帳號:guest(18.188.6.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊宗穎
作者(外文):Tsung-Ying Yang
論文名稱(中文):二氧化矽與五氧化二鉭相關之ㄧ維奈米結構製備與量測
論文名稱(外文):Synthesis and Characterization of SiO2, SiO2/Ta2O5 Core-Shell, and Ta2O5 Nanowires
指導教授(中文):周立人
指導教授(外文):Li-Jen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:933570
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:103
中文關鍵詞:五氧化二鉭二氧化矽奈米線奈米管還原
外文關鍵詞:Ta2O5SiO2NanowiresNanotubesCore-shell nanowiresReductionCarbothermal reduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:315
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在本研究的第一部分中,利用熱碳還原法還原氧化鐵粉末的方法可以製造非晶質的二氧化矽奈米線,此反應在1100℃用碳加氧化鐵粉末當作原料,通入氬氣的環境下進行。本次研究發現,原料粉末的比例和氬氣的流量對於二氧化矽奈米線的直徑、形狀扭曲度、密度會有顯著的影響。而在適當的原料粉末比例和氬氣流量下,可以得到高密度、高深寬比的二氧化矽奈米線。這些二氧化矽奈米線是藉由一氧化矽氣體和氧氣反應所形成,而一氧化矽氣體是由二氧化碳氣體和矽基板反應而來、氧氣是氧化鐵粉末在高溫下所釋放出來的,此外二氧化矽奈米線的成長遵守VS成長機制。在CL量測中,實驗發現二氧化矽奈米線會強烈釋放出波長450奈米的電磁波,而此現象是由於存在二氧化矽奈米線中的中性氧缺陷所造成的。
而本研究的第二部分,在950℃的反應溫度下,藉由把二氧化矽奈米線在鉭的氣氛下退火32小時,可以得到多晶質的五氧化二鉭奈米線。為了了解此反應的過程,數個不同退火時間的結果將在本實驗中被探討。五氧化二鉭是由於金屬鉭還原二氧化矽所產生的,而在成長五氧化二鉭奈米線的初期,五氧化二鉭的小晶粒在二氧化矽奈米線的邊緣成核及成長,隨著晶粒成長導致晶粒間互相連結而在二氧化矽奈米線的邊緣層形成一層五氧化二鉭的外殼層,此時二氧化矽奈米線轉變成二氧化矽與五氧化二鉭的同軸奈米線結構。隨著退火時間的增加,五氧化二鉭外殼層厚度隨之增加,而二氧化矽核心層厚度則隨之減少至消失,於此時二氧化矽奈米線已完全轉變為五氧化二鉭奈米線。形成五氧化二鉭奈米線的過程是由外殼層內原子的擴散機制所控制,而鉭原子在外殼層中的擴散速度則是整個反應的速度控制步驟。而藉由將二氧化矽與五氧化二鉭的同軸奈米線在氫氟酸溶液中進行蝕刻反應,可以得到五氧化二鉭的奈米管。此外,在本次研究中也發現,真空退火可以改善多晶質五氧化二鉭奈米線的結晶性,且效果比快速熱退火過程來的要好。最後,五氧化二鉭的場發射性質以及由氧缺陷產生的CL性質,也在本次研究中被量測與探討。
In the first part of experiment, amorphous SiO2 nanowires could be synthesized via carbothermal reduction at 1100 ℃ with Ar flow gas and Fe2O3/C mixed powders, and the ratio of source powders and the flux of Ar flow gas would significant influence the diameter, twisty shape, and density of SiO2 nanowires. Several ratio of Fe2O3/C mixed powders and different Ar flow rate were considered in this study, and it is observed that ultra-high density SiO2 nanowires with high aspect ratio are formed with a suitable ratio of source powders and Ar flux. The growth of SiO2 nanowires is originated by the reaction between SiO and O2 vapor and following the VS growth mechanism, while SiO vapor is formed by CO2 reacting with Si substrate as well as O2 vapor comes from the source powders. Furthermore, lots of neutral oxygen vacancy causes the SiO2 nanowires revealing the strong emitting peak of 450 nm in the cathodoluminescence analysis.
In the second part of experiment, poly-crystal Ta2O5 nanowires can be synthesized via annealing SiO2 nanowires at 950℃ in a reductive Ta vapor ambient for 32 hours. To realize the formation process of Ta2O5 nanowires, the influence of different annealing was considered in this study. The Ta2O5 phase is formed by Ta reducing SiO2, and the formation of Ta2O5 nanowires starts with nucleation and grain growth of Ta2O5 crystal forming SiO2/Ta2O5 core-shell structure, and then continuous growth of shell layer. The growth process is dominated by diffusion through the ash layer control, and the diffusion of Ta atoms through shell layer would be the rate-controlling step of the diffusion controlled growth mechanism. In addition, Ta2O5 nanotubes could be synthesized by etching SiO2/Ta2O5 core-shell nanowires with dilute HF solution. It is also observed that the crystalline of Ta2O5 nanowires by vacuum annealing process rather than RTA process. Furthermore, the field-emission character and the cathodoluminescence (CL) property, resulting form the neutral oxygen vacancy, are considered in this study.
Contents I
Acknowledgements IV
List of Acronyms and Abbreviations V
Abstracts VI

Chapter 1 Introduction
1-1 Nanotechnology 1
1-2 Brief Talks of 1-D Nanostructures 2
1-3 1-D Nanostructures of Silicon Dioxide 4
1-4 Tantalum Pentoxide 5
1-5 Motivation and Research Direction 7

Chapter 2 Experiment Procedures
2-1 Experiments of The Synthesis of SiO2 Nanowires (Part 1) 10
2-1-1 Silicon Wafer Cleaning 10
2-1-2 Carbothermal Reduction Process 10
2-1-3 Scanning Electronic Microscopy (SEM) Analysis 11
2-1-4 Transmission Electronic Microscopy (TEM) Analysis 11
2-1-5 Energy Dispersive Spectrometer (EDS) Analysis 12
2-1-6 Cathodoluminescence (CL) Measurement 12
2-2 Experiments of The Synthesis of SiO2-Ta2O5 Core-shell and Ta2O5 Nanowires (Part 2) 13
2-2-1 Thermal Annealing in Tantalum Filament Heating Chamber 13
2-2-2 Scanning Electronic Microscopy (SEM) Analysis 13
2-2-3 Transmission Electronic Microscopy (TEM) Analysis 13
2-2-4 Energy Dispersive Spectrometer (EDS) Analysis 13
2-2-5 X-ray Diffraction (XRD) Analysis 13
2-2-6 Thermal Annealing and RTA process 14
2-2-7 Field-Emission Property Analysis 14
2-2-8 Cathodoluminescence (CL) Measurement 14

Chapter 3 Results and Discussions (Part 1)
Part 1 The Synthesis of SiO2 Nanowires
3-1 The Surface Morphology of SiO2 Nanowires 15
3-2 The Influence of Source Composition 15
3-3 The Effect of Flow Gas 17
3-4 The Microstructure and Chemical Composition Analysis 17
3-5 The Proposed Growth Mechanism 18
3-6 The CL Spectrum of SiO2 Nanowires 19

Chapter 4 Results and Discussions (Part 2)
Part 2 The Synthesis of SiO2-Ta2O5 Core-Shell and Ta2O5 Nanowires.
4-1 The Surface Morphology of Nanowires 20
4-2 The Microstructure and Chemical Composition Analysis 20
4-3 The Influence of Annealing Time 22
4-4 The Proposed Growth Mechanism 24
4-5 The Formation of Ta2O5 Nanotubes 29
4-6 Thermal Annealing of Ta2O5 Nanowires 29
4-7 The Field-Emission property of Ta2O5 Nanowires 30
4-8 The CL Spectrum of Ta2O5 Nanowires 31

Chapter 5 Summary and Conclusions
Summary and Conclusions 32

References 35
Tables Captions 50
Figures Captions 51
Tables 56
Figures 57
Chapter 1 Introduction
[01]K. Eric Drexler
”Nanotechnology: From Feynman to Funding”
Bulletin of Science, Technology & Society, 24, 21, (2004)
[02]H. Gleiter
”Nanostructured Materials: Basic Concepts and Microstructure”
Acta Mater., 48, 1, (2000)
[03]”The International Technology Roadmap for semiconductors”
http://public.itrs.net
[04] Paui S. Peercy
”The Drive to Miniaturization”
Nature, 406, 1023, (2000)
[05]Kuniyoshi Yoshikawa
”Technology Requirements for Next Decade Flash Memories”
ESSDERC, 11, (2000)
[06]M. H. Huang, Y. Wu, H. Feicl, N. Tran, E. Webber, and P. Yang
”Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”
Adv. Mater., 13, 113, (2001)
[07]D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou
”Magnetite (Fe3O4) Core-Shell Nanowires: Synthesis and Magnetoresistance”
Nano Lett., 4, 2151, (2004)
[08]E. Bengu, and L. D. Marks
”Single-Walled BN Nanostructures”
Phys. Rev. Lett., 86, 2385, (2001)
[09]R. Tenne, M. Homyonfer, and Y. Feldman
”Nanoparticles of Layered Compounds with Hollow Cage Structures”
Chem. Mater., 10, 3225, (1998)
[10]H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Libber
”Synthesis and Characterization of Carbide Nanorods”
Nature, 375, 769, (1995)
[11]Z. W. Pan, Z. R. Dai, and Z. L. Wang
”Nanobelts of Semiconducting Oxides”
Science, 291, 1947, (2001)
[12]Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley
”Nanotube Nanodevice”
Science, 278, 100, (1997)
[13]David H. Cobden
”Nanowires Begin To Shine”
Nature, 409, 32, (2001)
[14]Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham, and Hongkun Park
”Fabry-Perot interference in a nanotube electron waveguide”
Nature, 411, 665, (2001)
[15]Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charles M Lieber
”Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”
Nature, 409, 66, (2001)
[16]Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung
”Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SiXGe1-X Substrate”
J. Phys. Chem. B, 109, 21831, (2005)
[17]B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber
”Semiconductor nanowire laser and nanowire waveguide electro-optic modulators”
Appl. Phys. Lett., 87, 151103, (2005)
[18]Z. L. Wang
”Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides - From Materials to Nanodevices”
Adv. Matter., 15, 432, (2003)
[19]C. S. Lao, J. Liu, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang
”ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes”
Nano Lett., 6, 263, (2006)
[20]Zhaohui Zhong, Deli Wang, Yi Cui, Marc W. Bockrath, and Charles M. Lieber
”Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems”
Science, 302, 1377, (2003)
[21]Robert. F. Service
”Nanodevices Make Fresh Strides Toward Reality”
Science, 302, 1310, (2003)
[22]M. Morales, and C. M. Lieber
”A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”
Science, 279, 208, (1998)
[23]P. D.Yang, and C. M. Lieber
”Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites”
J. Mater. Res., 12, 2981, (1997)
[24]R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee
”Oxide-Assisted Growth of Semiconducting Nanowires”
Adv. Mater., 15, 635, (2003)
[25]Yu-Chiao Lin, and Wen-Tai Lin
”Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders”
Nanotechnology, 16, 1648, (2005)
[26]Q. Wei, and C. M. Lieber
”Solution-Based Synthesis of Magnesium Oxide Nanorods”
Mat. Res. Soc. Symp. Proc., 581, 3, (2000)
[27]Jyoti R Ota, and Suneel K Srivastava
”Low temperature micelle-template assisted growth of Bi2S3 nanotubes”
Nanotechnology, 16, 2415, (2005)
[28]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, and William E. Buhro
”Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”
Science, 270, 1789, (1995)
[29]Liu. Xinzheng, Cui. Jianhua, Zhang. Liping, Yu. Weichao, Guo. Fan, and Qian. Yitai
”Control to synthesize Bi2S3 nanowires by a simple inorganic-surfactant-assisted solvothermal process”
Nanotechnology, 16, 1771, (2005)
[30]Y. N. Xia, P. D. Yang, Y. A. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan
”One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”
Adv. Mater., 15, 353, (2003)
[31]D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiang, and S. Q. Feng
”Amorphous silica nanowires: Intensive blue light emitters”
Appl. Phys. Lett,. 73, 3076, (1998)
[32]J. H. He, T. H.Wu, C. L. Hsin, L. J. Chen, and Z. L.Wang
”Synthesis of Si-Ge Oxide Nanowires via the Transformation of Si-Ge Thin Films with Self-Assembled Au Catalysts”
Electrochem. Solid State Lett., 8, G254, (2005)
[33]B. D. Yao, Y. F. Chan, and N. Wang
”Formation of ZnO nanostructures by a simple way of thermal evaporation”
Appl. Phys. Lett., 81, 757, (2002)
[34]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang
”Room-Temperature Ultraviolet Nanowire Nanolasers”
Science, 292, 1897, (2001)
[35]Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang
”Tin Oxide Nanowires, Nanoribbons, and Nanotubes”
J. Phys. Chem. B., 106, 1274, (2002)
[36]X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang
”Large-scale synthesis of In2O3 nanowires”
Appl. Phys. A ,74, 437, (2002)
[37]Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, and J. M. Kim
”Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge”
Adv. Mater., 12, 746, (2000)
[38]Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima
”WO3 nanorods/nanobelts synthesized via physical vapor deposition process”
Chem. Phys. Lett., 367, 214, (2003)
[39]S. M. Sze
”SEMIDUCTOR DEVICES Physics and Technology - 2nd Edition”
JOHN WILEY & SONS, INC., 370, (2002)
[40]Liang-Sheng Liao, Xi-Mao Bao, Xiang-Qin Zheng, Ning-Sheng Li, and Nai-Ben Min
”Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon”
Appl. Phys. Lett., 68, 850, (1996)
[41]Hiroyuki Nichikawa, Taiji Shiroyama, Ryuta Nakamura, Yoshimichi Ohki, Kaya Nagasawa, and Yoshimasa Hama
”Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”
Phys. Rev. B, 45, 586, (1992)
[42]P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng
”Amorphous silica nanowires: Intensive blue light emitters”
Appl. Phys. Lett., 73, 3076, (1998)
[43]Frank Marlow, Michael D. McGehee, Dongyuan Zhao, Bradley F. Chmelka, and Galen D. Stucky
”Doped Mesoporous Silica Fibers: A New Laser Material”
Adv. Mater, 11, 632, (1999)
[44]Ki-Hong Lee, Seung-Woo Lee, Richard R. Vanfleet, and Wolfgang Sigmund
”Amorphous silica nanowires grown by the vapor–solid mechanism”
Chem. Phys. Lett., 376, 498, (2003)
[45]Zheng Wei Pan, Zu Rong Dai, Chris Ma, and Zhong L. Wang
”Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires”
J. Am. Chem. Soc., 124, 1817, (2002)
[46]Shuhui Sun, Guowen Meng, Mingang Zhang, Yufeng Hao, Xueru Zhang, and Lide Zhang
”Microscopy Study of the Growth Process and Structural Features of Closely Packed Silica Nanowires”
J. Phys. Chem. B, 107, 13029, (2003)
[47]J. L. Elechiguerra, J. A. Manriquez, and M. J. Yacaman
”Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst”
Appl. Phys. A, 79, 461, (2004)
[48]Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes
”Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth”
J. Nanosci. Nanotechnol., 3, 341, (2003)
[49]Yan Qiu Zhu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Humberto Terrones, Jonathan P. Hare, Harold W. Kroto, and David R. M. Walton
”3D Silicon oxide nanostructures: from nanoflowers to radiolaria”
J. Mater. Chem., 8, 1859, (1998)
[50]Karine Saulig-Wenger, David Cornu, Fernand Chassagneux, Thierry Epicier, and Philippe Miele
”Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom”
J. Mater. Chem., 13, 3058, (2003)
[51]S.-H. Li, X.-F. Zhu, and Y.-P. Zhao
”Carbon-Assisted Growth of SiOx Nanowires”
J. Phys. Chem. B, 108, 17032, (2004)
[52]P. Carter, B. Gleeson, and D. J. Young
”Rapid Growth of SiO2 Nanofibers on Silicon-Bearing Alloys”
J. Oxid. Met., 56, 375, (2001)
[53]X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du
”Preparation and photoluminescence properties of amorphous silica nanowires”
Chem. Phys. Lett., 336, 53, (2001)
[54]F. L. Deepak, Gautam Gundiah, Md. Motin Seikh, A. Govindaraj, and C. N. R. Raoa
”Crystalline silica nanowires”
J. Mater. Res., 19, 2216, (2004)
[55]Byoung Tae Park, and Kijung Yong
”Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si”
Nanotechnology, 15, 365, (2004)
[56]Soumitra Kar, and Subhadra Chaudhuri
”Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties”
Solid State Commun., 133, 151, (2005)
[57]Yu-Chiao Lin, and Wen-Tai Lin
”Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders”
Nanotechnology, 16, 1648, (2005)
[58]Junqing Hu, Yang Jiang, Xiangmin Meng, Chun-Sing Lee, and Shuit-Tong Lee
”Temperature-Dependent Growth of Germanium Oxide and Silicon Oxide Based Nanostructures, Aligned Silicon Oxide Nanowire Assemblies, and Silicon Oxide Microtubes”
small, 1, 429, (2005)
[59]Hai-Feng Zhang, Chong-Min Wang, Edgar C. Buck, and Lai-Sheng Wang
”Synthesis, Characterization, and Manipulation of Helical SiO2 Nanosprings”
Nano lett., 3, 577, (2003)
[60]C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, and Z.Q. Chu
”Preparation and characterization of amorphous SiOx nanowires”
J. Non-Cryst. Solids, 277, 63, (2000)
[61]Changhui Ye, Lide Zhang, Xiaosheng Fang, Yinhai Wang, Peng Yan, and Jianwei Zhao
”Hierarchical Structure: Silicon Nanowires Standing on Silica Microwires”
Adv. Mater., 16, 1019, (2004)
[62]Yan Qiu Zhu, Wei Bing Hu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Turgay Karali, Humberto Terrones, Jonathan P. Hare, Peter D. Townsend, Harold W. Kroto, and David R. M. Walton
”A Simple Route to Silicon-Based Nanostructures”
Adv. Mater., 10, 844, (1999)
[63]S. Ezhilvalavan, and T. Y. Tseng
”Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application - A review”
JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, 10, 9, (1999)
[64]J. Robertson
”High dielectric constant oxides”
Eur. Phys. J. Appl. Phys., 28, 265, (2004)
[65]R. A. B. Devine, L. Vallier, J. L. Autran, P. Paillet, and J. L. Leray
”Electrical properties of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source”
Appl. Phys. Lett., 68, 1775, (1996)
[66]G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong, and Z. Hasan
”Nitrogen plasma annealing for low temperature Ta2O5 films”
Appl. Phys. Lett., 72, 1308, (1998)
[67]M. Houssa, R. Degraeve, P. W. Mertens, M. M. Heyns, J. S. Jeon, A. Halliyal, and B. Ogle
”Electrical properties of thin SiON/Ta2O5 gate dielectric stacks”
J. Appl. Phys., 86, 6462, (1999)
[68]Hiroyuki OHKUBO, Yasuo OHTERA, Shojiro KAWAKAMI, and Takafumi CHIBA
”Design and Fabrication of Multichannel Photonic Crystal Wavelength Filters to Suppress Crosstalk of Arrayed Waveguide Grating”
J. J. Appl. phys., 44, 1534, (2005)
[69]F. RUBIO, J. DENIS, J. M. ALBELLA, and J. M. MARTINEZ-DUART
”Sputtered Ta2O5 antireflection coatings for silicon solar cells”
Thin Solid Films, 90, 405, (1982)
[70]David W. Graham, and David P. Stinton
”Development of Tantalum Pentoxide Coatings by Chemical Vapor Deposition”
J. Am. Ceram. Soc., 77, 2298, (1994)
[71]Hirokazu Hara, and Tatsuya Ohta
”Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor”
Sensors and Actuators B, 32, 115, (1996)
[72]D. H. Kwon, B. W. Cho, C. S. Kimo, and B. K. Sohn
”Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET”
Sensors and Actuators B, 34, 441, (1996)
[73]Thammanoon Sreethawong, Supachai Ngamsinlapasathian, Yoshikazu Suzuki, and Susumu Yoshikawa
”Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol–gel process for photocatalytic H2 evolution”
Journal of Molecular Catalysis A: Chemical, 235, 1 (2005)
[74]T. B. Massalski (editor-in-chief)
”Binary Alloy Phase Diagrams”
Materials Park, Ohio: ASM International, 2921, (1990)
[75]Atsuo Fukumoto, and Kazutoshi Miwa
”Prediction of hexagonal Ta2O5 structure by first-principles calculations”
Phys. Rev. B, 55, 17, (1997)
[76]K. C. Kalra, Parveen Katyal, and K. C. Singh
”Anodic oxidation of tantalum in aqueous electrolytes”
Thin Solid Films, 177, 35, (1989)
[77]Sung Wook Park, and Ho Bin Im
”Effects of oxidation conditions on the properties of tantalum oxide films on silicon substrates”
Thin Solid Films, 207, 258, (1992)
[78]K. S. Park, D. Y. Lee, K. J. Kim, and D. W. Moon
”Growth and characterization of Ta2O5 thin films on Si by ion beam sputter deposition”
Thin Solid Films, 281-282, 419, (1996)
[79]J. Hudner, P. -E. Hellberg, D. Kusche, and H. Ohls□n
”Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen”
Thin Solid Films, 281-282, 415, (1996)
[80]Sun-Oo Kim, Jeong Soo Byun, and Hyeong Joon Kim
”The effect of substrate temperature on the composition and growth of tantalum oxide thin films deposited by plasma-enhanced chemical vapour deposition”
Thin Solid Films, 290-291, 440, (1996)
[81]P. C. Joshi, and M. W. Cole
”Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications”
J. Appl. Phys., 86, 871, (1999)
[82]S. P. Murarka
”Refractory silicides for integrated circuits”
J. Vac. Sci. Technol., 17, 775, (1980)

Chapter 3 Results and Discussions (Part 1)
[83]Yu-Chiao Lin, and Wen-Tai Lin
”Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders”
Nanotechnology, 16, 1648, (2005)
[84]S.-H. Li, X.-F. Zhu, and Y.-P. Zhao
”Carbon-Assisted Growth of SiOx Nanowires”
J. Phys. Chem. B, 108, 17032, (2004)
[85]William F. Smith
”Structure and properties of engineering alloys – second edition”
McGRAW-HILL international editions, 82-85, (1993)
[86]P. Carter, B. Gleeson, and D. J. Young
”Rapid Growth of SiO2 Nanofibers on Silicon-Bearing Alloys”
Oxid. Met.,56,375,(2001)
[87]Karine Saulig-Wenger, David Cornu, Fernand Chassagneux, Thierry Epicier, and Philippe Miele
”Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom”
J. Mater. Chem., 13, 3058, (2003)
[88]David R. Gaskell
”Introduction to Thermodynamics of Materials, 3rd ed”
TAYLOR&FRANCIS, Philadelphia, 456 (1995)

Chapter 4 Results and Discussions (Part 2)
[89]S. P. Murarka
”Refractory silicides for integrated circuits”
J. Vac. Sci. Technol., 17, 775, (1980)
[90]Robert Beyers
”Thermodynamic consideration in refractory metal-silicon-oxygen systems”
J. Appl. Phys., 56, 147, (1984)
[91]Chiara Milanese, Vincenzo Buscaglia, Filippo Maglia, and Umberto Anselmi-Tamburini
”Reactive Growth of Tantalum Silicides in Ta-Si Diffusion Couples”
J. Phys. Chem. B, 106, 5859, (2002)
[92]J. Szekely, and N. Themelis
”Rate Phenomena in Process Metallurgy”
John Wiley & Sons, 364, (1971)
[93]Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen
”Synthesis of taperlike Si nanowires with strong field emission”
Appl. Phys. Lett., 86, 133112, (2005)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *