expansion phase 179
6.4.3 An illustrated example 183
6.5 Industry Practice and Model Validation 192
6.5.1 Scenario-based two-stage stochastic programming model 193
6.5.2 Deterministic EV model with expected forecast demands 196
6.5.3 The value of stochastic solution 197
6.5.4 Robust evaluation by out-of-sample simulation 198
6.5.5 Robust evaluation by other industrial case studies 200
6.6 Performance tests of expected shadow-price based decomposition 202
Chapter 7 Conclusion and Future Research 207
7.1 Conclusion 207
7.2 Future Research 209
References 210
Appendix A Scenario Reduction Algorithms 226
Appendix B Input data of the illustrative example 228
Appendix C Definition of stochastic measures and risk measures 232
[1] Ahmed, S, “Semiconductor Tool Planning via Multi-Stage Stochastic Programming”, Proceedings of 2002 International Conference on Modeling and Analysis of Semiconductor Manufacturing, pp.153-157, 2002.
[2] Ahmed, S., King, A. J. and Parija, G., “A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty”, Journal of Global Optimization, 26, pp.3-24, 2003.
[3] Ahmed, S. and Sahinidis, N. V., “An Approximation Scheme for Stochastic Integer Programs arising in Capacity Expansion”, Operations Research, 51(3), pp.461-471, 2003.
[4] Ahmed, S. and Garcia, R., “Dynamic Capacity Acquisition and Assignment under Uncertainty”, Annals of Operations Research, 124, pp. 267-283, 2004.
[5] Ayuso, A. A., Escudero, L. F., Grain, A., Ortuno, M. T. and Perez, G., “An Approach for Strategic Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming”, Journal of Global Optimization, 26, pp.97-124, 2003.
[6] Ayuso, A. A., Escudero, L. F., Grain, A., Ortuno, M. T. and Perez, G., “On the Product Selection and Plant Dimensioning Problem under Uncertainty”, Omega, 33, pp.307-318, 2005.
[7] Barahona, F., Bermon, S., Gunluk, O. and Hood, S., “Robust Capacity Planning in Semiconductor Manufacturing”, Naval Research Logistics, 52, pp.459-468, 2005.
[8] Barba-Gutierrez, Y., Adenso-Diaz, B. and Gupta S. M., “Lot sizing in reverse MRP for scheduling disassembly”, International Journal of Production Economics, 111, pp.741-751, 2008.
[9] Bard, J. F., Srinivasan, K. and Tirupati, D., “An optimization approach to capacity expansion in semiconductor manufacturing facilities”, International Journal of Production Research, 37(15), pp.3359-3382, 1999.
[10] Balachandran, B. V., Balakrishnan, R. and Sivaramakrishnan, K., “Capacity planning with demand uncertainty”, The Engineering Economist, 43(1), pp.49-72, 1997.
[11] Bermon, S. and Hood, S. J., “Capacity Optimization Planning System”, Interface, 29(5), pp.31-50, 1999.
[12] Bertrand, J. W. M., Zuijderwijk, M. and Hegge, H. M. H., ”Using hierarchical pseudo bills of material for customer order acceptance and optimal material replenishment in assemble to order manufacturing of non-modular products”, International Journal of Production Economics, 68, pp.169-176, 2000.
[13] Bhatnager, S., Gaucherand, E. F., Fu, M. C., He, Y. and Marcus, S. I., “A Markov Decision Process Model for Capacity Expansion and Allocation”, Proceedings of the 38th Conference on Decision & Control, pp.1380-1385, 1999.
[14] Birge, J. R. and Louveaus, F., “Introduction to Stochastic Programming”, Springer-Verlag, 1997.
[15] Bok, J. K., Lee, H. and Park, H., “Robust investment model for long-range capacity expansion of chemical processing networks under uncertain demand forecast scenarios”, Computers & Chemical Engineering, 22(7-8), pp.1037-1049, 1998.
[16] Bradley, S. P., Hax, A. C. and Magnanti, T. L., “Applied Mathematical Programming”, Addison-Wesley, Reading, MA, 1977.
[17] Casimir, R. J., “Lot-bucket MRP”, International Journal of Production Economics, 28, pp.173-181, 1999.
[18] Catay, B., Erenguc, S. S. and Vakharia, A. J., “Tool capacity planning in semiconductor manufacturing”, Computers and Operations Research, 30, pp.1349-1366, 2003.
[19] Chang, P. C., Fan, C. Y., Liu, B. J. and Chen, C., “Sales Forecasting for TFT-LCD Products with a hybrid Neural Network Model”, Communications in Computer and Information Science, pp.704–713, 2007.
[20] Chang, S. C., “The TFT-LCD industry in Taiwan: competitive advantages and future developments,” Technology in Society, 27, pp.199-215, 2005.
[21] Chen, Y. Y. and Lin, J. T., “Hierarchical Multi-Constraint Production Planning Problem Using Linear Programming and Heuristics”, Journal of the Chinese Institute of Industrial Engineers, 25(5), pp.347–357, 2008.
[22] Chen, Y. Y. and Lin, J. T., “A modified particle swarm optimization for production planning problems in the TFT Array process”, Expert Systems with Applications, 36 (10), pp.12264–12271, 2009.
[23] Chen, J. H., Lin, J. T. and Wu, Y. S., “Order Promising Rolling Planning with ATO/CTP Reallocation Mechanism”, Industrial Engineering & Management Systems, 7(1), pp.57-65, 2008.
[24] Chen, T. L., Lin, J. T. and Fang, S. C., “A scenario-based stochastic programming approach for technology and capacity planning”, Journal of Industrial and Management Optimization, accepted, 2009.
[25] Chen, Z. L., Li, S. and Triupati, D., “A scenario-based stochastic programming approach for technology and capacity planning”, Computers & Operations Research, 29, pp.781-806, 2006.
[26] Cheng, L., Subrahmanian, E. and Westerberg, A. W., “Multi-objective Decisions on Capacity Planning and Production-Inventory Control under Uncertainty”, Industrial & engineering chemistry research, 43, pp. 2192-2208, 2004.
[27] Choi, B. K. and Seo, J. C., “Capacity-filtering algorithms for finite-capacity planning of a flexible flow line”, International Journal of Production Research, to appear, 2009.
[28] Chou, Y. C., Cheng, C. T., Yang, F. C. and Liang, Y. Y., “Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios”, International Journal of Production Economics, 105, pp.591-606, 2007.
[29] Chou, Y. C. and You, R. C., “A Resource Portfolio Planning Methodology for Semiconductor Wafer Manufacturing”, International Journal of Advanced Manufacturing Technology, 18, pp.12-19, 2001.
[30] Christie, R. M. E. and Wu, S. D., “Semiconductor capacity planning: stochastic modeling and computational studies”, IIE Transactions, 34, pp. 131-143, 2002.
[31] Chung, S. H. and Hsieh, M. H., “Long-term tool elimination planning for a wafer fab”, Computers and Industrial Engineering, 54, pp.589-601, 2008.
[32] Chung, S. H., Pearn, W. L. and Tai, Y. T., “Fast and effective algorithms for the liquid crystal display module (LCM) scheduling problem with sequence-dependent setup time”, Journal of the Operational Research Society, 60, pp.921-933, 2009.
[33] Clark, A. R., “Optimization approximations for capacity constrained material requirements planning”, International Journal of Production Economics, 84, pp.115-131, 2003.
[34] Corchero, C. and Heredia, F. J., “Two-stage Stochastic Programming Model for the Thermal Optimal Day-Ahead Bid Problem with Physical Future Contracts”, working paper, 2008.
[35] Dolgui, A. and Louly, M. A. O., “A model for supply planning under lead time uncertainty”, International Journal of Production Economics, 78, pp.145-152, 2002.
[36] Domenica, N. D., Lucas, C., Mitra, G. and Valente, P., “Scenario generation for stochastic programming and simulation: a modelling perspective”, IMA Journal of Management Mathematics, pp.1-38, 2007.
[37] Du, T. C. T. and Wolfe, P. M., „Building an active material requirements planning system”, International Journal of Production Research, 38(2), pp.241-252, 2000.
[38] Enns, S. T., “MRP performance effects due to forecast bias and demand uncertainty”, European Journal of Operational Research, 138, pp.87-102, 2002.
[39] Eppen, G. D., Martin, R. K. and Schrage, L., “A Scenario Approach to Capacity Planning”, Operations Research, 37(4), pp.517-527, 1989.
[40] Escudero, L. F., Kamesam, P. V., King, A. J. and Wets, R. J. B., “Production planning via scenario modeling”, Annals of Operations Research, 43, pp. 311-335, 1993.
[41] Euwe, M. J. and Wortmann, H., “Planning systems in the next century (I)”, Computers in Industry, 34, pp.233-237, 1997.
[42] Fernandez-Ranada, M., Gurrola-Gal, F. X. and Lopez-Tello, E., “3C: Aproven Alternative to MRPⅡ for Optimizing Supply Chain Performance”, CRC Press LLC, Boca Raton, FL, 2000.
[43] Fleischmann, B., Ferber, S. and Henrich. P., “Strategic Planning of BMW’s Global Production Network“, Interfaces, 36(3), pp.194-208, 2006.
[44] Fleten, S. E. and Kristoffersen, T. K., “Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer“, European Journal of Operational Research, 181, pp.916-928, 2007.
[45] Fleten, S. E. and Kristoffersen, T. K., “Short-term hydropower production planninh by stochastic programming“, Computers & Operations Research, 35, pp.2656-2671, 2008.
[46] Fogarty, D. W., Blackstone, J. H. and Hoffmann, T. R., “Production & Inventory Management”, South-Western Publishing Co. Cincinnati, Ohio, 1991.
[47] Garavelli, A. C., “Flexibility configurations for the supply chain management”, International Journal of Production Economics, 85, pp.141-153, 2003.
[48] Gatica, G., Papageorgiou, L. G. and Shah, N., “Capacity planning under uncertainty for the pharmaceutical industry”, Chemical Engineering Research & Design, 81(6), pp.665-678, 2003.
[49] Geng, N. and Jiang, Z., “Capacity Planning for Semiconductor Wafer Fabrication with Uncertain Demand and Capacity”, Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering, pp. 100-105, 2007.
[50] Geng, N. and Jiang, Z., “A review on strategic capacity planning for the semiconductor manufacturing industry”, International Journal of Production Research, 47(13), pp.3639-3655, 2009.
[51] Geng, N., Jiang, Z. and Feng, C., “Stochastic Programming Based Capacity Planning for Semiconductor Wafer Fab with Uncertain Demand and Capacity”, European Journal of Operational Research, 198(3), pp.899-908, 2009.
[52] Growe-Kuska, N., Kiwiel, K. C., Nowak, M. P., Romisch, W. and Wegner, I., “Power management under uncertainty by Lagrangian relaxation”, Proceedings of the sixth international conference probabilistic methods applied to power systems, INESC Porto, 2000.
[53] Growe-Kuska, N., Heitsch, H. And Romisch, W., “Scenario Reduction and Scenario Tree Construction for Power Management Problems“, 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy.
[54] Grunow, M., Gunther, H. O., Burdenik, H. and Alting, L., “Evolving Production Network Structures“, Annals of the CIRP, 56, pp.427-430, 2007.
[55] Hood, S. J., Bermon, S. and Barahona, F., “Capacity Planning under Demand Uncertainty for Semiconductor Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, 16(2), pp.173-280, 2003.
[56] Hopp, W.J., and Spearman, M.L., “Factory Physics: Foundations of Manufacturing Management”, Third Edition, McGraw-Hill, 2008.
[57] Hoyland, K. and Wallace, S. W., “Generating scenario trees for multistage decision problems”, Management Science, 47(2), pp.295-307, 2001.
[58] Hoyland, K., Kaut, K. and Wallace, S. W., “A heuristic for moment-matching scenario generation”, Computational Optimization and Application, 24, pp.169-185, 2003.
[59] Hua, Z. S. and Huang, F., “A hybrid Heuristic for PWB Capacity Expansion Problem”, Lecture Notes in Computer Science, 4113, pp.802-811, 2006.
[60] Hung, Y. F. and Hu, Y. C., “Solving Mixed Integer Programming Production Planning Problems with Setups by Shadow Prices Information”, Computer and Operations Research, 25(12), pp.1027-1042, 1998.
[61] Hung, Y. F. and Wang, Q. Z., “A new formulation technique for alternative material planning-an approach for semiconductor bin allocation planning”, Computers and Industrial Engineering, 32(2), pp.281-297, 1997.
[62] Infanger, G.., “Planning under uncertainty: Solving large scale linear programs”, Danvers: Boyd and Fraser, 1994.
[63] Jeong, B., Kim, S. and Lee, Y., “An assembly scheduler for TFT LCD manufacturing”, Computers & Industrial Engineering, 41, pp.37–58, 2001.
[64] Jeong, B., Sim, S., Jeong, H. and Kim, S., “An available-to-promise system for TFT LCD manufacturing in supply chain”, Computers & Industrial Engineering, 43 pp.191–212, 2002.
[65] Julka, N., Baines, T., Tjahjono, B., Lendermann, P. and Vitanov V., “A review of multi-factor capacity expansion models for manufacturing plants: Searching for a holistic decision aid”, International Journal of Production Economics, 106, pp.607-621, 2007.
[66] Kallrath, J., “Planning and scheduling in the process industry”, OR Spectrum, 24, pp.219–250, 2002.
[67] Karabuk, S. and Wu, S. D., “Coordinating Strategic Capacity Planning in the Semiconductor Industry”, Operations Research, 51(6), pp.839-849, 2003.
[68] Kaut, M., Wallace, S. W., Vladimirou, H. and Zenios, S., “Stability analysis of a portfolio management model based on the conditional value-at-risk measure”, Quantitative Finance, 7(4), pp.397-409, 2007.
[69] Kreipl, S. and Pinedo, M., “Planning and Scheduling in Supply Chains: An Overview of Issues in Practice”, Production and Operations Management, 13(1), pp.77-92, 2004.
[70] Leachman, R. C., Benson, R. F., Liu, C. and Raar, D. J., “IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation-Semiconductor Sector”, Interfaces, 26, pp.6-37, 1996.
[71] Lee, Y. H. And Lee, B. J., “Push-Pull Production Planning of the re-entrant process”, International Journal of Advanced Manufacturing Technology, 22 pp.922–931, 2003.
[72] Lee, S. B. and Luss, H., “Multifacility-Type Capacity Expansion Planning: Algorithms and Complexities”, Operations Research, 35(2), pp.249-253, 1987.
[73] Levis, A. A. and Papageorgiou, L. G., “A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry”, Computer and Chemical Engineering, 28, pp.707-725, 2004.
[74] Li S. and Triupati, D., “Dynamic Capacity Expansion Problem with Multiple Product: Technology Selection and Timing of Capacity Additions”, Operations Research, 42(5), pp.958-976, 1994.
[75] Li, H., Hendry, L. and Teunter, R., “A strategic capacity allocation model for a complex supply chain: Formulation and solution approach comparison”, International Journal of Production Economics, to appear, 2007.
[76] Liang, Y. Y. and Chou, Y. C., “Option-based Capacity Planning for Semiconductor Manufacturing”, 2003 IEEE International Symposium on Semiconductor Manufacturing, pp.77-80, 2003.
[77] Lin, J. T. and Chen, J. H., “Enhance Order Promising with ATP Allocation Planning Considering Material and Capacity Constraints”, Journal of the Chinese Institute of Industrial Engineers, 22(4), pp.282–292, 2005.
[78] Lin, J. T., Chen, T. L. and Lin, Y. T., “A Hierarchical Planning and Scheduling Framework for TFT-LCD Production Chain”, 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, pp.711-716, 2006a.
[79] Lin, J. T., Wang, F. K., Lo, S. L., Hsu, W. T. and Wang, Y. T., “Analysis of the supply and demand in the TFT–LCD market”, Technological Forecasting & Social Change, 73, pp.422–435, 2006b.
[80] Lin, J. T. and Chen, Y. Y., “A multi-site supply network planning problem considering variable time buckets– A TFT-LCD industry case”, International Journal of Advanced Manufacturing Technology, 33, pp.1031–1044, 2007a.
[81] Lin, J. T. and Chen, T. L., “A Capacity Planning Model in the TFT-LCD Production Chain”, 2007 IEEE/INFORMS International Conference on Service Operations and Logistics, and Informatics, pp.460-465, 2007b.
[82] Lin, J. T., Chen, T. L. and Chen, W. J., “Capacity and product mix planning problem for TFT Array multi-plant”, Journal of the Chinese Institute of Industrial Engineers, 24(6), pp.489-504, 2007a.
[83] Lin, J. T., Wang, K. S., Hong, I. H. and Wu, C. H., “An Available-to-Promise Model for TFT-LCD Production Chain”, The 14th International Conference on Industrial Engineering and Engineering Management, Tianjin, China, 2007b.
[84] Lin, J. T., Wang, F. K. and Peng, C. C., “Lot release times and dispatching rule for a TFT-LCD cell process”, Robotics and Computer-Integrated Manufacturing, 24(2), pp.228-238, 2008.
[85] Lin, J. T., Chen, T. L. and Lin, Y. T., “Critical material planning for TFT-LCD production industry”, International Journal of Production Economics, to appear, 2009a.
[86] Lin, J. T., Wu, C. H., Chen, T. L. and Chang, Y. C., “A Stochastic Programming Model for Strategic Capacity Planning in Thin Film Transistor – Liquid Crystal Display (TFT-LCD) Industry”, working paper, 2009b.
[87] Lin, J. T., Wu, C. H., Chen, T. L. and Shih, S. H., “Coordinated Capacity Planning in Two-stage TFT-LCD Production Networks”, working paper, 2009c.
[88] Linderoth, J., Shapiro, A. and Wright, S., “The empirical behavior of sampling methods for stochastic programming”, Annals of Operations Research, 142(1), pp.215-241, 2006.
[89] Lim, S. K. and Kim Y. D., “An Integrated Approach to Dynamic Plant Location and Capacity Planning”, The Journal of the Operation Research Society, 50(12), pp.1205-1216, 1999.
[90] Liu, M. L. and Sahinidis, N. V., “Bridging the gap between heuristics and optimization: capacity expansion case”, AIChE Journal, 43(9), pp.2289-2299, 1997.
[91] Lo, S. L., Wang, F. K. and Lin, J. T., “Forecasting for the LCD Monitor Market”, Journal of Forecasting, 27(4), pp.341-356, 2008.
[92] Louly, M. A. O., Dolgui, A. and Hnaien, F., “Supply planning for single-level assembly system with stochastic component delivery times and service-level constraint”, International Journal of Production Economics, 115, pp.236-247, 2008
[93] Lucas, C., MirHassani, S. A., Mitra, G. And Poojari, C. A., “An Application of Lagrangean Relaxation to a Capacity Planning Problem under Uncertainty”, Journal of the Operational Research Society, 52, pp.1256-1266, 2001.
[94] Luss, H, “Operations Research and Capacity Expansion Problem: A Survey”, Operations Research, 30(5), pp.907-947, 1982.
[95] Lyon, P., Milne, R. J., Orzell, R. and Rice, R., “Matching Assets with Demand in Supply Chain Management at IBM Microelectronics”, Interface, 31, pp.108-124, 2001.
[96] Melo, M. T., Nickel, S. and Gama, F. S. “Dynamic Multi-commodity Capacitated Facility Location: A Mathematical Modeling Framework for Strategic Supply Chain Planning”, Computers & Operations Research, 33, pp.181-208, 2005.
[97] Meighem, J. A. V., “Capacity Management, Investment, and Hedging: Review and Recent Developments”, Manufacturing & Service Operations Management, 5(4), pp.269-302, 2003.
[98] Meyr, H., “Supply chain planning in the German automotive industry”, OR Spectrum, 26, pp.447–470, 2004.
[99] MirHassani, S. A., Lucas, C., Mitra, G., Messina, E. and Poojari, C. A, “Computational solution of capacity planning models under uncertainty”, Parallel Computing, 26(5), pp. 511-538, 2000.
[100] Mohebbi, E., Choobineh, F. and Pattanayak, A., ”Capacity-driven vs. demand-driven material procurement systems”, International Journal of Production Economics, 107, pp.451-466, 2007.
[101] Murthy, D. P. and Ma, L., „MRP with uncertainty: a review and some extensions”, International Journal of Production Economics, 25, pp.51-64, 1991.
[102] Oh, H. C. and Karimi, I. A., “Regulatory Factors and Capacity-Expansion Planning in Global Chemical Supply Chains”, Industrial & Engineering Chemistry Research, 43, pp.3364-3380, 2004.
[103] Orlicky, J. A., “Material Requirements Planning — the new way of life in production and inventory management”, McGraw-Hill Inc., New York, 1975.
[104] Papageorgiou, L. G., Rotstenin, G. E. and Shah, N., “Strategic supply chain Optimization for the Pharmaceutical Industries”, Industrial & Engineering Chemistry Research, 40, pp.275-286, 2001.
[105] Park, B. C., Park, E. S., Choi, B. K., Kim, B. H. and Lee, J. H., “SIMULATION BASED PLANNING AND SCHEDULING SYSTEM FOR TFT-LCD FAB”, Proceedings of the 2008 Winter Simulation Conference, 2008.
[106] Pecht, M. and Lee, C. S., “Flat panel displays – what is going on in East Asia outside Japan,” Circuit World, 24(1), pp.20-27, 1997.
[107] Plenert, G., “Focusing material requirements planning (MRP) towards performance”, European Journal of Operational Research 119, pp.91-99, 1999.
[108] Plossl, G. W., “Orlicky’s Material Requirement Planning”, second edition. McGraw-Hill Inc., New York, 1994.
[109] Rajagopalan, S., “Capacity Expansion and Equipment Replacement: A Unified Approach”, Operations Research, 46(6), pp.846-857, 1998.
[110] Rajagopalan, S., Singh, M. R. and Morton, T. E., “Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs”, Management Science, 44(1), pp.12-30, 1998.
[111] Rajagopalan, S and Swaminathan, J. M., “A Coordinated Production Planning Model with Capacity Expansion and Inventory Management”, Management Science, 47(11), pp.1562-1580, 2001.
[112] Ram, B., Naghshineh-Pour, M. R. and Yu, X., “Material requirements planning with flexible bills-of-material”, International Journal of Production Research, 44(2), pp.399-415, 2006.
[113] Ryu, J. H., “Multiperiod Planning Strategies with Simultaneous Consideration of Demand Fluctuations and Capacity Expansion”, Industrial & Engineering Chemistry Research, 45, pp.6622-6625, 2006.
[114] Sahinidis, N. V., Grossmann, I. E., Fornari, R. E. and Chathrathi, M., “Optimization model for long range planning in the chemical industry”, Computer and Chemical Engineering, 13(9), pp.1049-1063, 1989.
[115] Sahinidis, N. V. and Grossmann, I. E., “Reformulation of the Multiperiod MILP Model for Capacity Expansion of Chemical Process”, Operations Research, 40(1), pp.S127-S144, 1992.
[116] Sambasivan, M. and Yahya, S., “A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers”, Computers and Operations Research, 32, pp.537-555, 2005.
[117] Santoso, T., Ahemd, S., Goetschalckx, M. and Shapiro, A., “A Stochastic Programming Approach for Supply Chain Network Design under Uncertainty”, European Journal of Operational Research, 167, pp.96-115, 2005.
[118] Schutz, P., Tomasgard, A. and Ahmed, S., “Supply Chain Design under Uncertainty using Sample Average Approximation and Dual Decomposition”, European Journal of Operational Research, 199(2), pp.409-419, 2009.
[119] Segerstedt, A., “Formulas of MRP”, International Journal of Production Economics, 46, pp.127-136, 1996.
[120] Shapiro, A., “Inference of statistical bounds for multistage stochastic programming problems”, Mathematical Methods of Operations Research, 58, pp.57-68, 2003.
[121] Shapiro, A. and Philpott, A., “A Tutorial on Stochastic Programming”, working paper, 2007.
[122] Shin, H. J. and Leon, V. J., “Scheduling with product family set-up times: an application in TFT LCD manufacturing”, International Journal of Production Research, 42(20), pp.4235–4248, 2004.
[123] Shin, H. J. and Kang, Y. H., “A rework-based dispatching algorithm for module process in TFT-LCD manufacture”, International Journal of Production Research, to appear, 2008.
[124] Syam, S. S. “Multiperiod Capacity Expansion in Globally Dispersed Regions”, Decision Science, 31(1), pp.173-195, 2000.
[125] Swaminathan, J. M., “Tool capacity planning for semiconductor fabrication facilities under demand uncertainty”, European Journal of Operation Research, 120, pp.545-558, 2000.
[126] Swaninathan, J. M., “Tool procurement planning for wafer fabrication facilities: a scenario-based approach”, IIE Transactions, 34, pp.145-155, 2002.
[127] Tsai, K. M. and Wang, S. C., “Multi-site available-to-promise modeling for assemble-to-order manufacturing- An illustration on TFT-LCD manufacturing,” International Journal of Production Economics, 117, pp.174-184, 2009.
[128] Uribe, A. M., Cochran, J. K. and Shunk, D. L., “Two-stage simulation optimization for agile manufacturing capacity planning”, International Journal of Production Research, 41(6), pp.1181-1197, 2003.
[129] Uzsoy, R., Lee, C. Y. and Martin-Vega L. A., “A Review of Production Planning and Scheduling Models in the Semiconductor Industry. Part1: System Characteristics, Performance Evaluation and Production Planning”, IIE transactions 24(4), pp.47–60, 1992.
[130] Van Donselaar, K., Nieuwenhof, J. V. D. and Visschers, J., “The impact of material coordination concepts on planning stability in supply chain”, International Journal of Production Economics, 66, pp.171-184, 2000.
[131] Van Donselaar, K. H. and Gubbels, B. J., “How to release orders in order to minimise system inventory and system nervousness?”, International Journal of Production Economics, 78, pp.335-343, 2002.
[132] Van Wezel, W., Van Donk, D. P. and Gaalman, G., “The planning flexibility bottleneck in food processing industries”, Journal of Operations Management, 24, pp.287-300, 2006.
[133] Velarde, J. L. G. and Laguna, M., “A Benders-based heuristic for the robust capacitated international sourcing problem”, IIE Transactions, 36, pp.1125-1133, 2004.
[134] Vollmann, T. E., Berry, W. L., Whybark, D. C. and Jacobs, F. R., “Manufacturing Planning and Control Systems for Supply Chain Management”, McGraw-Hill Inc., New York, 2005.
[135] Wagner, J. M. and Berman, O., “Models for Planning Capacity Expansion of Convenience Stores under Uncertain Demand and the Value of Information”, Annals of Operations Research, 59, pp.19-44, 1995.
[136] Wang, K. J. and Lin, S. H, “Capacity expansion and allocation for a semiconductor testing facility under constrained budget”, Production Planning & Control, 13(5), pp.429-437, 2002.
[137] Wang, K. J. and Hou T. C, “Modeling and resolving the joint problem of capacity expansion and allocation with multiple resources and a limited budget in the semiconductor testing industry”, International Journal of Production Research, 41(14), pp.3217-3235, 2003.
[138] Wang, S. M., Chen, J. C and Wang, K. J., “Resource Portfolio Planning of Make-To-Stock Products Using a Constraint Programming–Based Genetic Algorithm”, Omega, 35, pp.237-246, 2007a.
[139] Wang, K. J., Wang, S. M. And Yang, S. J., “A resource portfolio model for equipment investment and allocation of semiconductor testing industry“, European Journal of Operational Research, 179, pp.390-403, 2007b.
[140] Wang, K. J., Wang, S. M. and Chen, J. C., “A resource portfolio planning model using sampling-based stochastic programming and genetic algorithm”, European Journal of Operational Research, 184, pp.327-340, 2008.
[141] Wu, S. D., Erkoc, M. and Kararbuk, S., “Managing Capacity in the High-tech Industry: A Review Literature“, The Engineering Economist, 50, pp.125-158, 2005.
[142] Wu, M. C., Hsiung, Y. and Hsu, H. M., “A tool planning approach considering cycle time constraints and demand uncertainty”, International Journal of Advanced Manufacturing Technology, 26, pp.565-571, 2005.
[143] Wu, J. Z. and Chien, C. F., “Modelling strategic semiconductor assembly outsourcing decisions based on empirical settings”, OR Spectrum, 30, pp.401–430, 2008.
[144] Yenisey, M. M., “A flow-network approach for equilibrium of material requirements planning”, International Journal of Production Economics, 102, pp.317-332, 2006.
[145] Yilmaz, P. and Catay, B., “Strategic Level Three-stage Production Distribution Planning with Capacity Expansion”, Computer & Industrial Engineering, 51, pp.609-620, 2006.
[146] Zhang, Z., Zhang, M. T., Niu, S. and Zheng, L., “Capacity planning with reconfigurable kits in semiconductor test manufacturing”, International Journal of Production Research, 44(13), pp.2625-2644, 2006.
[147] Zhang, M. T., Niu, S., Deng, S., Zhang, Z., Li, Q. and Zheng, L., “Hierarchical capacity planning with reconfigurable kits in global semiconductor assembly and test manufacturing”, IEEE Transactions on Automation Science and Engineering, 4, pp.543-552, 2007
[148] http://www.electronicstalk.com/news/fro/fro123.html.
[149] http://www.emsnow.com/newsarchives/archivedetails.cfm?ID=12279.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *