帳號:guest(3.139.83.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程書彥
作者(外文):Cho-Jen Tsai
論文名稱(中文):光學曲率量測鈦之吸氧能力與氮化鈦之應力疏散
論文名稱(外文):Measurement of Ti ability to absorbing oxygen and TiN stress relaxation by substrate curvature
指導教授(中文):蔡哲正
指導教授(外文):Cho-Jen Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:933560
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:
外文關鍵詞:TiO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:38
  • 收藏收藏:0
摘要
利用In-Situ curvature measurement量測Ti薄膜的吸氧能力與TiN薄膜的應力疏散是本實驗的主要目的。除了曲率量測之外,還配合XRD峰值變化、Auger電子分析儀的成分分析與TEM的微結構分析,來釐清造成試片曲率變化的各種可能性。
Ti/SiO2/Si結構在退火爐內持溫會發現氧的擴散造成Ti薄膜受到壓應力,相對應也會造成XRD峰值偏移。如此一來氧在Ti的濃度可以由曲率或者峰值偏移來定量。再配合擴散理論,可以由電腦Fitting出氧在Ti中的擴散係數與擴散活化能。
但是在電腦Fitting過程中會發現額外的壓應力(即不是由擴散方程式解得的多餘項)產生,這是因為在Ti/SiO2介面可能會生成新的相,或者是介面的氧擴散進入Ti所造成。(可以由Auger電子分析儀的結果或TiN/Ti/SiO2/Si的XRD與TEM的結果推測得到。)
TiN的應力疏散可能會因為Texture不同而起始溫度不同,如TiN/Si結構在600oC開始應力疏散,而TiN/Ti/SiO2/Si結構則在400oC就開始疏散。這兩種結構最大的區別就在於TiN texture不同(XRD結果顯示)。而應力疏散機制從XRD峰值增強、TEM Bright Field 與Dark Field分析則可推測極有可能是晶粒成長所造成。
Abstract

Ti/SiO2/Si, TiN/Si and TiN/Ti/SiO2/Si structures were annealed in vacuum to observe the ability of Ti absorbing oxygen and the stress relaxation of TiN layer. The stress of the film was determined in situ by measuring the curvature of the sample during the annealing process. The phases and the microstructure of the film after annealing process were identified using XRD, AES, and TEM. A clear correlation was between the evolution of stress and the absorption of oxygen atoms by the Ti film.

From the XRD data, we can find that the (002) peak of Ti shifts to low angle at 280oC~400oC in the Ti/SiO2/Si system. It is due to the oxygen-induced Ti lattice expansion. The content of oxygen increases as the annealing temperatures and time increase, and this process let the stress become more compressive. The experiment finds that the content of oxygen can be monitored by in-situ curvature measurement. Moreover, diffusivity and the activation energy of oxygen in Ti film can be extracted.

The stress relaxation of TiN is due to grain growth proved by Dark Field TEM and XRD intensity. The starting temperatures for the stress relaxation are different between TiN/Si and TiN/Ti/SiO2 system because of different TiN textures in these two systems.
總目錄
誌謝……………………………………………………………………..Ⅲ
摘要………………………………………………………………..……Ⅴ
Abstract…………………………………………………………….…..Ⅵ
第一章 緒論 1
1-1 Ti與TiN薄膜在元件上的應用 1
1-2 研究動機 4
1-3 文獻回顧 5
第二章 實驗方法與分析儀器 6
2-1 實驗規劃與流程 6
2-2 試片製備 7
2-2-1 試片清洗 7
2-2-2 薄膜沉積 8
2-2-3 In-situ 曲率量測的試片製備 8
2-3 真空退火系統(Vacuum Annealing System) 9
2-4 分析系統 9
2-4-1 薄膜應力與曲率量測理論 9
2-4-2 XRD (X光繞射儀) 14
2-4-3 AES (歐傑電子能譜儀) 15
2-4-4 TEM (穿透式電子顯微鏡) 16
第三章 結果與討論 18
3-1 As-deposited Samples 18
3-2 Ti(25nm)/SiO2(100nm)/Si(substrate)系統 19
3-2-1 F/W應力-時間曲線圖 20
3-2-2 XRD量測 21
3-2-3 擴散系統 23
3-2-4 曲線凝合 25
3-2-5 擴散活化能 27
3-2-6 TEM 28
3-3 TiN (20nm)/Si(substrate)系統 29
3-3-1 F/W應力-時間曲線圖 29
3-3-2 XRD量測 30
3-3-3 TEM 32
3-4 TiN(20nm)/Ti(25nm)/SiO2(100nm)/Si(substrate)系統 32
3-4-1 F/W應力-時間曲線圖 32
3-4-2 XRD 33
3-4-3 TEM 34
第四章 結論 36
參考文獻………………………………………………………………..39
圖………………………………………………………………………..43
參考書目與文獻
1. J.P.Gambino, E.G.Colgan, Materials Chemistry and Physics 52, 99 (1998)

2. L.B. Freund, S.Suresh “Thin Film Materials” United Kingdom at the University Press, Cambridge (2003)

3. S.J. Hong1, S. Lee1, H.J.Yang, H.M Lee, Y.K Ko, H.N Hong, H.S Soh, C.K Kim, C.S Yoon, K.S Ban, J.G Lee, Semicond. Sci. Technol. 19,1315 (2004)

4. B. Hoeneisen and C. A. Mead, Solid State Electronics, 15, 819 (1972)

5. E.C. Douglas, Solid State Technology, 24, 65 (1981)

6. J. K. Hassan and H. G. Sarkary, Solid State Technology, 25, 49 (1982)

7. J. F. Marshall, Solid State Technology, 27, 175 (1984)

8. J. D. Meindl, Semiconductor Silicon, 86-4, 3 (1986)

9. S. P. Murarka, “Silicides for VLSI applications”, Academic Press, Orlando, Florida, (1983)
10. P. S. Ho, Proc. ROC IEDMS, Edited by L. J. Chen , 471 (1984)

11. K. Maex, Mater. Sci. Eng., R11, 53 (1993)

12. F.L. Chow, P.S Lee, K.L. Pey, L.J Tang and C.H Tung, X.C Wang and G.C Lim ,J. Appl. Phys. 99, 044902 (2006)

13. C.J. Tsai, and K.H. Yu, Thin Solid Films, 350, 91 (1999).

14. C.J Tsai, P.L. Chung, and K.H. Yu, Thin Solid Film, 356, 72 (2000).

15. P. Gudmundson and A. Wikstrom, Microelectronic Engineering, 60, 17 (2002).

16. S. P. Murarka, “Metallization: Theory and practice for VLSI and ULSI”, Butterworth-Heinemann (1993)

17. W. Buckel, J. Vac. Sci. Tech.6, 606 (1969)

18. C. R. Teller, A. J. Tosser, “Size Effects in Thin Film”, Elsevier, New York, (1982)

19. Z.B. Zhao, J. Hershberger, S.M Yalisove, J.C. Bilello, Thin Solid Films 415, 21 (2002)

20. V. L. Teal and S. P. Murarka, J. Appl. Phys. 61, 5038 (1987)

21. J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen and S. Radelaar, J. Applied Physics 73, 2816 (1993)

22. R. W. Hoffman, “Physics of Thin Film: Vol. 3”, Academic, New York (1966)

23. T.N. Wittberg and J. Douglas Wolf, R. Gerald Keil, P. S. Wang, J. Vac Sci. Technol. A1(2), Apr-June (1983)

24. P. Merchant and Jun Amano, J. Vac Sci. Technol. B2(4), Oct-Dec, (1984)

25. M. Berti, A.V. Drigo, C. Cohen and J. Siejka, G.G. Bentini, R. Nipoti, S. Guerri, J. Appl. Phys,55,3558 (1984)

26. K.L Saenger, C. Cabral, Jr, L.A. Clevenger, R.A. Roy, J. Appl. Phys,77,5156 (1995)

27. Bertin and Parisot, “Atomic Model of oxygen Diffusion in α-Ti”, J. Less-common Met. 69, 121 (1980)

28. J.W. Rogers, Jr., K.L. Erickson, D.N Belton, R.W. Springer, T.N Taylor, J.G. Barry, Applied Surface Science 35, 137 (1988-89)

29. S.W. Ressell and J.W. Strane, J.W. Mayer, S.Q. Wang, J. Appl. Phys. 76, 257 (1994)

30. D.J. Silversmith, D.D. Rathman, R.W. Mountain, Thin Solid Films, 93, 413 (1982)

31. Hong-Ying Chen, Cho-Jen Tsai, Fu-Hsing Lu, Surface and Coatings Technology, 184, 69 (2004)

32. Yuxiao Zeng, Linghui Chen, and T.L. Alford, Appl. Phys. Letters, 76, 64 (2000)

33. R.Pretorius, J.M. Harris, M-A Nicolet, Solid state electronics, 21, 667 (1978)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *