帳號:guest(3.144.77.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):康繼之
作者(外文):Kang, Chi-Chih
論文名稱(中文):BMVC 相關小分子於癌症的研究:癌症檢測與光動力治療
論文名稱(外文):BMVC related molecules in cancer research: cancer diagnosis and photodynamic therapy
指導教授(中文):張大釗
倪其焜
指導教授(外文):Chang, Ta-Chau
Ni, Chi-Kun
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:933440
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:102
中文關鍵詞:癌症檢測螢光探針光動力治療
相關次數:
  • 推薦推薦:0
  • 點閱點閱:402
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本論文介紹了一個具有癌細胞辨識能力的有機小分子BMVC,BMVC在細胞中的特色是在癌細胞的細胞核中發出很亮的螢光訊號,然而在正常細胞中則只在細胞質有微弱的螢光,基於這特別的螢光特性,使我們可以利用BMVC的螢光區分正常細胞和癌細胞,進而運用BMVC成為臨床上極具潛力的癌症檢測螢光探針。
而本論文主要探討的重點是”為什麼BMVC可以成為一個癌細胞檢測螢光探針?” 從共軛焦顯微鏡的結果得知,BMVC主要位於癌細胞的細胞核(nucleus)與粒線體(mitochondria),而在正常細胞中主要卻是在溶酶體(lysosome)。一些前驅實驗得知,BMVC主要是經由胞吞作用(endocytosis)進入細胞,送入溶酶體後,會留置在正常細胞的溶酶體中。然而若是利用FCCP改變溶酶體或是經由microinjection越過胞吞作用進入溶酶體,則BMVC有機會進入正常細胞的細胞核。但是針對癌細胞,我們並不確定BMVC為何不會被留在癌細胞的溶酶體中。直到最近研究顯示,溶酶體的膜通透(lysosomal membrane permeabilization)和癌細胞與細胞死亡極為相關,引領我們探討癌細胞和正常細胞本身的溶酶體膜通透程度的異同。後續我們利用cathepsin免疫螢光染色實驗以及空泡形成(vacuolization)的實驗顯示癌細胞與正常細胞的溶酶體膜通透性不同。這項不同可能導致BMVC被留置在正常細胞的溶酶體中,但可自由的穿出癌細胞地溶酶體,而終至癌細胞的細胞核與粒線體。
另外,利用一系列BMVC衍生物探討其結構與細胞中位置之關係,結果顯示hydrogen bonding capacity (HBC)值高的BMVC衍生物對於正常細胞溶酶體膜的通透能力差,因此被留在溶酶體中的比例大。然而,由溶酶體釋出的BMVC衍生物在癌細胞中的位置則與親脂性(lipophilicity)相關,較親脂(lipophilic)的BMVC衍生物則較容易停留在粒線體。這項結果顯示,我們可以經由調控有機小分子的HBC和親脂性,來決定這個小分子在細胞中的位置。更重要的是,從分析這些BMVC衍生物得知,具有和DNA作用螢光大幅增強且特定分子特性的BMVC衍生物具有潛力成為癌症檢測的螢光探針。
最終,延續”癌細胞選擇性”的想法,一個結合BMVC和porphyrin的複合分子o-2B-P被設計為具癌細胞選擇性的光動力治療藥物,結合BMVC與porphyrin提供了450-500nm這段特別的光激發波段,可選擇性地激發o-2B-P而不去傷害到細胞或是組織中含porphyrin的自然分子。此外,o-2B-P在光照前主要位在細胞質,呈現紅色的螢光,但在光照後,則會位移到細胞核,呈現黃綠色的螢光,實驗證實這樣照光產生o-2B-P位移的過程代表了光動力治療的發生,重要且有趣地是,這個過程在癌細胞與在正常細胞中發生的速率是不一樣的,藉此不同,在調控的照光強度與時間下,我們可選擇性地殺死癌細胞而盡量不破壞到正常細胞。
總結而言,這份研究始於BMVC在癌細胞與正常細胞中差異的螢光訊號應用至臨床癌症檢測。然而,在共軛焦螢光顯微鏡實驗中,發現BMVC在癌細胞與正常細胞中是位於不同的胞器,更深入的探討發現,BMVC在細胞中位置的不同可能是癌細胞和正常細胞間溶酶體膜通透性的不同所造成,而這個不同點將有機會被應用至未來癌症探針發展或是選擇性抗癌藥物的設計。我們進而也設計了系列BMVC衍生物以篩選出更佳的癌症探針分子。根據不同的BMVC衍生物在細胞中位於不同的位置,促使我們發現可以利用分子結構特性例如:親脂性和HBC調控小分子在細胞中的位置與生理反應,同時提供正常細胞與癌細胞胞器間異同之資訊,也讓我們了解細胞中的胞器如:溶酶體或粒線體各會吸引那些分子結構特性的小分子進出。最終,o-2B-P於光動力治療的應用成果展示了癌細胞標的分子與抗癌藥物結合成選擇性抗癌藥物的成功案例。
BMVC, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide, is a novel organic molecule with special tumor recognition characteristic. BMVC appears bright fluorescence in the nucleus of cancer cells while only weak fluorescence in the cytoplasm of normal cells. The strong fluorescence of BMVC in the nucleus is mainly due to significant enhancement of BMVC fluorescence upon binding to DNA. Therefore, distinct properties of BMVC in cells allow us to differentiate cancer cells from normal cells. We further apply BMVC as a potential fluorescent tumor marker for clinical cancer diagnosis1,2.
It is of interest to elucidate the reason why BMVC can act as a potential fluorescence tumor marker. Confocal microscopic images by merging with organelle trackers suggested that BMVC mainly localizes in the nucleus and mitochondria of cancer cells, but in the lysosome of normal cells. Several leading experiments suggested that the major pathway for BMVC uptake is endocytosis. In addition, the carbonyl-cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and microinjection experiments showed that the endocytosed BMVC is trapped in the lysosome of normal cells. However, it is not clear why BMVC is not trapped in the lysosome of cancer cells. Recently, it is suggested that the lysosomal membrane permeabilization (LMP) is highly related to cell death and cancer3. We performed the cathepsin immunofluorescence and vacuolization experiments to elucidate whether there is lysosomal membrane permeability difference between cancer and normal cells. Our results suggested that the lysosomal membrane permeability difference is likely the mechanism for trapping BMVC in the lysosome of normal cells, but releasing BMVC to the nucleus and mitochondria of cancer cells.
Furthermore, the structure localization relationship (SLR) studies show that BMVC derivatives with large hydrogen bonding capacity (HBC) are less lysosomal membrane permeable in normal cells. In addition, we found that the more lipophilic of BMVC derivatives the more mitochondria localization in cancer cells. It is likely that the HBC and the lipophilicity are two important characters in determining intracellular localization of BMVC derivatives in cells. These findings may allow us to design better fluorescent tumor markers in cancer diagnosis.
Finally, BMVC-porphyrin binary system (o-2B-P) was designed according to the idea of “cancer selective” therapy. The 450-500 nm transparent windows of porphyrin derivatives allow us to perform irradiation wavelength selectivity for photodynamic therapy (PDT). Moreover, the cell images showed that o-2B-P appeared red fluorescence in the cytoplasm before irradiation but became green-yellow fluorescence in the nucleus after light irradiation. This photoinduced translocation is further assigned as the results of PDT effect. Of particular interest is the time-lag of the photo-induced translocation of o-2B-P between cancer cells and normal cells, implying that the o-2B-P may achieve the ideal PDT treatment, which kills the cancer cells without dramatic side effects on normal cells.
In summary, this research begins with application of BMVC as a potential fluorescent tumor marker. The confocal microscopy studies suggested that BMVC mainly localizes in the nucleus and mitochondria of cancer cells, but in the lysosome of normal cells. Further studies showed that this localization difference may be due to the different lysosomal membrane permeability of BMVC between cancer and normal cells. Accordingly, the lysosomal membrane permeabilization difference to small molecules between cancer and normal cells could be applied as a new target for developing probes in cancer diagnosis or drugs in selective cancer therapy. Furthermore, several BMVC derivatives were synthesized for better fluorescent tumor markers. During the screening, different cellular responses from different BMVC derivatives illustrated the importance of lipophilicity and HBC for the intracellular localization of drugs. It further suggested that one can modify these chemical properties of a small molecule for manipulating its intracellular localization. Finally, o-2B-P, provided a new platform for cancer selective drug through the combination of a cancer targeting molecule and anticancer drug.
Contents
1. Introduction 1
2. Materials and Methods 8
3. BMVC as a cancer diagnosis probe 18
3.1 Simple method and device for cancer diagnosis 20
3.2 Clinical test of malignant neck lumps by using BMVC test 25
4. Determination the reason why BMVC could be a potential fluorescence tumor marker 29
4.1 The ultimate target of BMVC in cells 29
4.2 BMVC enters cells through endocytosis pathway 30
4.2.1 BMVC vs endocytosis 30
4.2.2 BMVC transport via receptor dependent endocytosis 33
4.2.3 The role of hTERT, a telomerase peptide fragment, in BMVC transport 37
4.2.4 The role of nucleolin in BMVC transport 39
4.2.5 The role of P-glycoprotein in BMVC transport 45
4.3 The role of lysosome in the mechanism study 51
4.3.1 Lysosome, the intracellular localization of BMVC in normal cells 51
4.3.2 Lysosomal trapping of BMVC in normal cells 52
4.3.3 The role of lysosomal pH in lysosomal trapping 55
4.3.4 The role of lysosomal membrane permeabilization in lysosomal trapping 57
5. Structure- localization Relationship of BMVC derivatives 62
5.1 Hydrogen bonding capacity controlled lysosomal trapping 65
5.2 BMVC derivatives as potential fluorescent tumor markers 69
5.3 Lipophilicity controlled mitochondrial localization 75
6. Application of BMVC to a “cancer-selective” drug 81
6.1 Duality of BMVC-porphyrin binary system as a fluorescence biomarker and selective photosensitizer 82
6.2 Further o-2B-P studies 85
7. Conclusion 91
8. Publication list 96
9. Reference 97
1. Kang, C.C. et al. A handheld device for potential point-of-care screening of cancer. Analyst 132, 745-9 (2007).
2. Liao, L.J. et al. Improved diagnostic accuracy of malignant neck lumps by a simple BMVC staining assay. Analyst 134, 708-11 (2009).
3. Fehrenbacher, N. & Jaattela, M. Lysosomes as targets for cancer therapy. Cancer Res 65, 2993-5 (2005).
4. Chang, C.C., Wu, J.Y. & Chang, T.C. A Carbazole Derivative Synthesis for Stabilizing the Quadruplex Structure. Journal of the Chinese Chemical Society 50, 185-188 (2003).
5. Chang, C.C. et al. A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem 75, 6177-83 (2003).
6. Chang, C.C. et al. Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative. Anal Chem 76, 4490-4 (2004).
7. Chang, C.C. et al. Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal Chem 78, 2810-5 (2006).
8. Chang, C.C. et al. A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells. Chem Biodivers 1, 1377-84 (2004).
9. Pieterman, R.M. et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343, 254-61 (2000).
10. Fischer, B.M., Mortensen, J. & Hojgaard, L. Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review. Lancet Oncol 2, 659-66 (2001).
11. Schroder, F.H. Screening for prostate cancer. Urol Clin North Am 30, 239-51, viii (2003).
12. Chiu, Y. et al. Prostate Cancer: Retrospective Comparison of Digital Rectal Examination, Transrectal Ultrasonography and Prostate-Specific Antigen. J Urol ROC 4, 1206-1211 (1993).
13. Pu, Y.-S. et al. Comparsion of the diagnostic efficiencies of transrectal sonography,digital rectal examination and prostatic specific antigen in prostate cancer. J. Chinese Oncol. Soc. 7, 19-24 (1991).
14. Buley, I.D. & Roskell, D.E. Fine-needle aspiration cytology in tumour diagnosis: uses and limitations. Clin Oncol (R Coll Radiol) 12, 166-71 (2000).
15. Florentine, B.D. et al. Cost savings associated with the use of fine-needle aspiration biopsy (FNAB) for the diagnosis of palpable masses in a community hospital-based FNAB clinic. Cancer 107, 2270-81 (2006).
16. Amedee, R.G. & Dhurandhar, N.R. Fine-needle aspiration biopsy. Laryngoscope 111, 1551-7 (2001).
17. Xing, M. et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 89, 2867-72 (2004).
18. Zagorianakou, P. et al. FNAC: its role, limitations and perspective in the preoperative diagnosis of breast cancer. Eur J Gynaecol Oncol 26, 143-9 (2005).
19. Howlett, D.C. et al. Diagnostic adequacy and accuracy of fine needle aspiration cytology in neck lump assessment: results from a regional cancer network over a one year period. J Laryngol Otol 121, 571-9 (2007).
20. Bareford, L.M. & Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59, 748-58 (2007).
21. Carver, L.A. & Schnitzer, J.E. Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3, 571-81 (2003).
22. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-5 (1994).
23. Christian, S. et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163, 871-8 (2003).
24. Sauna, Z.E., Smith, M.M., Muller, M., Kerr, K.M. & Ambudkar, S.V. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr 33, 481-91 (2001).
25. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434-51 (2008).
26. Kirkegaard, T. & Jaattela, M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793, 746-54 (2009).
27. Lloyd, J.B. Lysosome membrane permeability: implications for drug delivery. Adv Drug Deliv Rev 41, 189-200 (2000).
28. Horton, K.L., Stewart, K.M., Fonseca, S.B., Guo, Q. & Kelley, S.O. Mitochondria-penetrating peptides. Chem Biol 15, 375-82 (2008).
29. Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777, 1028-31 (2008).
30. Engelmann, F.M., Rocha, S.V., Toma, H.E., Araki, K. & Baptista, M.S. Determination of n-octanol/water partition and membrane binding of cationic porphyrins. Int J Pharm 329, 12-8 (2007).
31. Williams, A.T.R., Winfield, S.A. & Miller, J.N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108, 1067-1070 (1983).
32. Chang, C.C. et al. Solvent effect on photophysical properties of a fluorescence probe: BMVC. Journal of Luminescence 119, 84-90 (2006).
33. Robbins, E., Marcus, P.I. & Gonatas, N.K. Dynamics of Acridine Orange-Cell Interaction. Ii. Dye-Induced Ultrastructural Changes in Multivesicular Bodies (Acridine Orange Particles). J Cell Biol 21, 49-62 (1964).
34. Haylett, T. & Thilo, L. Endosome-lysosome fusion at low temperature. J Biol Chem 266, 8322-7 (1991).
35. Zhu, D., Lennon, S.P., Peters, M.H., Finney, W.C. & Singh, M. Brownian diffusion and surface kinetics of liposome and viral particle uptake by human lung cancer cells in-vitro. Ann Biomed Eng 34, 1573-86 (2006).
36. Chapman-Andresen, C. Endocytosis in freshwater amebas. Physiol Rev 57, 371-85 (1977).
37. Hanover, J.A., Beguinot, L., Willingham, M.C. & Pastan, I.H. Transit of receptors for epidermal growth factor and transferrin through clathrin-coated pits. Analysis of the kinetics of receptor entry. J Biol Chem 260, 15938-45 (1985).
38. Johannessen, L.E., Ringerike, T., Molnes, J. & Madshus, I.H. Epidermal growth factor receptor efficiently activates mitogen-activated protein kinase in HeLa cells and Hep2 cells conditionally defective in clathrin-dependent endocytosis. Exp Cell Res 260, 136-45 (2000).
39. Signoret, N. et al. Agonist-induced endocytosis of CC chemokine receptor 5 is clathrin dependent. Mol Biol Cell 16, 902-17 (2005).
40. Moskowitz, H.S., Yokoyama, C.T. & Ryan, T.A. Highly cooperative control of endocytosis by clathrin. Mol Biol Cell 16, 1769-76 (2005).
41. Pelkmans, L. & Helenius, A. Endocytosis via caveolae. Traffic 3, 311-20 (2002).
42. Lindvall, C. et al. Molecular characterization of human telomerase reverse transcriptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene. Cancer Res 63, 1743-7 (2003).
43. Gandellini, P. et al. Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochem Pharmacol 73, 1703-14 (2007).
44. Ginisty, H., Sicard, H., Roger, B. & Bouvet, P. Structure and functions of nucleolin. J Cell Sci 112 ( Pt 6), 761-72 (1999).
45. Srivastava, M. & Pollard, H.B. Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB Journal 13, 1911-1922 (1999).
46. Borer, R.A., Lehner, C.F., Eppenberger, H.M. & Nigg, E.A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56, 379-90 (1989).
47. Hovanessian, A.G. et al. The Cell-Surface-Expressed Nucleolin Is Associated with the Actin Cytoskeleton. Experimental Cell Research 261, 312-328 (2000).
48. Altan, N., Chen, Y., Schindler, M. & Simon, S.M. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med 187, 1583-98 (1998).
49. Stouch, T.R. & Gudmundsson, O. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54, 315-28 (2002).
50. Seelig, A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251, 252-61 (1998).
51. Cordon-Cardo, C. et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38, 1277-87 (1990).
52. Babakhanian, K., Bendayan, M. & Bendayan, R. Localization of P-glycoprotein at the nuclear envelope of rat brain cells. Biochem Biophys Res Commun 361, 301-6 (2007).
53. Munteanu, E. et al. Mitochondrial localization and activity of P-glycoprotein in doxorubicin-resistant K562 cells. Biochem Pharmacol 71, 1162-74 (2006).
54. Bendayan, R., Ronaldson, P.T., Gingras, D. & Bendayan, M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 54, 1159-67 (2006).
55. Arslan, N., Miller, T.R., Dehdashti, F., Battafarano, R.J. & Siegel, B.A. Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol 4, 301-10 (2002).
56. Maschek, G. et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64, 31-4 (2004).
57. Seral, C. et al. Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. Antimicrob Agents Chemother 47, 1047-51 (2003).
58. Englund, G., Hallberg, P., Artursson, P., Michaelsson, K. & Melhus, H. Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring. BMC Med 2, 8 (2004).
59. Kimura, O., Endo, T., Hotta, Y. & Sakata, M. Effects of P-glycoprotein inhibitors on transepithelial transport of cadmium in cultured renal epithelial cells, LLC-PK1 and LLC-GA5-COL 150. Toxicology 208, 123-32 (2005).
60. Pascaud, C., Garrigos, M. & Orlowski, S. Multidrug resistance transporter P-glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. Biochem J 333 ( Pt 2), 351-8 (1998).
61. Michalik, M., Pierzchalska, M., Pabianczyk-Kulka, A. & Korohoda, W. Procaine-induced enhancement of fluid-phase endocytosis and inhibition of exocytosis in human skin fibroblasts. Eur J Pharmacol 475, 1-10 (2003).
62. Fu, D., Bebawy, M., Kable, E.P. & Roufogalis, B.D. Dynamic and intracellular trafficking of P-glycoprotein-EGFP fusion protein: Implications in multidrug resistance in cancer. Int J Cancer 109, 174-81 (2004).
63. Kim, H., Barroso, M., Samanta, R., Greenberger, L. & Sztul, E. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am J Physiol 273, C687-702 (1997).
64. Fu, D. & Roufogalis, B.D. Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol 292, C1543-52 (2007).
65. Ranganathan, S. & Jackson, R.L. Effect of calcium-channel-blocking drugs on lysosomal function in human skin fibroblasts. Biochem Pharmacol 33, 2377-82 (1984).
66. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu Rev Physiol 28, 435-92 (1966).
67. Nicholls, D.G.a.F., S. J. Bioenergetics 3rd Ed. Biochemistry (Mosc), 57-87 (2002).
68. Connop, B.P., Thies, R.L., Beyreuther, K., Ida, N. & Reiner, P.B. Novel effects of FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone] on amyloid precursor protein processing. J Neurochem 72, 1457-65 (1999).
69. Ege, T., Reisbig, R.R. & Rogne, S. Enhancement of DNA-mediated gene transfer by inhibitors of autophagic-lysosomal function. Exp Cell Res 155, 9-16 (1984).
70. Daniel, W.A. & Wojcikowski, J. Lysosomal trapping as an important mechanism involved in the cellular distribution of perazine and in pharmacokinetic interaction with antidepressants. Eur Neuropsychopharmacol 9, 483-91 (1999).
71. Duvvuri, M., Konkar, S., Hong, K.H., Blagg, B.S. & Krise, J.P. A new approach for enhancing differential selectivity of drugs to cancer cells. ACS Chem Biol 1, 309-15 (2006).
72. Kokkonen, N. et al. Defective Acidification of Intracellular Organelles Results in Aberrant Secretion of Cathepsin D in Cancer Cells. The Journal of Biological Chemistry 279, 39982-39988 (2004).
73. Altan, N., Chen, Y., Schindler, M. & Simon, S.M. Defective Acidification in Human Breast Tumor Cells and Implications for Chemotherapy. The Journal of Experimental Medicine 187, 1583-1598 (1998).
74. Schindler, M., Grabski, S., Hoff, E. & Simon, S.M. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry 35, 2811-7 (1996).
75. Gong, Y., Duvvuri, M. & Krise, J.P. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 278, 50234-9 (2003).
76. Jedeszko, C. & Sloane, B.F. Cysteine cathepsins in human cancer. Biol Chem 385, 1017-27 (2004).
77. Jaattela, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746-56 (2004).
78. Guicciardi, M.E., Leist, M. & Gores, G.J. Lysosomes in cell death. Oncogene 23, 2881-90 (2004).
79. Boya, P. et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927-36 (2003).
80. Yang, W.C., Strasser, F.F. & Pomerat, C.M. Mechanism of Drug-Induced Vacuolization in Tissue Culture. Exp Cell Res 38, 495-506 (1965).
81. Finnin, B.C., Reed, B.L. & Ruffin, N.E. The effects of osmotic pressure on procaine-induced vacuolation in cell culture. J Pharm Pharmacol 21, 114-7 (1969).
82. Kaufmann, A.M. & Krise, J.P. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96, 729-46 (2007).
83. Morissette, G., Moreau, E., R, C.G. & Marceau, F. Massive cell vacuolization induced by organic amines such as procainamide. J Pharmacol Exp Ther 310, 395-406 (2004).
84. Morissette, G., Moreau, E., R, C.G. & Marceau, F. N-substituted 4-aminobenzamides (procainamide analogs): an assessment of multiple cellular effects concerning ion trapping. Mol Pharmacol 68, 1576-89 (2005).
85. Morissette, G., Germain, L. & Marceau, F. The antiwrinkle effect of topical concentrated 2-dimethylaminoethanol involves a vacuolar cytopathology. Br J Dermatol 156, 433-9 (2007).
86. Ohkuma, S. & Poole, B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 90, 656-64 (1981).
87. Morissette, G., Lodge, R., Bouthillier, J. & Marceau, F. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: possible origin of pharmacological distortions and side effects. Toxicol Appl Pharmacol 229, 320-31 (2008).
88. Poole, B. & Ohkuma, S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90, 665-9 (1981).
89. Rosania, G.R. Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr Top Med Chem 3, 659-85 (2003).
90. Chen, L.B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4, 155-81 (1988).
91. Dougherty, T.J. et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 38, 2628-35 (1978).
92. Dougherty, T.J. et al. Photodynamic therapy. J Natl Cancer Inst 90, 889-905 (1998).
93. Nori, A. & Kopecek, J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Deliv Rev 57, 609-36 (2005).
94. Sessler, J.L. & Seidel, D. Synthetic expanded porphyrin chemistry. Angew Chem Int Ed Engl 42, 5134-75 (2003).
95. Robertson, C.A., Evans, D.H. & Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96, 1-8 (2009).
96. Chen, X., Hui, L., Foster, D.A. & Drain, C.M. Efficient synthesis and photodynamic activity of porphyrin-saccharide conjugates: targeting and incapacitating cancer cells. Biochemistry 43, 10918-29 (2004).
97. Castano, A.P., Demidova, T. N., Hamblin, M. R. Mechanisms in photodynamic therapy: part one- photosensitizers, photochemistry and cellular localization Photodiagnosis Photodyn Ther 1, 279-293 (2004).
98. Chen, J. et al. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc 126, 11450-1 (2004).
99. Zheng, G. et al. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Natl Acad Sci U S A 104, 8989-94 (2007).
100. Kang, C.C. et al. A dual selective antitumor agent and fluorescence probe: the binary BMVC-porphyrin photosensitizer. ChemMedChem 3, 725-8 (2008).
101. Bonnett, R. & Martinez, G. Photobleaching of compounds of the 5,10,15,20-Tetrakis(m-hydroxyphenyl)porphyrin Series (m-THPP, m-THPC, and m-THPBC). Org Lett 4, 2013-6 (2002).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *