帳號:guest(18.222.181.216)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃建中
作者(外文):Chien-Chung Huang
論文名稱(中文):MBE成長之HfO2閘極氧化物電容元件在非彈性電子穿隧能譜上的研究
論文名稱(外文):Inelastic Electron Tunneling Spectroscopy Study on MBE-grown HfO2 Metal-Oxide-Semiconductor System
指導教授(中文):郭瑞年
洪銘輝
指導教授(外文):J. Raynien Kwo
Minghwei Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:933302
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:87
中文關鍵詞:非彈性電子穿隧能譜鎖相放大器二氧化矽聲子能量
外文關鍵詞:Inelastic Electron Tunneling SpectroscopyHfO2silicon dioxidephonon energyphonon emissionlock-in amplifierthermal broadeningmodulation voltage broadeningIETSdual temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:434
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
非彈性電子穿隧能譜(Inelastic Electron Tunneling Spectroscopy,IETS)在穿隧元件上的運用十分廣泛,從早期1960年開始在氧化物上吸附化學有機物質的研究,到近十幾年來對MOS(金屬-氧化物-半導體)穿隧元件中的二氧化矽及高介電常數氧化物的研究,都在材料的能譜研究領域上引領出重大的進程。針對MOS元件的研究中,舉凡相關上電極金屬、底電極矽半導體、閘極氧化物及存在於氧化物中的其他化學鍵結之聲子能量,甚而是MOS元件中常出現的缺陷等,都能透過IETS精確地量測出來。MOS元件對於來自相反電子穿隧方向所量測到不同能譜的獨有特性,可物理性地解析出所偵測到的聲子是位於較為靠近上電極金屬與氧化物之間的界面,抑或氧化物與矽半導體之間的界面。本實驗研究所量測的氧化物涵蓋SiO2、HfO2、Y2O3、疊層式Y2O3/HfO2,以及疊層式HfO2/Y2O3。IETS在高介電常數氧化物HfO2上的研究結果,與過去在實驗與理論上發表有關光學反應下所誘發的聲子能譜,兩者之間有高度的一致性。甚或相較於近幾年在傅立葉轉換紅外線能譜(Fourier Transform Infrared Spectroscopy,FTIR)及其他IETS的研究成果,展現出更為高靈敏度的能譜量測現象。另外,IETS在疊層式Y2O3/HfO2 MOS穿隧元件的研究,也能精確的揭示出造成此元件在半導體載子速度(carrier mobility)的提升中,其所對應的重要物理原因。
Inelastic electron tunneling spectroscopy (IETS) in silicon metal-oxide-semiconductor systems with SiO2, pure HfO2, pure Y2O3, stacked Y2O3/HfO2, and stacked HfO2/Y2O3 as gate dielectrics have all been studied in this work. Information of electrode phonons, dielectric phonons, chemical bonding, and trap-related states in MOS structures has been able to be revealed by IETS. The bias polarity dependence of IETS has enabled the distinguishability to analyze microstructures either near the metal gate interface or near the silicon substrate interface. IETS results from HfO2 MOS tunnel junctions are consistent with published experimental and theoretical works relevant to Raman- and Infrared- active HfO2 phonon modes in monoclinic and tetragonal phases. IETS results of stacked Y2O3/HfO2 gate dielectrics, compared to pure HfO2, show less formation of hafnium silicate and less HfO2 and Y2O3 phonon peaks that can be detected with energies close to silicon phonons. Both phenomena observed are probably associated with less charge trapping and less ionic polarization of HfO2 and Y2O3 or intrinsically smaller ionic polarization of Y2O3 which may contribute to the improvement of channel carrier mobility due to suppressed coulomb scattering and reduced remote phonon scattering, respectively.
Contents

1. Introduction to High- MOS Technology
1.1 MOS Device Shrinking & SiO2 Scaling Limits-----------------------------------1
1.2 Alternative High- Gate Dielectrics----------------------------------------------2
1.3 Candidates for High- Gate Dielectrics------------------------------------------3
2. Tunneling Spectroscopy
2.1 Progress Making for Tunneling Spectroscopy-------------------------------------6
2.2 Fundamental Principles of IETS-----------------------------------------------------6
2.3 Energy Loss Mechanisms & Trap-Related Figures Revealed in IETS---------7
2.4 Bias Polarity Dependence of IETS--------------------------------------------------9
3. Experimental Details
3.1 Sample Preparation------------------------------------------------------------------13
3.2 UHV Molecular Beam Epitaxy Multi-chamber System------------------------18
3.3 Measurement Methods--------------------------------------------------------------20
3.3.1 AC Voltage Modulation Technique----------------------------------------20
3.3.2 Voltage-Bias Modulation Approach----------------------------------------21
3.4 Experimental Setups-----------------------------------------------------------------22
3.4.1 Electronic Instrumentation---------------------------------------------------22
3.4.2 Noise Consideration----------------------------------------------------------25
3.5 Measurement Operation-------------------------------------------------------------28
3.5.1 Lock-in Amplifier Settings------------------ --------------------------------28
3.5.2 Spectral Resolution-----------------------------------------------------------32
3.5.3 Preliminary Works before Measurement-----------------------------------33
3.6 Data Analysis-------------------------------------------------------------------------34
3.6.1 Inspection for Data Accuracy------------------------------------------------34
3.6.2 Dual Temperature Technique------------------------------------------------36
3.7 Summary------------------------------------------------------------------------------38
4. Experimental Results
4.1 Silicon Dioxide-----------------------------------------------------------------------45
4.1.1 Electrodes of the MOS system----------------------------------------------45
Phonons of the Aluminum Gate---------------------------------------------45
Phonons of the Silicon Substrate--------------------------------------------46
4.1.2 Oxides of the MOS system---------------------------------------------------47
Phonons of Aluminum oxide------------------------------------------------47
Phonons of Silicon Dioxide--------------------------------------------------47
4.1.3 IETS of Al-SiO2-Si Tunnel Junction---------------------------------------48
4.2 Hafnium Oxide-----------------------------------------------------------------------54
4.2.1 Hafnium Oxide Vibrational Modes-----------------------------------------54
4.2.2 IETS of Hafnium Oxide------------------------------------------------------55
4.3 Stacked Y2O3/HfO2 & HfO2/Y2O3 Gate Dielectrics-----------------------------68
4.3.1 IETS of Stacked Y2O3/HfO2 Gate Dielectric------------------------------68
4.3.2 IETS of Yttrium Oxide-------------------------------------------------------69
4.3.3 IETS of Stacked HfO2/Y2O3 Gate Dielectric------------------------------70
4.4 IETS Comparison between HfO2 and Stacked Y2O3/HfO2 Gate Dielectric--77
4.5 Summary------------------------------------------------------------------------------77
5. Conclusion------------------------------------------------------------------------------81
6. Bibliography---------------------------------------------------------------------------82
Bibliography

[1] G. E. Moore, Electronics, 38, 114, 1965
[2] SIA, The National Technology Roadmap for Semiconductors Technology Needs: Semiconductor Industry Associations (SIA), 2004
[3] J. R. Pfiester et al., “The effects of boron penetration on p+ polysilicon gated PMOS devices”, IEEE Trans. Electron Device, 37, 1842, 1990
[4] I. C. Chen, S. E. Holland, and C. Hu, “Electrical breakdown in thin gate and tunneling oxides”, IEEE Trans. Electron Device, 32, 413, 1985
[5] D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation”, IEEE Trans. Electron Device, 40, 986, 1993
[6] Leo Esaki, “New Phenomenon in Narrow Germanium p-n Junctions”, Phys. Rev., 109, 603, 1958
[7] N. Holonyak et al., “Direct Observation of Phonons During Tunneling in Narrow Junction Diodes”, Phys. Rev. Lett., 3, 167, 1959
[8] Ivar Giaever, “Energy Gap in Superconductors Measured by Electron Tunneling”, Phys. Rev. Lett., 5, 147, 1960
[9] B. D. Josephson, “Possible new effects in superconductive tunnelling”, Phys. Lett., 1, 251, 1962
[10] R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling”, Phys. Rev. Lett., 17, 1139, 1966
[11] J. Lambe and R. C. Jaklevic, “Molecular vibration spectra by inelastic electron tunneling”, Phys. Rev., 165, 821, 1968
[12] C. J. Adkins and W. A. Phillips, “Inelastic electron tunnelling spectroscopy”, J. Phys. C: Solid St. Phys., 18, 1313, 1985
[13] K. W. Hipps and U. Mazur, “Inelastic electron tunneling: an alternative molecular spectroscopy”, J. Phys. Chem., 97, 7803, 1993
[14] T. Wolfram, editor. Inelastic Electron Tunneling Spectroscopy, Springer, New York, 1978
[15] Paul K. Hansma, editor. Tunneling Spectroscopy, Plenum, New York, 1982
[16] E. L. Wolf, editor. Principles of Electron Tunneling Spectroscopy, Oxford University Press, New York, 1985
[17] J. Nishizawa and M. Kimura, “Tunneling spectroscopy in ms and mis tunneling junctions of degenerate n-type semiconductor”, Jap. J. Appl. Phys., 14, 1529, 1975
[18] I. Bencuya, “Electron tunneling in metal/tunnel-oxide/degenerate silicon junctions”, PhD thesis, Yale University, 1984
[19] P. Balk, L. Do Thanh, S. Ewert, M. Kuball, and S. Schmitz, “Interface states and impurities in mos structures with very thin tunneling barriers”, Appl. Surf. Sci., 30, 304, 1987
[20] P. Balk, S. Ewert, S. Schmitz, and A. Steffen, “Tunneling spectroscopy on metal-insulator-silicon structures with very thin insulating layers”, J. Appl. Phys., 69, 6510, 1991
[21] G. Salace and J. Despujols, “Study of thin anodic SiO2 layers on degenerate silicon by inelastic electron tunneling spectroscopy”, Thin Solid Films, 168, 11, 1989
[22] G. Salace and J. M. Patat, “Tunnelling spectroscopy possibilities in metal-oxide-semiconductor devices with a very thin oxide barrier”, Thin Solid Films, 207, 213, 1992
[23] Whye-Kei Lye, “Inelastic Electron Tunneling Spectroscopy of the Silicon Metal-Oxide-Semiconductor System”, Ph.D. Thesis, Yale University, 1998
[24] C. Petit, G. Salace, and D. Vuillaume, “Aluminum, oxide, and silicon phonons by inelastic electron tunneling spectroscopy on metal-oxide-semiconductor tunnel junctions: Accurate determination and effect of electrical stress”, J. Appl. Phys., 96, 5042, 2004
[25] We He and T. P. Ma, “Inelastic electron tunneling spectroscopy study of traps in ultrathin high- gate dielectrics”, Appl. Phys. Lett., 83, 5461, 2003
[26] We He, “Electron Tunneling Spectroscopy of Silicon Metal-Oxide-Semiconductor System with Thin Gate Dielectric”, Ph.D. Thesis, Yale University, 2005
[27] Miaomiao Wang, Wei He, and T. P. Ma, “Electron tunneling spectroscopy study of traps in high- gate dielectrics: Determination of physical locations and energy levels of traps”, Appl. Phys. Lett., 86, 192113-1, 2005
[28] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd edition, John Wiley & Sons, New York, 1998 p.47
[29] T. Horiuchi, F. Ebisawa, and h. Tabei, “New inelastic electron tunneling spectrometer with an absolute peak intensity”, Rev. Sci. Instrum., 60, 993, 1989
[30] J. G. Adler, T. T. Chen, and J Straus, “High resolution electron tunneling spectroscopy”, Rev. Sci. Instrum., 42, 362, 1989
[31] J. G. Adler and J Straus, “Application of minicomputers in high resolution electron tunneling”, Rev. Sci. Instrum., 46, 158, 1975
[32] K. W. Hipps and U. Mazur, “Constant-resolution tunneling spectroscopy”, Rev. Sci. Instrum., 59, 1903, 1988
[33] SR830 DSP Lock-in Amplifier Operating Manual and Programming Reference, revision 2.1, Stanford Research Systems, 2004
[34] K. W. Hipps, “All digital inelastic electron tunneling spectrometer utilizing the IEEE-488 instrument bus and an IBM PC-XT controller”, Rev. Sci. Instrum., 58, 265, 1987
[35] S. Gauvin and R. M. Leblanc, “Inelastic electron tunneling spectrometer for complete calibrated measurements of any two or four terminal junctions”, Rev. Sci. Instrum., 63, 149, 1992
[36] Y. Wang, R. R. Mallik, and P. N. Henriksen, “Easily realized inelastic electron tunneling spectrometer”, Rev. Sci. Instrum., 64, 890, 1993
[37] J. B. Johnson, “Thermal agitation of electricity in conductors”, Phys. Rev., 32, 97, 1928
[38] H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev., 32, 110, 1928
[39] P. Horowitz and W. Hill, The Art of Electronics, 2nd edition, Cambridge University Press, New York, 1989 chapter 14
[40] Ralph Morrison, Grounding and Shielding Techniques, 4th edition, John Wiley & Sons, New York, 1998
[41] J. Klein, A. Léger, and M. Belin, “Inelastic-electron-tunneling spectroscopy of metal-insulator-metal junctions”, Phys. Rev. B, 7, 2336, 1973
[42] H.-X. Shen and H.-C. Li, Chin. Phys. 2, 232, 1982
[43] D. G. Walmsley, R. B. Floyd, and S. F. J. Read, “Inelastic electron tunnelling spectral lineshapes below 10 mK”, J. Phys. C, 11, L107, 1978
[44] J. Klein, Ph.D. Thésis, University of Paris, 1969
[45] J. Klein and A. Leger, Phys. Lett., 28A, 134, 1968
[46] J. P. Carbotte and R. C. Dynes, Phys. Lett., 25A, 685, 1967
[47] A. G. Chynoweth, R. A. Logan, and D. E. Thomas, “Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions”, Phys. Rev., 125, 877, 1962
[48] R. N. Brockhouse, Phys. Rev. Letters, 2, 1256, 1959
[49] W.P. Dumke, “Two-Phonon Indirect Transitions and Lattice Scattering in Si”, Phys. Rev., 118, 938, 1960
[50] D. G. Walmsley, Vibrational Spectroscopy of Adsorbates, edited by R. F. Willis, Springer, Berlin, 1980 p.67
[51] W. He and T. P. Ma, “Inelastic Electron Tunneling Spectroscopy Study of Ultrathin HfO2 and HfAlO”, Appl. Phys. Lett., 83, 2605, 2003
[52] R. J. Bell, N. F. Bird, and P. Bean, “The vibrational spectra of vitreous silica, germania and beryllium fluoride”, J. Phys. C: Solid St. Phys., 1, 299, 1968
[53] R. J. Bell, P. Bean, and D. C. Hibbins-Bulter, “Localization of normal modes in vitreous silica, germania and beryllium fluoride”, J. Phys. C: Solid St. Phys., 3, 2111, 1970
[54] R. J. Bell, P. Bean, and D. C. Hibbins-Bulter, “Normal mode assignments in vitreous silica, germania and beryllium fluoride”, J. Phys. C: Solid St. Phys., 4, 1214, 1971
[55] J. Wong, “A review of infrared spectroscopic studies of vapor-deposited dielectric glass films on silicon”, J. Electron. Mater., 5, 113, 1976
[56] W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods”, J. Vac. Sci. Technol., 14,1064, 1977
[57] J. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2 and BeF2”, Phys. Rev. B, 27,1052, 1983
[58] R. J. Bell, P. Bean, and D. C. Hibbins-Bulter, “Infrared activity of normal modes in vitreous silica, germania and beryllium fluoride”, J. Phys. C: Solid St. Phys., 9, 1171, 1976
[59] C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica”, Phys. Rev. B, 38,1255, 1988
[60] R. Zallen, The physics of amorphous solids, New York: Wiley-Interscience, 1983 p.49
[61] H. Fujimori, M. Yashima, S. Sasaki, M. Kakihana, T. Mori, M. Tanaka, and M. Yoshimura, “Internal distortion in ceria-doped hafnia solid solutions: high-resolution x-ray diffraction and Raman scattering”, Phys. Rev. B, 64, 134104, 2001
[62] D. K. Smith and H. W. Newkirk, “The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2”, Acta. Cryst., 18, 983
[63] E. Anastassakis, B. Papanicolaou and I. M. Asher, “Lattice dynamics and light scattering in hafnia and zirconia”, J. Phys. Chem. Solids, 36, 667, 1975
[64] H. Fujimori, M. Yashima, M. Kakihana, and M. Yoshimura, “In situ Ultraviolet Raman study on the phase transition of hafnia up to 2085 K”, J. Am. Ceram. Soc., 84, 3, 663
[65] B. K. Kim and H. Hamaguchi, “Raman spectrum of O18-labelled hafnia”, Mat. Res. Bull., 32, 10, 1367, 1997
[66] H. Arashi, J. Am. Ceram. Soc., 75, 844, 1992
[67] C. Carlone, “Raman spectrum of zirconia-hafnia mixed crystals”, Phys. Rev. B, 45, 2079, 1992
[68] G. A. Kourouklis and E. Liarokapis, J. Am. Ceram. Soc., 74, 520, 1991
[69] M. A. Krebs and R. A. Condrate, J. Am. Ceram. Soc., 65, C144, 1982
[70] A. Jayaraman, S. Y. Wang, S. K. Sharma, and L. C. Ming, “Pressure-induced phase transformations in HfO2 to 50 GPa studied by Raman spectroscopy”, Phys. Rev. B, 48, 9205, 1993
[71] Xinyuan Zhao and David Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide”, Phys. Rev. B, 65, 233106, 2002
[72] C. W. Liu et al., private communication
[73] R. S. Johnson, J. G. Hong, C. Hinkle, and G. Lucovsky, “Electron trapping in noncrystalline remote plasma deposited Hf-aluminate alloys for gate dielectric applications”, J. Vac. Sci. Technol. B, 20, 3, 1126, 2002
[74] V. Cosnier, M. Olivier, G. Theret, and B. Andre, “HfO2-SiO2 interface in PVD coatings”, J. Vac. Sci. Technol. A, 19, 5, 2267, 2001
[75] W. J. Zhu, T. Tamagawa, M. Gibscon, T. Furukawa, and T. P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics”, IEEE Electron Devices Letters, 23, 11, 649, 2002
[76] Xiongfei. Yu, C. Zhu, Mingbin Yu, and Dim-Lee Kwong, “Improvements on surface carrier mobility and electrical stability of MOSFETs using HfTaO gate dielectric”, IEEE Trans. Electron Devices, 51, 12, 2154, 2004
[77] John Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices”, J. Vac. Sci. Technol. B, 18, 1785, 2000
[78] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y.J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, “High ε gate dielectrics Gd2O3 and Y2O3 for Si”, App. Phys. Lett., 77, 130, 2000
[79] L.-A. Ragnarsson, S. Guha, M. Copel, E. Cartier, N. A. Bojarczuk, and J. Karasinski, “Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated
metal–oxide–semiconductor field-effect transistors: Effective electron mobility”, Appl. Phys. Lett., 78, 4169, 2001
[80] Feng Zhu, S. J. Rhee, C. Y. Kang, C. H. Choi, S. A. Krishnan, M. Zhang, H. S. Kim, T. Lee, I. Ok, and Jack C. Lee, “Improving channel carrier mobility and immunity to charge trapping of high-K NMOSFET by using stacked Y2O3/HfO2 gate dielectric”, IEEE Electron Devices Letters, 26, 12, 876, 2005
[81] Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibrational Spectroscopy of the C-Form of Yttrium Sesquioxide”, J. Solid State Chem., 118, 163, 1995
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *