帳號:guest(18.224.149.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏菱均
作者(外文):Ling-Chun Wei
論文名稱(中文):有機半導體分子之合成、薄膜形貌與場效電晶體性質研究
論文名稱(外文):Synthesis, Film Morphology and Field-Effect Transistor Property of Organic Semiconductor Molecules
指導教授(中文):陶雨台
指導教授(外文):Yu-Tai Tao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:933456
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:場效電晶體有機半導體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
本研究主要以寡聚噻吩的衍生物DHB-4T, DFB-4T 及五環素的衍
生物DP-PT, DTh-PT, DTo-PT 做為有機半導體分子。在不同的基板
溫度下,以真空蒸鍍的方式將化合物沉積於二氧化矽表面以及用飽和
十八烷基三氯矽烷(OTS)、雙(三甲基矽)胺(HMDS)及苯甲基三氯矽烷
(BTS)等自組裝單層膜分子修飾過的二氧化矽表面上,研究薄膜結構
與場效電晶體性質關係。
藉由原子力顯微鏡影像及X-ray 繞射圖譜結果觀察分子在表面的
形貌:對DHB-4T 而言,是以接近站立的方式在表面堆疊,且晶體大
小隨著基板溫度的上升而變大;而五環素的衍生物幾乎為非晶相的堆
疊。場效特性則是在有機膜的上方沉積上金作為汲極與源極後,以半
導體參數分析儀量測。DHB-4T 為一正型的半導體材料,所得到的最
大場效載子遷移率隨著溫度變化可從0.028 上升到0.17 cm2V-1s-1;而
以五環素的衍生物為半導體層的電晶體所得到的最大場效載子遷移
率約10-3 cm2V-1s-1。
另一方面,將自組裝單層膜經過刷磨後,沉積上DHB-4T,所使
用的自組裝單層膜為十八烷基三氯矽烷(OTS/SiO2/Si)以及九烷基三
氯矽烷(NTS/SiO2/Si)。希望藉此觀察刷磨自組裝單層膜對於晶體顆粒
大小與場效載子遷移率(field-effect mobility)的影響。
Oligothiophene derivatives DHB-4T, DFB-4T and pentacene derivatives DP-PT, DTh-PT, DTo-PT were synthesized and characterized as the active channel material in the organic FET. Structure of thin-film as a function of substrate surfaces ( bare silicon dioxide (SiO2/Si) substrate, n-octadecyltrichlorosilane (OTS/SiO2/Si)-, benzyltrichlorosilane (BTS/SiO2/Si)-, and 1,1,1,3,3,3-hexamethyldisilazane (HMDS/SiO2/Si)-treated surfaces) and temperature were examined.
For DHB-4T, a near perpendicular molecular orientation was observed in most cases, with grain size increasing with increasing substrate temperature. Field effect mobilities were measured employing a top source-drain contact configuration. DHB-4T exhibited p-type semiconducting behavior with maximum field-effect mobility ranging from ~0.028 to ~0.17 cm2V-1s-1, depending on the substrate temperature. DP-PT and DTh-PT also exhibited p-type behavior with maximum field-effect mobilities ~ 10-3 cm2V-1s-1.
Additionally, DHB-4T was also deposited on a rubbed SAM of n-nonyltrichlorosilane (NTS/SiO2/Si) and n-octadecyltricholrosilane (OTS/SiO2/Si) surfaces to examine the effect of rubbing on the crystal size and charge mobility.
摘要............................................................................................................. I
ABSTRACT...............................................................................................II
總目錄...................................................................................................... III
圖目錄...................................................................................................... VI
表目錄...................................................................................................... XI
附錄.........................................................................................................XII
壹、序論.....................................................................................................1
1-1. 前言..................................................................................................1
1-2. 半導體與有機半導體簡介..............................................................2
1-2.1. 半導體簡介....................................................................................................2
1-2.2. 有機半導體簡介............................................................................................4
1-3. 有機半導體材料簡介......................................................................5
1-3.1. 正型( P-TYPE )半導體材料............................................................................5
1-3.2. 負型( N-TYPE )半導體材料............................................................................6
1-3.3. 高分子半導體材料........................................................................................7
1-4. 有機薄膜分子方向性之控制....................................................... 10
1-5. 有機半導體薄膜製備....................................................................11
1-5.1. 真空蒸鍍( VACUUM EVAPORATION ) .............................................................11
IV
1-5.2. 溶液塗佈( SOLUTION-PROCESSED DEPOSITION )...........................................12
1-6. 有機場效電晶體概論................................................................... 12
1-6.1. 有機場效電晶體元件結構..........................................................................13
1-6.2. 有機場效電晶體元件的操作原理..............................................................14
1-6.3. 有機場效電晶體的基本公式......................................................................16
1-7. 自組裝單層膜簡介及其在場效電晶體上的應用....................... 17
貳、研究動機與方法............................................................................. 20
參、實驗部份.......................................................................................... 21
3-1. 藥品與儀器................................................................................... 21
3-1.1. 實驗用藥品...................................................................................................21
3-1.2. 儀器...............................................................................................................22
3-2. 合成步驟....................................................................................... 23
3-3. TGA 測量...................................................................................... 32
3-4. DSC 測量...................................................................................... 32
3-5. 元件製作....................................................................................... 32
3-5.1. 清洗矽晶片...................................................................................................32
3-5.2. 製作自組裝單層膜.......................................................................................33
3-5.3. 刷磨自組裝單層膜.......................................................................................33
3-5.4. 蒸鍍有機材料...............................................................................................34
3-5.5. 蒸鍍電極.......................................................................................................34
3-6. X 光繞射儀................................................................................... 34
V
3-7. 原子力顯微鏡............................................................................... 36
3-8. 半導體參數分析儀....................................................................... 37
肆、結果與討論...................................................................................... 39
4-1. 材料合成....................................................................................... 39
4-2. DSC 及TGA 之測量.................................................................... 41
4-3. 元件製作與性質量測................................................................... 45
4-4. DHB-4T 分子蒸鍍膜探討........................................................... 47
4-4.1. X-RAY 繞射光譜的探討..............................................................................47
4-4.2. 原子力顯微鏡結果討論..............................................................................58
4-4.3 電性的探討..................................................................................................67
4-4.4 刷磨自組裝單層膜對DHB-4T 分子蒸鍍膜之效果探討.........................74
4-5. 五環素衍生物分子蒸鍍膜探討................................................... 91
4-5.1. X-RAY 繞射光譜的探討..............................................................................92
4-5.2. 原子力顯微鏡結果討論..............................................................................95
4-5.3. 電性的探討................................................................................................101
伍、結論................................................................................................ 106
陸、參考文獻........................................................................................ 107
1. F. Garnier, G. Horowitz, X. Z. Peng, and D. Fichou, Adv. Mater.,
1990, 2, 592.
2. Y. Sun, Y. Liu, and Daoben Zhu, J. Mater. Chem., 2005, 15, 53.
3. C. D. Dimitrakopoluos, and P. R. L. Malenfant, Adv. Mater., 2002,
14, 99.
4. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G.
Schlom, IEEE Electron Device Lett., 1997, 18, 87.
5. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE
Electron Device Lett., 1997, 18, 606.
6. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W.
J. Weber, J. Appl. Phys., 2002, 92, 5259.
7. A. R. Brown, A. Pomp, D. M. de Leeuw, D. B. M. Klaassen, E. E.
Havinga, P. Herwig, and K. Müllen, J. Appl. Phys., 1996, 79, 2136.
8. H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H.Sakati, Appl.
Phys. Lett., 1991, 58, 1500.
9. F. Garnier, A. Yassa, R. Hajlauoui, G. Horowitz, F. Deloffre, B.
Servet, and S. Ries, P.Alnot, J. Am. Chem. Soc., 1993, 115, 8716.
10. C. D. Dimitrakopoluos, B. K. Furman, T. Graham, S. Hedge, and S.
108
Purushotaman, Synth. Met., 1998, 92, 47.
11. H. E. Katz., A. Dodabalapur, and L. Torsi, D. Elder, Chem. Mater.,
1995, 7, 2235.
12. G. Horowitz, Adv. Mater., 1998, 10, 365.
13. Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc., 1998, 120,
207.
14. A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J.
Marks, and R. H. Friend, Angew. Chem. Int. Ed., 2000, 39, 4547.
15. A. Facchetti, M. H. Yoon, C. L. Stern, H. E. Katz and T. J. Marks,
Angew. Chem., 2003, 115, 4030.
16. Y. Sakamoto, T. S., M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F.
Sato and S. Tokio, J. Am. Chem. Soc., 2004, 126, 8138.
17. Z. Bao, A. D., and A. J. Lovinger, Appl. Phys. Lett., 1996, 69, 4108.
18. H. Sirringhaus, N. Tessler, and R. H. Friend, Science, 1998, 280,
1741.
19. (a) A. Babel, and S. A. Jenekhe, J. Phys. Chem. B, 2003, 107, 1749.
(b) S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and
M. G.Kwak, Synth. Met., 2003, 139, 377.
20. J. Cornil, J. P. Calbert, and J. L. Bredas, J. Am. Chem. Soc., 2001,
109
123, 1250.
21. C. D. Sheraw, T. N. Jackson, D. L. Eaton, and J. E. Anthony, Adv.
Mater., 2003, 15, 2009.
22. M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kun, and T. N.
Jackson, J. Am. Chem. Soc., 2005, 127, 4986.
23. W. Y. Chou, and H. L. Cheng, Adv. Funct. Mater., 2004, 14, 811.
24. X. L. Chen, A. J. Lovinger, Z. Bao, and J. Sapjeta, Chem. Mater.,
2001, 13, 1341.
25. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S.
Caroff, J. Israelachvili, T. J. McCarthy, R. Murry, R. F. Pease, J. F.
Rabolt, K. J. Wynne, and H. Yu, Langmuir, 1987, 3, 932
26. D. L. Allara, and R. G. Nuzzo, Langmuir, 1985, 1, 54.
27. J. Sagiv, J. Am. Chem. Soc., 1980, 102, 92.
28. P. Fenter, A. Eisenberger, and P. Eisenberger, Science, 1994, 266,
1216.
29. A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J.
Marks, and R. H. Friend, Angew. Chem. Int. En., 2000, 39, 4547.
30. Y. Wei, Y. Yang, and J.M. Yeh, Chem. Mater., 1996, 8, 2659.
31. S. Hotta, S. A. Lee, and T. Tamaki, J. Heterocycl. Chem., 2000, 37,
110
25.
32. N. Vets, M. Smet, and W. Dehaen, Synlett., 2005, 2, 217.
33. M. A. Wolak, B. B. Jang, L. C. Palilis, and Z. H. Kafafi, J. Phys.
Chem. B, 2004, 108, 5492.
34. A. Ivanisevic, and C. A. Mirkin, J. Am. Chem. Soc., 2001, 123,
7887.
35. H. Meng, F. Sun, M. B. Goldfinger, G. D. Jaycox, Z. Li, W. J.
Marshall, and G.S. Blackman, J. Am. Chem. Soc. 2005, 127, 2406.
36. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater 2004, 16, 4543.
37. Y. Zhu, A. Babel, and S. A. Jenekhe, Macromolecules 2005, 38,
7983.
38. P. S. Abthagir, Y. G. Ha, E. A. You, S. H. Jeong, H. S. Seo, and J.H.
Choi, J. Phys. Chem. B 2005, 109, 23918.
39. X. M. Hong, H. E. Katz, A. J. Lovinger, B.C. Wang, and K.
Raghavachari, Chem. Mater 2001, 13, 4686.
40. S. A. Lee, Y. Y., M. Fukuyama, and S. Hotta,, Synthetic Metals 1999,
106, 39.
41. Y. Ma, Y. Sun, Y. Liu, J. Gao, S. Chen, X. Sun, W. Qiu, G. Yu, G.
Cui, W. Hu, and D. Zhu, J. Mater. Chem. 2005, 15, 4894
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *