帳號:guest(13.58.150.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):粘弘吉
作者(外文):Nian, Hungchi
論文名稱(中文):分析技術開發及應用研究: Part I.自動瞬時量測空氣與水中微量揮發性有機物之分析研究; Part II.以高壓萃取法萃取斑蟊與芭樂葉中有效成分及生物活性之研究
論文名稱(外文):Development and Application of Analytical Technique: Part I. The Studies of Automatic In-situ Monitoring of Volatile Organic Compounds in the Ambient and Wastewater; Part II. The Studies of Bioactive Compounds of Mylabris and Guava Leaves Extracted by Pressurized Extraction
指導教授(中文):羅俊光
瞿港華
指導教授(外文):Lo, Jiunn-Guang
Chiu, Kong-Hwa
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:928506
出版年(民國):98
畢業學年度:98
語文別:中文
論文頁數:226
中文關鍵詞:揮發性有機物瞬時量測高壓萃取法斑蟊芭樂
相關次數:
  • 推薦推薦:0
  • 點閱點閱:145
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究論文為分析技術開發及應用之研究,共分為兩部份:第一部份--自動瞬時量測空氣與水中微量揮發性有機物之分析研究。本研究空氣監測部分利用實驗室開發完成的自動化氣相層析質譜儀,建立自動採樣分析之氣相層析質譜系統,進行連續十一天之環境監測,期間納莉颱風侵襲本島,儀器仍持續正常運作。颱風滯留三天裡,量測丙酮濃度低至偵測極限以下;相對極性較低之物種而言,甲苯平均濃度值為3.0 ppbv。得知極性高之物質容易隨著雨水沖刷而流至地面,雨量之多寡將對極性物種與非極性物種之量測有著不同程度影響。
另外,本研究水體監測部份針對經污水處理廠處理後廢水中揮發性有機化合物進行監測系統建立及分析,研究中監測系統發展為完全自動進樣、自動化的分析系統,有效縮短分析時間且運用在現場即時監測,有效取得24小時連續即時的分析結果並節省現場採樣、人力分析與資源的運用。
第二部份--以高壓萃取法萃取斑蟊與芭樂葉中有效成分及生物活性之研究。在斑蝥素的萃取上, CO2搭配乙腈約萃取出9.18 mg/g斑蝥素。液態二氧化碳萃取斑蝥素的與傳統的萃取方法有較明顯的差別,雖說效果並非最佳的萃取方法,但其主要優點是可以減少有機溶劑的使用,縮短萃取時間(液態二氧化碳30min;傳統萃取需65小時)並且幾乎不需要再經由其他純化的步驟就可以得到斑蝥素。
在芭樂葉萃取方法中,以高壓甲醇萃取法有較好的總類黃酮萃取效率,而其中利用加壓萃取不但省時而且省溶劑,所以實驗的萃取方式採用高壓甲醇萃取法。在動物餵食測試推論出quercetin對於芭樂葉降血糖的能力有一定的幫助,但是並非芭樂葉降血糖主要的有效成分,應該還有其他更重要的活性成分導致在動物實驗中明顯的降血糖效果。
The thesis contained two parts. In the first part, automatic in-situ monitoring systems of volatile organic compounds (VOCs) in the ambient and wastewater were developed.The study describes continual monitoring of the volatile organic air pollutants, acetone and toluene, in HsinChu Science Park (HSP) during an inclement weather occurrence, i.e., typhoon. A total of 53 polar and nonpolar compounds were identified and analyzed. The method detection limit (MDL) was 0.4 ppbv on average. The study presents a novel system, which continuously monitors polar VOCs in industrial wastewater. The system utilizes an ultrasound coupled autosampler, headspace solid-phase microextraction (HS-SPME), and a gas chromatography/flame ionization detection GC/FID for onsite, real-time detection and quantification of VOCs. The MDL was between 3.19ppb and 7.57ppb.

In another part, the study using pressurized liquid carbon dioxide to extract cantharidin from Mylabris was investigated. The result achieves green extraction of bioactive ingredients in the insect, and the extraction efficiency of 95% (three times) was obtained at pressure of 1 MPa, temperature of 60°C, static extraction time of 30 minutes and with 4 ml of acetonitrile as modifier. In addition to the identification of the extract, i.e., cantharidin, by chromatographic approach, an in vitro assay for the effect of the extract on the cell was performed, the result reveals that the cantharidin-extracted is efficacious for primary medicinal available.
The study proposes to verify the hypoglycemic effect of the flavonoids extracted from guava leaves on type 2 diabetic mice. When comparing the total flavonoid contents from various extraction methods, pressurized-methanol extraction had the highest levels (38.4±1.5 mg g-1). The major flavonoids of guava leaves were analyzed with mass spectrometry (MS) coupled with a high-performance liquid chromatograph, diode-array detector (HPLC-DAD). To confirm the hypoglycemic effect, an animal fasting test was conducted. In summary, both primary extracts (dose of 0.5 g Kg-1) and isolated flavonoids (dose of 40 mg Kg-1) from guava leaves had hypoglycemic effects (P<0.001). However, the quercetin flavonoid in guava leaves was only one of the active compounds with hypoglycemic activity, not the most major active compound.
目錄
誌謝
中文摘要
英文摘要
Part I.自動瞬時量測空氣與水中微量揮發性有機物之分析研究
1 緒論---------------------------------------------------------------------------------------------------1
1-1 研究緣起------------------------------------------------------------------------------------------1
1-2 研究目的------------------------------------------------------------------------------------------2
2 文獻回顧---------------------------------------------------------------------------------------------5
2-1 空氣中揮發性有機化合物自動化氣相層析質譜分析方法原理與流程----------5
2-1.1空氣中揮發性有機化合物分析方法比較-----------------------------------------------6
2-1.2 氣相層析法分析原理及流程--------------------------------------------------------------6
2-1.2.1 採樣介質-------------------------------------------------------------------------------------6
2-1.2.2 前濃縮部分----------------------------------------------------------------------------------8
2-1.2.3 氣體色層分析法----------------------------------------------------------------------------8
2-1.2.4 偵檢器-----------------------------------------------------------------------------------------8
2-1.2.5定性定量-------------------------------------------------------------------------------------11
2-1.3標準品配製------------------------------------------------------------------------------------12
2-1.4 分析方法之品質管制查核----------------------------------------------------------------14
2-1.4.1 採樣現場品管------------------------------------------------------------------------------14
2-1.4.2 實驗室一般品管---------------------------------------------------------------------------14
2-2 水中揮發性有機化合物前處理技術------------------------------------------------------27
2-2.1固相微萃取(SPME)方法概要--------------------------------------------------------------27
2-2.1.1 固相微萃取原理---------------------------------------------------------------------------28
2-2.1.2 固相微萃取參數探討--------------------------------------------------------------------31
2-2.2 SPME的應用----------------------------------------------------------------------------------40
2-2.3 水中VOCs與環境之間的關係-----------------------------------------------------------40
3自動化氣相層析質譜現場即時連續量測新竹科學園區大氣中VOCs -------------49
3-1 連續自動化氣相層析質譜儀系統之分析流程與系統說明-------------------------49
3-1.1 分析流程--------------------------------------------------------------------------------------49
3-1.1.1 分析系統準備與調整--------------------------------------------------------------------49
3-1.1.2 氣體標準品配製--------------------------------------------------------------------------50
3-1.1.3 樣品分析------------------------------------------------------------------------------------50
3-1.1.4 數據處理------------------------------------------------------------------------------------51
3-1.2 系統說明--------------------------------------------------------------------------------------51
3-1.2.1 樣品前濃縮捕捉裝置--------------------------------------------------------------------51
3-1.2.2 氣相層析及偵檢系統--------------------------------------------------------------------51
3-1.2.3 管柱部分------------------------------------------------------------------------------------51
3-1.2.4 風速風樣儀---------------------------------------------------------------------------------51
3-1.2.5 網路資訊傳輸系統----------------------------------------------------------------------52
3-1.3 分析系統整體評估------------------------------------------------------------------------52
3-1.3.1 系統最適化條件-------------------------------------------------------------------------52
3-1.3.1.1 樣品前濃縮部分-----------------------------------------------------------------------53
3-1.3.1.2 管柱選擇與偵檢器最適化----------------------------------------------------------53
3-1.3.2系統之品保品管--------------------------------------------------------------------------53
3-2 結果討論---------------------------------------------------------------------------------------68
3-2.1 測點地理環境-------------------------------------------------------------------------------68
3-2.2 GC-MS即時連續量測結果---------------------------------------------------------------68
3-2.2.1 總污染物濃度時間趨勢比較----------------------------------------------------------68
3-2.2.1.1 鹵化有機物之濃度分佈--------------------------------------------------------------69
3-2.2.1.2 極性物種之濃度分析-----------------------------------------------------------------70
3-2.2.1.3芳香族類(BTEX)之濃度分析----------------------------------------------------72
3-2.2.1.4 烷類與烯類之濃度分析--------------------------------------------------------------73
3-3 結論-----------------------------------------------------------------------------------------------87
4建立超音波震盪固相微萃取自動化分析系統及水中揮發性有機化合物之現場自動化即時監測----------------------------------------------------------------------------------------89
4-1研究方法------------------------------------------------------------------------------------------89
4-1.1 超音波震盪前處理系統建立-------------------------------------------------------------90
4-1.2 超音波震盪-自動化頂空-固相微萃取/氣相層析儀系統--------------------------91
4-1.2.1 分析儀器與設備---------------------------------------------------------------------------91
4-1.2.2 分析之目標化合物性質-----------------------------------------------------------------92
4-1.2.3 實驗標準試劑------------------------------------------------------------------------------92
4-1.2.4 品保品管------------------------------------------------------------------------------------94
4-1.2.5 分析樣品應注意事項--------------------------------------------------------------------96
4-1.3 HS-SPME/GC/FID系統最佳化參數探討與測試--------------------------------------96
4-1.4 玻璃器皿管理--------------------------------------------------------------------------------99
4-1.5 真實樣品採樣及規劃---------------------------------------------------------------------100
4-2 結果與討論----------------------------------------------------------------------------------107
4-2.1 超音波震盪-自動化頂空固相微萃取系統------------------------------------------107
4-2.1.1 超音波震盪片安裝及可行性和不同功率測試-----------------------------------107
4-2.1.2 超音波震盪槽與GC/FID的聯接-----------------------------------------------------108
4-2.2 HS-SPME/GC/FID系統最佳化參數探討與測試------------------------------------108
4-2.3 真實樣品量測的結果與討論-----------------------------------------------------------113
4-2.4 自動化連續進樣即時監測---------------------------------------------------------------114
4-3 結論----------------------------------------------------------------------------------------------145
4-3.1 結論-------------------------------------------------------------------------------------------145
4-3.2 未來展望-------------------------------------------------------------------------------------147
5 總結------------------------------------------------------------------------------------------------148
6參考文獻-------------------------------------------------------------------------------------------149
Part II.以高壓萃取法萃取斑蟊與芭樂葉中有效成分及生物活性之研究
1 緒論------------------------------------------------------------------------------------------------154
1-1 總研究目的------------------------------------------------------------------------------------154
1-1.1研究斑蝥的動機與目的-------------------------------------------------------------------154
1-1.2研究芭樂葉的動機與目的----------------------------------------------------------------155
2 文獻回顧------------------------------------------------------------------------------------------156
2-1 超臨界流體萃取------------------------------------------------------------------------------156
2-1.1 超臨界原理----------------------------------------------------------------------------------156
2-1.2 超臨界流體的特色------------------------------------------------------------------------157
2-1.3 超臨界CO2萃取的優點-------------------------------------------------------------------158
2-1.4 超臨界流體的選用------------------------------------------------------------------------158
2-1.5 超臨界流體應用實例---------------------------------------------------------------------159
2-1.6 修飾劑的使用-------------------------------------------------------------------------------160
2-2 高效能液相層析法--------------------------------------------------------------------------160
3 二氧化碳搭配修試劑萃取斑蝥中的斑蝥素---------------------------------------------162
3-1.1 二氧化碳搭配修試劑萃取法介紹-----------------------------------------------------162
3-1.1.1 靜態萃取-----------------------------------------------------------------------------------162
3-1.2 斑蝥之相關文獻---------------------------------------------------------------------------163
3-2 實驗方法---------------------------------------------------------------------------------------167
3-2.1 實驗藥品-------------------------------------------------------------------------------------167
3-2.2 實驗儀器-------------------------------------------------------------------------------------167
3-2.3 萃取方法-------------------------------------------------------------------------------------169
3-2.3.1 索式萃取法 (Soxhlet extraction)------------------------------------------------------169
3-2.3.2 超音波震盪萃取法 (Sonication vibration extraction)-----------------------------169
3-2.3.3 二氧化碳搭配修飾劑萃取法 (Carbon dioxide extraction with modifier )----169
3-2.2.4 加壓溶劑萃取法(Pressurized solvent extraction)-----------------------------------170
3-3結果與討論-------------------------------------------------------------------------------------171
3-3.1 分析條件及光譜---------------------------------------------------------------------------171
3-3.2 二氧化碳搭配修飾劑萃取法中修試劑的選用-------------------------------------171
3-3.3 修試劑添加量的選擇---------------------------------------------------------------------172
3-3.4 二氧化碳搭配修飾劑萃取法中萃取壓力的選擇----------------------------------172
3-3.5 二氧化碳搭配修飾劑萃取法中萃取溫度的選擇----------------------------------173
3-3.6 二氧化碳搭配修飾劑萃取法中萃取時間的選擇----------------------------------173
3-3.7 高壓溶劑萃取-------------------------------------------------------------------------------173
3-3.8 不同萃取方法的斑蝥素萃取率比較--------------------------------------------------174
3-3.9 細胞測試部分-------------------------------------------------------------------------------174
3-4 結論----------------------------------------------------------------------------------------------183
4 芭樂葉萃取物中黃酮類成分對第二型糖尿病鼠降血醣研究-----------------------184
4-1 導論----------------------------------------------------------------------------------------------184
4-1.1芭樂葉介紹-----------------------------------------------------------------------------------184
4-1.1.1芭樂葉降血糖之功效--------------------------------------------------------------------184
4-1.1.2 芭樂葉降血糖之有效成分------------------------------------------------------------185
4-1.1.3 芭樂葉降血糖可能機轉---------------------------------------------------------------186
4-1.2 血糖調控的生理機制---------------------------------------------------------------------187
4-1.2.1胰臟之胰島調節血糖的機制----------------------------------------------------------187
4-1.2.2醣類代謝 (carbohydrate metabolism)--------------------------------------------------189
4-1.2.3脂肪代謝------------------------------------------------------------------------------------191
4-1.2.4酮體生成------------------------------------------------------------------------------------191
4-1.3糖尿病介紹-----------------------------------------------------------------------------------192
4-1.3.1糖尿病定義---------------------------------------------------------------------------------192
4-1.3.2糖尿病發病病因--------------------------------------------------------------------------193
4-1.3.3糖尿病臨床表現及診斷-----------------------------------------------------------------194
4-1.3.4糖尿病治療---------------------------------------------------------------------------------194
4-1.4糖尿病動物模式-----------------------------------------------------------------------------195
4-1.4.1誘發型糖尿病動物模式-----------------------------------------------------------------196
4-1.4.2自發型糖尿病動物模式-----------------------------------------------------------------196
4-1.5 研究目的-------------------------------------------------------------------------------------197
4-2 實驗設備與方法------------------------------------------------------------------------------203
4-2.1 化學藥品-------------------------------------------------------------------------------------203
4-2.2 實驗儀器-------------------------------------------------------------------------------------203
4-2.3芭樂葉實驗-----------------------------------------------------------------------------------204
4-2.3.1芭樂葉來源及前處理--------------------------------------------------------------------204
4-2.3.2傳統索式萃取法--------------------------------------------------------------------------205
4-2.3.4 高壓水萃取方法-------------------------------------------------------------------------205
4-2.3.5 高壓甲醇萃取方法----------------------------------------------------------------------205
4-2.3.6 芭樂葉萃取物分析前處理------------------------------------------------------------206
4-2.3.7液相層析質譜儀搭配光二極體陣列式檢測器之分析條件--------------------206
4-2.4芭樂葉萃取物中總類黃酮萃取率之評估---------------------------------------------207
4-2.4.1芭樂葉萃取物總類黃酮含量之測定-------------------------------------------------207
4-2.5動物試驗--------------------------------------------------------------------------------------207
4-2.5.1第二型糖尿病鼠 (homozygote type 2 diabetes , Leprdb/Leprdb)-------------------207
4-2.5.2不同芭樂葉萃取物劑量的餵食測試-------------------------------------------------208
4-2.5.3不同quercetin劑量的餵食測試--------------------------------------------------------208
4-2.6統計分析--------------------------------------------------------------------------------------209
4-3結果與討論-------------------------------------------------------------------------------------212
4-3.1芭樂葉萃取方式之比較-------------------------------------------------------------------212
4-3.2芭樂葉萃取物主要黃酮類定性與定量------------------------------------------------212
4-3.3 不同劑量芭樂葉萃取物對糖尿病鼠(Type 2 DM)的血糖變化------------------213
4-3.4 不同劑量quercetin對糖尿病鼠(Type 2 DM)的血糖變化 ------------------------214
4-4 結論----------------------------------------------------------------------------------------------220
5 總結------------------------------------------------------------------------------------------------221
6參考文獻-------------------------------------------------------------------------------------------223
1. 行政院環保署環境檢驗所, 不□鋼採樣筒/氣相層析質譜儀法, NIEA A715.11B,2000. (http://www.niea.gov.tw/scripts/epa_niea/ListMethod.asp?methodtype=AIR)
2. U.S. EPA. Compendium method TO-14A, The determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography; 1999.
3. U.S. EPA. Compendium method TO-15, The determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography/mass spectrometry(GC/MS); 1999.
4. U.S. EPA. Compendium method TO-16, Long-path open-path Fourier transform infrared monitoring of atmospheric gases; 1996.
5. U.S. EPA. Compendium method TO-17, The determination of volatile organic compounds (VOCs) in air using active sampling onto sorbent tubes; 1997.
6. Zimmerman, P.R. Testing of Hydrocarbon Emissions from Vegetation, Leaf Litter, and Aquatic Surfaces, and Development of A Methodology for Compiling Biogenic Emission Inventories”, EPA-450/4-70-004, U.S. EPA, Washington, D.C, 1979.
7. McClenny, W. A.; Pleil, J. D.; Evans, G. F. ; Oliver, K. D.; Holdren, M. W.; Winberry, W. T. J. Air Waste Manage. Assoc. 1991, 41, 1308.
8. Gholson, A. R.; Jayanty, R. K. M.; Storm, J. F. Anal. Chem. 1990, 62, 1899.
9. Brymer, D. A.; Ogle, L.D.; Jonse, C. J.; Lewis, D.L. Environ. Sci. Technol. 1996, 30, 188.
10. 凌永健,洪長春,鄧慧卿,雷逸智,環境分析用質譜儀,科儀新知,17(5),25(1996).
11. 王碧,氣相層析質譜術在環境分析上的應用,質譜分析術專輯,國科會精密儀器發展中心,141(1992).
12. Hughes, E. E.; Davenport, A. J.; Wood P. T.; Zielinski, W. L. Environ. Sci. Technol. 1991, 25, 671.
13. Magdalena Ligor, Boguslaw Buszewski,“Determination of menthol and menthone in food and pharmaceutical products by solid-phase microextraction–gas chromatography”Journal of Chromatography A 1999, 847,161-169
14. Beatriz Cancho, Francesc Ventura, M Teresa Galceran,“Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction”Journal of Chromatography A 2001, 43,1-13
15. Watson Susan B., Brian Brownlee, Trevor Satchwill, Erika E. Hargesheimer,“Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME”Water Research 2001, Vol.34,2818-2828
16. Page B. Denis, Gladys Lacroix,“Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices”Journal of Chromatography A 1997, 757, 173-182
17. Neppolian B., Haeryong Jung, Heechul Choi, Jai H. Lee, Joon-Wun Kang,“Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion”Water Research 2002, Vol.36,4699-4708
18. Patrick Roose, Udo A.Th. Brinkman, “Determination of volatile organic compounds in marine biota”Journal of Chromatography A 1998, 799,233-248
19. Wheat P.E., M.A. Tumeo,“Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity”Ultrasonics Sonochemistry 1997,4 , 55-59
20. Anton Gáplovský, Jana Donovalová, Štefan Toma, Robert Kubinec,“Ultrasound effects on photochemical reactions, Part 1: photochemical reactions of ketones with alkenes”Ultrasonics Sonochemistry 1997,4 , 109-115
21. 林瑞聰,“惡臭污染防治”,環保資訊雜誌1993,第6期,PP.14~15。
22. 劉國棟,“VOC管制趨勢展望”,工業污染防治1993,第48期,PP15-31。
23. Aaron L. Theis, Adam J. Waldack, Susan M. Hansen, Michael A. Jeannot,“Headspace Solvent Microextraction”Anal. Chem. 2001,73, 5651-5654
24. Buchholz K. D. and J. Pawliszyn,“Determination of phenols by solid-phase microextraction and gas chromatographic analysis”Environ. Sci. Technol. 1993, 27, 2844.
25. Pawliszyn,“Solid phase microextraction with thermal desorption using fused silica optical fibers”Anal. Chem.1990, 62, 2145.
26. Application Note of Supelco, “Solid Phase Microexaction:Theory and Optimization of Conditions”, Bulletin 923, Supelco.
27. 黃敬德、謝有容,”固相微萃取技術之原理及其應用”,1998,Chemistry, Dec.
28. J.Pawliszyn,“Solid Phase Microextraction:Theory and Practice”,Wiley-Vch, Inc.( 1997)
29. J.Pawliszyn,“Application of Solid Phase Microextraction”,RS.C, Inc.(1999)
30. Application Note of Supelco, “SPME Application Guide”, Bulletin 925, Supelco.
31. David. W. Potter and J. Pawliszyn,“Rapid determination of polyaromatic hydrocarbons and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS”Environ. Sci. Technol. 1994, 28, 298.
32. Homepage of Sigma-Aldrich Corporation, Supelco Group, “Product Information of SPME”, http://www.sigma-aldrich.com
33. M. Ligor and B. Buszewski, “Solid Phase Microextraction as a Method for Preparing Environmental Samples”, Journal of Environmental Studies 1997, Vol. 6, No. 5
34. R. Eisert and K. Levsen, “Review – Solid Phase Microexaction Coupled to Gas Chromatography : A New Method for the Analysis of Organics in Water”, Journal of Chromatography A 1996, 733,143-157.
35. J. L. Schnoor, “Environmental Modeling – Fate and Transport of Pollutants in Water, Air and soil”, John Wiley & Sons Inc. 1996, pp.42~51, 328-331.
36. C. Rivasseau and M. Caude, “Comparison of On-Line SPE-HPLC and SPME-GC for the Analysis of Microcontaminants in Water”, Chromatographia 1995, Vol.41, pp.462-470
37. Application Note of Supelco, “Optimizing SPME : Parameters to Control to Ensure Consistent Results”, Note 95, Supelco.
38. Z. Zhang and J. Pawliszyn, “Sampling Volatile Organic Compounds Using a Modified Solid Phase Microextraction Device” Journal of High Resolution Chromatography, 19,155-160
39. A. Saraullo, P. A. Martos and J. Pawliszyn, “Water Analysis by Solid Phase Microextraction Based on Physical Chemical Properties of the Coating”, Analytical Chemistry 1996, 69, pp.1992-1998 (1997)
40. 新竹科學工業園區管理局首頁,http://www.sipa.gov.tw
41. Homepage of Varian Instrument Corporation, “Automation of the SPME Devices”, http://www.varian.com
42. 陸志德,羅俊光,“高科技產業相關水體中揮發性有機物分析之研究”,國立清華大學碩士論文 (2000)
43. 許慧萍,羅俊光,“環境水體中揮發性有機化合物分析方法建立與驗證”,國立清華大學碩士論文 (2001)
44. Ashish Bhatnager and H. Mlchael Cheung,“Sonochemical Destruction of Chlorinated C1 and C2 Volatile Organic Compounds in Dilute Aqueous Solution” Environ. Sci. Technol. 1994,28 , 1481-1486
45. Carvalho L.R.F, S.R. Souza, B.S. Martinis, M. Korn,“Monitoring of the ultrasonic irradiation effect on the extraction of airborne particulate matter by ion chromatography”Analytica Chimica Acta 1995, 317 , 171-179
46. Wen Lai Huang, Kai Ming Liang, Shi Hua Cui, Shou Ren Gu,“Influene of ultrasonic vibration on the mesoporosity and surface fractal dimensions of resultant silica xerogels”Materials Research Bulletin 2001, 36 , 461-470
47. Maria S. Kuyukina, Irena B. Ivshina, Jim C. Philp, Nick Christofi, Sandra A. Dunbar, Marina I. Ritchkova,“Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction”Journal of Microbiological Methods, 2001, 46 , 149-156
48. Michael R. Hoffmann,“Kinetic and Mechanism of the Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation in the Presence of Ozone” Environ. Sci. Technol. 1998,32 ,3194-3199
49. Inez Hua and Michael R. Hoffmann,“Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology” Environ. Sci. Technol. 1997,31 ,2237-2243
50. Joon-Wun Kang, Hui-Ming Hung, Angela Lin and Michael R. Hoffmann,“Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation: The Role of O3 H2O2 Frequency and Power Density” Environ. Sci. Technol. 1999,33 , 3199-3205
51. Lingshuang Cai, Jun Xing, Li Dong, Caiying Wu,“Application of polyphenylmethylsiloxane coated fiber for solid-phase microextraction combined with microwave-assisted extraction for the determination of organochlorine pesticides in Chinese teas”Journal of Chromatography A 2003,1015 ,11-21
52. Sandra Babic, Mira Petrovic, Marija Kastelan-Macan,“Ultrasonic solvent extraction of pesticides from soil”Journal of Chromatography A 1998,823 ,3-9
53. Gokhan Savaroglu, Ertunc Aral,“Ultrasonic Velocity and Isentropic Compressibilities of the Ternary Mixture Benzene + Acetone + Chloroform and their Corresponding Binary Mixtures at 298.15K”Journal of Molecular Liquids 2003, 105 ,79-92
54. Lowri S. de Jager, Anthony R.J. Andrews,“Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography”Journal of Chromatography A 2001,911 ,97-105
55. Elefteria Psillakis, Nicolas Kalogerakis,“Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples”Journal of Chromatography A 2001 ,907 ,211-219
56. Guillard C., P. Theron, P. Pichat, C. Petrier,“Evaluation of 1-octanol degradation by photocatalysis and ultrasound using SPME” Water Research 2002,36 ,4263-4272
57. Gyorgy Szo llo si , Istvan Kun, Bela Torok, Mihaly Bartok, “Ultrasonics in chemoselective heterogeneous metal catalysis Sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts” Ultrasonics Sochemistry 2000 ,7 ,173-176
58. Pardue JH, Moe WM, McInnis D. Thibodeaux LJ, Valsaraj KT, Maciasz E, Van Heerden I, Korevec N, Yuan QZ. “Chemical and microbiological parameters in New Orleans floodwater following Hurricane Katrina.” Environ Sci Technol 2005;39:8591-99.
59. Parra M A, Gonzalez L, Elustondo D, Garrigo R, Santamaria J M, “Spatial and temporal trends of volatile organic compounds (VOC) in rural area of northern Spain.” Sci Total Environ 2006; 370:157-67.
60. Antoniou, C.V., Koukouraki, E.E. and Diamadopoulos, E. “Determination of chlorinated volatile organic compounds in water and municipal wastewater using headspace–solid phase microextraction–gas chromatography.” Journal of Chromatography A 2006 1132, 310-314.
61. Casas, V., Llompart, M., Garcia-Jares, C., Cela, R., and Dagnac, T. “Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water.” Journal of Chromatography A 2006 1124, 148-156.
62. Cháfer-Pericás, C., Herráez-Hernández, R., and Campíns-Falcó, P. “In-tube solid-phase microextraction-capillary liquid chromatography as a solution for the screening analysis of organophosphorus pesticides in untreated environmental water samples.” Journal of Chromatography A 20071141, 10-21.
63. Chiu, K.H., Wu, B.Z., Chang, C.C., Sree, U., and Lo, J.G. “Distribution of Volatile Organic Compounds over a Semiconductor Industrial Park in Taiwan.” Environmental Science & Technology 2005 39, 973-983.
64. Diez, C., Sanz, J., and Camara, C. “Recent developments in solid-phase microextraction coatings and related techniques.” Journal of Chromatography A 2006, 1103, 183-192.
65. Merckel, C., Pragst, F., Ratzinger, A., Aebi, B., Bernhard, W., and Sporkert, F. “Application of headspace solid phase microextraction to qualitative and quantitative analysis of tobacco additives in cigarettes.” Journal of Chromatography A 2006, 1116, 10-19.
66. Ouyang, G.F. and Pawliszyn, J. “Recent developments in SPME for on-site analysis and monitoring.” Trends in Analytical Chemistry 2006, 25, 692-703.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *