帳號:guest(18.218.254.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭錫聰
作者(外文):Cheng,Hsi-Tsung
論文名稱(中文):介白素8之新型受體擷抗劑的結構與功能研究
論文名稱(外文):Solution Structural and Functional Studies of A Novel Antagonist of CXCR1/CXCR2
指導教授(中文):程家維
指導教授(外文):Cheng,Jya-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:928230
出版年(民國):97
畢業學年度:97
語文別:英文
論文頁數:81
中文關鍵詞:介白素8擷抗劑內毒素核磁共振結構
外文關鍵詞:CXCL8AntagonistLPSNMRStructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:163
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
具有ELR-CXC的趨化素在許多急慢性免疫或發炎疾病佔有重要的地位,這類的趨化素可以誘發嗜中性球的免疫功能,並造成免疫系統的激活。介白素8又稱為趨化素CXCL8,是一個由72個氨基酸所組成的蛋白。在急慢性發炎患者體內,趨化素CXCL8的濃度會上升,並可能造成過度的免疫反應,引發傷害。先前的研究中指出,將介白素8的離氨酸11與甘氨酸31同時突變成精氨酸11與脯氨酸31將使介白素8變成其受體CXCR1及CXCR2的擷抗劑。因此,本研究針對此一擷抗劑的生產與純化過程提出一個簡單易於執行,且可提供高純度蛋白質的方法;此外本研究利用核磁共振光譜解出該蛋白在水溶液中的結構,並與原生的介白素8作一結構上的比較,以了解擷抗劑作用機制。本研究同時利用旋光光譜儀、微卡計滴定法、超高速分析式離心等方法,測定出該擷抗劑的各種解離常數與其他物化特性。經由本研究的成果,提供了生產該擷抗劑的有效方法,不僅可大量生產,更可輕易將生產過程中所沾染的內毒素去除。同時,本研究結果也指出,該擷抗劑的擷抗作用主要來自脯氨酸31突變所造成結構變化所導致與觸發其受體訊號傳遞的影響。本研究結果將有助於未來該擷抗劑臨床實驗的進行,並對於了解與開發新的擷抗劑提供一有用的資訊。
The ELR-CXC chemokines are important to neutrophil inflammation in many acute and chronic diseases. Among them, CXCL8 (interleukin-8, IL-8) binds to both the CXCR1 and CXCR2 receptors with high affinity and the expression levels of CXCL8 are elevated in many inflammatory diseases. Recently, an analogue of human CXCL8, CXCL8(3–72)K11R/G31P (hG31P) has, been developed. It has been demonstrated that hG31P is a high affinity antagonist for both CXCR1 and CXCR2. To obtain large quantities of hG31P, this study has successfully constructed and expressed hG31P in Escherichia coli. Moreover, a new protocol for high-yield purification of hG31P and for the removal of lipopolysaccharide (LPS, endotoxin) associated with hG31P due to the expression in E. coli has been developed. The solution structure of hG31P is also demonstrated in this study. In addition, the structural properties of hG31P were studied by circular dichroism (CD), ultracentrifuge, isothermal titration calorimetry (ITC), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy. The results demonstrated that the possible mechanism on hG31P to inhibit signal transduction is contributed from the perturbation of the G31P loop. Furthermore, this study also indicated that this purification protocol is very simple and easy to amplify at a large scale. The results of this study will provide good explanation for the antagonist according to the structure basis, and it also provides effective route to produce large quantities of hG31P for future clinical studies.
誌 謝 I
中 文 摘 要 II
Abstract III
Chapter 1 Introduction 1
Chapter 2 Material and Methods 9
Construction expression plasmid 9
Expression of CXCL8(3-72)K11R/G31P recombinant protein 10
Expression of CXCL8(3-72) K11R/G31P protein with 15N label 11
Expression of CXCL8(3-72) K11R/G31P protein with 15N and 13C label 11
Lysis of cells and purification of recombinant CXCL8(3-72)K11R/G31P 12
Endotoxin (LPS) removal and detection 14
Neutrophil chemotaxis assay 15
Assay of intracellular Ca2+ flux 16
Circular Dichroism (CD) spectroscopy 16
Mass Spectrometry 17
Fast performance liquidchromatography (FPLC) analysis 17
Isothermal titration calorimetry (ITC) 17
Fluorescence spectroscopy 18
Analytical ultracentrifugation 19
NMR spectroscopy 20
Data Processing and Analysis 22
Structure Calculation 22
Chapter 3 Results 24
Extraction and purification of hG31P 24
Lipopolysaccharide (LPS) removal 26
Activity assay 28
Identify the purified hG31P via heating and LPS removal procedure with CD and NMR 29
Three dimensional structure of hG31P in solution 29
Equilibrium of monomer and dimmer 31
Binding of the N terminal peptide of CXCR1 to hG31P 32
Chapter 4 Discussion 35
Chapter 5 Conclusion 39
References 77
1. Baggiolini, M., B. Dewald, and B. Moser, Human Chemokines: An Update. Annual Review of Immunology, 1997. 15(1 %R doi:10.1146/annurev.immunol.15.1.675): p. 675-705.
2. Proudfoot, A.E., Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol, 2002. 2(2): p. 106-15.
3. Power, C.A. and T.N.C. Wells, Cloning and characterization of human chemokine receptors. Trends in Pharmacological Sciences, 1996. 17(6): p. 209-213.
4. Matsushima, K. and J.J. Oppenheim, Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Cytokine, 1989. 1: p. 2-13.
5. Walz, A., et al., Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochemical and Biophysical Research Communications, 1987. 149: p. 755-761.
6. Yoshimura, T., et al., Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(24): p. 9233-9237 %R.
7. Brat, D.J., A.C. Bellail, and E.G. Van Meir, The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol %R 10.1215/S1152851704001061, 2005. 7(2): p. 122-133.
8. Mackay, C.R., Chemokines: immunology's high impact factors. nature immunology, 2001. 2(2): p. 95-101.
9. Bazan, J.F., et al., A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997. 385(6617): p. 640-644.
10. Clark-Lewis, I., et al., Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(8): p. 3574-3577 %R.
11. Mukaida, N., Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol %R 10.1152/ajplung.00233.2002, 2003. 284(4): p. L566-577.
12. Murphy, P.M., et al., International Union of Pharmacology. XXII. Nomenclature for Chemokine Receptors. Pharmacol Rev, 2000. 52(1): p. 145-176.
13. Lee, J., et al., Characterization of two high affinity human interleukin-8 receptors. J. Biol. Chem., 1992. 267(23): p. 16283-16287.
14. Thelen, M., et al., Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J., 1988. 2(11): p. 2702-2706.
15. Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science %R 10.1126/science.1281554, 1992. 258(5089): p. 1798-1801.
16. Harada, A., et al., Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol, 1994. 56(5): p. 559-564.
17. Smyth, M.J., et al., IL-8 gene expression and production in human peripheral blood lymphocyte subsets. J Immunol, 1991. 146(11): p. 3815-3823.
18. Woods, J.M., et al., Reduction of inflammatory cytokines and prostaglandin E2 by IL-13 gene therapy in rheumatoid arthritis synovium. J Immunol, 2000. 165(5): p. 2755-63.
19. Beeh, K.M., et al., Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest, 2003. 123(4): p. 1240-7.
20. Kurdowska, A., et al., Anti-interleukin-8 autoantibodies in patients at risk for acute respiratory distress syndrome. Crit Care Med, 2002. 30(10): p. 2335-7.
21. Chapman, R.W., et al., A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther, 2007. 322(2): p. 486-93.
22. Gonsiorek, W., et al., Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J Pharmacol Exp Ther, 2007. 322(2): p. 477-85.
23. White, J.R., et al., Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem, 1998. 273(17): p. 10095-8.
24. Traves, S.L., et al., Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leukoc Biol, 2004. 76(2): p. 441-50.
25. Mukaida, N., et al., Inhibition of neutrophil-mediated acute inflammation injury by an antibody against interleukin-8 (IL-8). Inflamm Res, 1998. 47 Suppl 3: p. S151-7.
26. Mahler, D.A., et al., Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest, 2004. 126(3): p. 926-34.
27. Mulligan, M.S., et al., Inhibition of lung inflammatory reactions in rats by an anti-human IL-8 antibody. J Immunol, 1993. 150(12): p. 5585-5595.
28. Broaddus, V.C., et al., Neutralization of IL-8 inhibits neutrophil influx in a rabbit model of endotoxin-induced pleurisy. J Immunol, 1994. 152(6): p. 2960-2967.
29. Sekido, N., et al., Prevent of lung referfusion injury in rabbits by a monoclonal antibody against interluekin-8. Nature, 1993. 365(6447): p. 654-657.
30. Attwood, M.R., et al., Identification and characterisation of an inhibitor of interleukin-8: a receptor based approach. Bioorganic & Medicinal Chemistry Letters, 1996. 6(15): p. 1869-1874.
31. Attwood, M.R., et al., Peptide based inhibitors of interleukin-8: structural simplification and enhanced potency. Bioorganic & Medicinal Chemistry Letters 1997. 7(4): p. 429-432.
32. Leong, S.R., R.C. Kabakoff, and C.A. Hebert, Complete mutagenesis of the extracellular domain of interleukin-8 (IL- 8) type A receptor identifies charged residues mediating IL-8 binding and signal transduction. J. Biol. Chem., 1994. 269(30): p. 19343-19348.
33. Clubb, R.T., et al., Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the Type 1 human interleukin-8 receptor. FEBS Letters, 1994. 338: p. 93-97.
34. Skelton, N.J., et al., Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure, 1999. 7: p. 157-168.
35. Fernando, H., G.T. Nagle, and K. Rajarathnam, Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain. Febs J, 2007. 274(1): p. 241-51.
36. Clark-Lewis, I., et al., Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J. Biol. Chem., 1994. 269(23): p. 16075-16081.
37. Williams, G., et al., Mutagenesis Studies of Interleukin-8. J. Biol. Chem. %R 10.1074/jbc.271.16.9579, 1996. 271(16): p. 9579-9586.
38. Li, F., X. Zhang, and J.R. Gordon, CXCL8((3-73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochem Biophys Res Commun, 2002. 293(3): p. 939-44.
39. Li, F., et al., CXCL8((3-73))K11R/G31P antagonizes the neutrophil chemoattractants present in pasteurellosis and mastitis lesions and abrogates neutrophil influx into intradermal endotoxin challenge sites in vivo. Vet Immunol Immunopathol, 2002. 90(1-2): p. 65-77.
40. Gordon, J.R., et al., The combined CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks neutrophil infiltration, pyrexia, and pulmonary vascular pathology in endotoxemic animals. J Leukoc Biol, 2005. 78(6): p. 1265-72.
41. Hou, D., et al., Expression and one-step ion-exchange purification of (AAR)IL-8 (human IL-8 receptor antagonist). Protein Expr Purif, 2005. 44(2): p. 104-9.
42. Bito, L.Z., Inflammatory effects of endotoxin-like contaminants in commonly used protein preparations. Science, 1977. 196(4285): p. 83-5.
43. Vanhaecke, E., et al., Endotoxin removal by end-line filters. J Clin Microbiol, 1989. 27(12): p. 2710-2.
44. Aida, Y. and M.J. Pabst, Removal of endotoxin from protein solutions by phase separation using Triton X-114. J Immunol Methods, 1990. 132(2): p. 191-5.
45. Adam, O., et al., A nondegradative route for the removal of endotoxin from exopolysaccharides. Anal Biochem, 1995. 225(2): p. 321-7.
46. Liu, S., et al., Removal of endotoxin from recombinant protein preparations. Clin Biochem, 1997. 30(6): p. 455-63.
47. Salek-Ardakani, S., et al., High level expression and purification of the Epstein-Barr virus encoded cytokine viral interleukin 10: efficient removal of endotoxin. Cytokine, 2002. 17(1): p. 1-13.
48. Clore, G.M., et al., Three-dimensional structure of interleukin 8 in solution. Biochemistry, 1990. 29(7): p. 1689-1696.
49. Baldwin, E.T., et al., Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(2): p. 502-506 %R.
50. Burrows, S.D., et al., Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry, 1994. 33(43): p. 12741-5.
51. Zhang, H., et al., Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucl. Acids Res. %R 10.1093/nar/gkm587, 2007. 35(18): p. 6052-6062.
52. Burrows, S.D., et al., Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry, 1994. 33(43): p. 12741-12745.
53. Lee, W., et al., A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Letters, 1994. 350(1): p. 87-90.
54. Brunger, A.T., et al., Crystallography & NMR System (CNS), A new software suite for macromolecular structure determination. Acta Cryst, 1998. D54: p. 905-921.
55. Brunger, A.T., Version 1.2 of the Crystallography and NMR System. Nature Protocols 2007. 2: p. 2728-2733
56. Schletter, J., et al., Molecular mechanisms of endotoxin activity. Arch Microbiol, 1995. 164(6): p. 383-9.
57. Lang, C.H. and J.A. Spitzer, Glucose kinetics and development of endotoxin tolerance during long-term continuous endotoxin infusion. Metabolism, 1987. 36(5): p. 469-74.
58. Fraker, D.L., et al., Tolerance to tumor necrosis factor in rats and the relationship to endotoxin tolerance and toxicity. J Exp Med, 1988. 168(1): p. 95-105.
59. Beermann, B., et al., Stability, unfolding, and structural changes of cofactor-free 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase. Biochemistry, 2007. 46(14): p. 4241-9.
60. Fernando, H., et al., Dimer dissociation is essential for interleukin-8 (IL-8) binding to CXCR1 receptor. J Biol Chem, 2004. 279(35): p. 36175-8.
61. Williams, M.A., et al., Interleukin 8 dimerization as a mechanism for regulation of neutrophil adherence-dependent oxidant production. Shock, 2005. 23(4): p. 371-6.
62. Rajarathnam, K., et al., Probing receptor binding activity of interleukin-8 dimer using a disulfide trap. Biochemistry, 2006. 45(25): p. 7882-8.
63. Ahuja, S.K., J.C. Lee, and P.M. Murphy, CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct. J Biol Chem, 1996. 271(1): p. 225-32.
64. Feniger-Barish, R., et al., IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry, 2003. 42(10): p. 2874-86.
65. Nickoloff, B.J., et al., Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am J Pathol, 1991. 138(1): p. 129-40.
66. Banks, C., et al., Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease. J Pathol, 2003. 199(1): p. 28-35.
67. Paolini, J.F., et al., The chemokines IL-8, monocyte chemoattractant protein-1, and I-309 are monomers at physiologically relevant concentrations [published erratum appears in J Immunol 1996 Apr 15;;156(8):following 3088]. J Immunol, 1994. 153(6): p. 2704-2717.
68. Horcher, M., et al., IL-8 DERIVATIVES WITH A REDUCED POTENTIAL TO FORM HOMODIMERS ARE FULLY ACTIVE IN VITRO AND IN VIVO. Cytokine, 1998. 10(1): p. 1-12.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *