帳號:guest(3.147.103.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪前福
論文名稱(中文):多壁奈米碳管-高分子複合材料之電磁波遮蔽研究
論文名稱(外文):The Electromagnetic interference of Multi-Walled Carbon Nanotubes-Polymer Composite
指導教授(中文):徐文光
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:933540
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:42
中文關鍵詞:碳管環氧樹酯電磁遮蔽
相關次數:
  • 推薦推薦:0
  • 點閱點閱:166
  • 評分評分:*****
  • 下載下載:57
  • 收藏收藏:0
奈米碳管(Carbon Nanotubes, CNTs)是一種新的碳材料,從奈米碳管被發現到現今為止,它的各項特性一直都令人好奇與驚訝,因此有許多學者廣泛研究與討論。奈米碳管的導熱性佳,機械強度、韌性均遠超過於一般鋼鐵材料[1,2],而碳管本身的長度和徑長比 (aspect ratio) 具有較低之功函數(4.5-5 eV,work function) 因 此 具 良好的場發射效應 (Field Emission)[3,4,5]。此外,電子元件三極體[6,7]、電鏡探針[8]、氣體偵測[9,10] 等等的各項應用也都逐漸被開發出來,奈米碳管儼然是當今最重要奈米材料材料之一!
由於近年來電磁波的影響越來越大[11-12],傳統 防備電磁波干擾的方法通常是用具有金屬特性的材料,這是因為具有好的導電性或使用好的導磁性材料或以添加碳或鎳等導電纖維與高分子混合製成複合材料的方法將電磁波反射或以吸收的方式來達成電磁波遮蔽(electromagnetic interference shielding, EMI)。 奈米碳管因具有一定的導電性質並且含有高的aspect ratio,所以可視之為一種遮蔽材料。同時,由於碳管的各種特殊性質使得以奈米碳管為EMI的研究對象而言的研究也日漸著重。本實驗主要目的是研究與測試奈米碳管與高分子所形成的複合材料在電性上以及一般未被常討論到的影響遮蔽效果的因素上做出分析與假設,同時為了改變電磁波的遮蔽效應,於是也嘗試濺鍍鎳金屬於奈米碳管上以期望能有不同的遮蔽效果並與理論的公式相比較。
These year, the effect of EM(Electromagnetic) wave in our daily life is more and more important. Besides the effects on the electrical products . It is also important to the effects on our human body. We want to stop the EM wave to pass through our bodies and reduce the effect of the electrical products. Therefore , there are many researches studied in this direction. For many kinds of shielding of EM wave[1][2] ,the mixing of metal fibers with the polymer is a good method to form the shape we need. By these researches, we know the fiber in the matrix can connect together to form a conductive network , and as the aspect ratio is higher, the conductivity of composite increases so as to the shielding of EM wave.
According to the electrical property of carbon nanotubes , we know it has some degree of conductivity by its special structure[3][4], and it has high aspect ratio for its length and width [5].therefore, we can take it as a kind of replacement of metal fiber to fill in polymer as filler to enhance the conductivity for the EMI effect. By the literatures reported [6][7], we can know the change of conductivity in the composite. And other literatures[8][9] which reported the shielding effect on the mixing of polymer and carbon nanotubes agree to the previous research[10] for that increase of the quantity of metal fiber ,increase the conductivity of composites so as to the shielding of EM wave.
this experiment is stressed on the pure multiwalled carbon tube and addition of some metal to change its shielding effects by adding methylbenzene to polymer and hoping to have a good distribution of MWCNT in the epoxy matrix.
中文摘要…………………………………………….….....….……I
英文摘要………………………………………………......………II
總目錄……………………………………………...…...…...…III
圖目錄………………………….………….…………........……Ⅳ
表目錄…………………………………………………............ X

第一章 文獻回顧..........................................1

1-1 奈米碳管的簡介…………………………....…….….......1
1-1-1 奈米碳管的主要合成法……….….........…….……….2
1-1-2 奈米碳管的表面結構……..………….......……….....4
1-2 環氧樹酯的簡介………………….……….......…………..7
1-3 電磁遮蔽簡介…………..…....………………………….7
1-3-1 遮蔽原理…………………………....…......………….…9
1-3-2 電磁遮蔽複合材料的設計…………..…………......11
1-4 實驗動機與目的……………………......………..……….12

第二章 實驗方法及實驗步驟………….....…………………….13

2-1 實驗流程與步驟…………….…....………………………..13
2-1-1 實驗流程圖…………………....……………………..13
2-1-2 實驗藥品比例與試片命名方式………........…………..14
2-1-3複合材料的製作說明..………….........…………………14
2-2 性質分析與方法……………….....……………………….15
2-2-1電阻量測……………………....…………..…………15
2-2-2 EMI量測……………………………........……………...15
2-2-3 電子顯微鏡影像……………........……………………..15
2-3 實驗儀器與實驗藥品………….....…………………….…15

第三章 結果與討論.......................................17

3-1純多壁碳管與含鎳之多壁碳管的比較與分析…….....…....17
3-2 EMI的結果與分析…………………………….....….…..….21
3-2-1 吸收損失部分……………………………........……..…21
3-2-2 反射損失部分…………………………..........…………23
3-2-3 複合材料結構的成因與對EMI之影響…...........………26

第四章 結論………………………………….....………………..38

參考資料……………………………………....………………....39



圖目錄
圖 1-1 碳六十的結構圖 …………….………………..........1
圖 1-2 碳的同素異形體 ……………………...……..………..2
圖 1-3 碳六十、富勒烯、奈米碳管的結構 ……...…………..…3
圖 1-4 電弧放電法與原理………………………...…………..….4
圖 1-5 不同 碳管分為zigzag與armchair,非此二種為helix ..5
圖 1-6 多壁碳管的捲曲示意圖 ………………..……….….…...6
圖 1-7 電子顯微鏡下的多壁碳管的管徑 …………....…….….6
圖 1-8 穿透式電子顯微鏡下碳管末端封口的影像 ……...…....7
圖 1-9 為電磁波入射材料後的行徑方向 …………...……...10
圖 3-1 多壁碳管於1×104和5×104倍的SEM影像……......………17
圖 3-2 多壁碳管之TEM影像 ……………………….............18
圖 3-3(A)以Sputter鍍鎳於10000和6000倍的影像
(B)吸附在碳管上的鎳之EDX分析 ……………........….... 19
圖3-4 Sputter金屬於碳管上後金屬在碳管上的分佈情形.......20
圖3-5 純多壁碳管之複合材料在不同碳管含量下的遮蔽效果....23
圖3-6 含鎳之多壁碳管之複合材料在不同碳管含量成分下的
遮蔽效果....................................…………..…25
圖3-7 純多壁碳管之複合材料在不同重量百分比下之複合材
的電阻率 ……..……………………………...........…………28
圖3-8(A)樣品M1在SEM下 100倍影像(B)樣品M5
在SEM下100倍影像 …………………………….............……29
圖3-9 (A)樣品M1在SEM下 500倍影像(B)樣品M5
在SEM下500倍影像 …………………………............……..30
圖3-10 由於甲苯分子相互結合而成的明區示意圖 …….....….31
圖3-11 SEM在500倍下以探針量測電阻值(A)樣品M5黑區
電阻值為2.16×106Ω(B)樣品M1黑區,其電阻值大於1MΩ……………………………........................………….………...32
圖3-12白區的成長情形(A∼E)………………………......……33
圖3-13 3種不同大小和形狀的白區相互連接的假想圖…......…34



表目錄
表1-1 各種不同用途下所示用或發出的電磁波頻率….……......8
表1-2 英國國家輻射防護局(NRPB)公佈之家電設備極
低頻磁場值……………………………….………....……..9
表1-3 3種吸收材料特性 …………………….……….....…….10
表1-4 填充物與遮蔽效果 ………………………….…....….….12
表3-1 純多壁碳管之複合材料之遮蔽結果 …………….........22
表3-2 含鎳多壁碳管之複合材料之遮蔽結果 ………....……...24
表3-3 不同含量多壁碳管複合材料的電阻率……….....……...27
[1] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996)
[2] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro, Phys. Rev. Lett. 82, 944 (1999)
[3] P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smally, Science 269, 1550 (1995)
[4] W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995)
[5] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 2017 (1999)
[6] S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 393, 49 (1998)
[7] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys.
Lett. 73,2447 (1998)
[8] H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508 (1998)
[9] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293,1289 (2001)
[10] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke, Science 307, 1942 (2005)
[11] W.S. Jou, T.L.Wu, S.K.Chiu, and W.H. Cheng, Journal of electronic Material, vol.30, No. 10, (2001)
[1 2 ] Tzong-Lin Wu, Wern-Shiar Jou, S.G.. Dai and Wood-Hi Cheng,
Journal of Lightwave Technology, vol.21, No. 6, June 2003
[13]H. W. Kroto﹐J. R. Heath﹐S﹒C﹒O’Brien﹐R﹒F﹒CurlR﹒E﹒Smalley﹐Nature 1985﹐318﹐162
[14]S. Iijima﹐Nature 1991, 354 , 56
[15] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaeme, T.
Thio. Nature.382, 54. (1996)
[16] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley. Nature. 318, 162.(1985)
[17] W. Krastschmer, L.D. Lamb, K. Fortiropoulos, D.R. Huffman. Nature. 347, 354.(1990)
[18]由http://www.personal.psu.edu/faculty/p/c/pce3/facilities/arc.htm網頁提供
[19] S. Iijima. Nature. 354, 56. (1991)
[20] Rice University:Rick Smalley’s Group Home Page-Image Gallery
[21] M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Santiesteban. Appl. Phys. Lett. 62,202. (1993)
[22] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar. Carbon.33, 873. (1995)
[23]T.H. WTBZHenning, F.Salama. Science. 282, 2204. (1998)
[24]美國 Rice 大學 R. E. Smalley 研究小組網上圖片 http://cnst.rice.edu/pics.html
[25] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerences andCarbon Nanotubes. San Diego:Academic Press (1996)
[26] S Amelinckx et. al. Electron diffraction and microscopy of nanotubes﹐pp-1475~1477
[27] M. S. dresselhaus﹐J. Mater. Res. 1998, 13﹐2355
[28]S. Iijima﹐T. Ichihashi﹐Nature 1992﹐356﹐776
[29] D.D.L. Chung﹐O.I. Fisun, A.N. Goltsov, V.N. Kadantsev﹐Y.K. Alexandrov ﹐” Materials For Biological Safety Through Electromagnetic Shielding” (2002)
[30]”A Hand Book Series On Electromagnetic Interference nd ompatibility “ third edition 1981 by Donal R.J White
[31]Huang, C. Y. , T. W. Chiou “EMI Shielding Plastics: A Review” , Advances In Polymer Technology, Vol. 14 ,No. 2 ,p.137-150 (1995)
[32]Shui ,X.P. ,D.D.L. ,Chung, Journal Of Electronic Material ,Vol 24 ,No.2 ,p.107-113 (1995)
[33] Goltsov A.N., Fisun O.I., Alexandrov Yu.K. Development of the
building materials for protection of human house from
electromagnetic smoke. Proc. of the 3rd International
Conference on Bioelectro- magnetism, Bled, Slovenia, 2000, p. 109.
[34] Alexandrov Yu.K., Kadantsev V.N., Fisun O.I., Goltsov A.N.
Radio frequency safe house. Transac- tions of research
work .of the State Institute of Physics and Technology.
V. 11, p. 141, Moscow, Russia, 2000.
[35] Goltsov A.N., Fisun O.I., Alexandrov Yu.K The building radiofrequency protective materials for smart home technology. Proc. of 5th International Congress of the European BioElectromagnetic Association (EBEA). 6□8 September 2001, Helsinki, Finland
[36] Alexandrov Yu.K., Sidorov O.N., Khohlov V.M. Bandwidth absorber of electromagnetic radiation. Pat- ent RU 21101122.
[37]輔仁大學醫學院公共衛生學 李中一教授
[38] ASTM D4935-99, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials,1999; Y. K. Hong, C. Y. Lee, C. K. Jeong, D. E. Lee, K. Kim, and J. Joo, Rev. Sci. Instrum. 74, 1098 (2003)
[39] Lester F. Spencer, “Electroless Nickel Plating-A review”, Metal Finishing, Oct. 1974, p. 35; ibid, Nov. 1974, p. 50; ibid, ibid, Dec. 1974, p. 58; ibid, Jan. 1975, p. 38.
[40] 楊聰仁,”無電鍍鎳及其應用”,國璋出版社(1987)。
[41] W. K Hsu, V. kotzera, D. C. P Watts, G. Z Chen “Circuit Element In Carbon Nanotube Polymer Composite”
[42]Dr. J. P. Quine ,”Opening Leakage For EnclosuresAt Law And Hight Frequencies”, IEEE (1993)
[43] Dr. J. P. Quine, “Application Of The Optical Black-Hole Principle To The Estimation Of Shielding Effectiveness To Radio Frequency Energy” IEEE(1989)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *