帳號:guest(18.191.228.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李育宸
作者(外文):Yu-Chen Lee
論文名稱(中文):金屬氧化物奈米線之電性量測研究
論文名稱(外文):Electrical Measurements of Metal Oxide Nanowries
指導教授(中文):周立人
指導教授(外文):Li-Jen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:933572
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:金屬氧化物奈米線電性量測Verwey溫度
外文關鍵詞:Metal Oxide NanowrieElectrical MeasurementVerwey Temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本研究中,我們針對過渡性金屬氧化物奈米線進行了一系列的電性量測與結果探討,包含了氧化鎢(WO3)奈米線與氧化鐵(α-Fe2O3和Fe3O4)奈米線。首先藉由兩點探針的方法來求得奈米線的電壓-電流特性,但是從量測的結果發現,由於接觸電阻的影響,兩點探針的量測方式並不能真正求得奈米線本身的電阻值。通常而言,量測所得的電阻值不只是包括奈米線本身的阻值,也包括了金屬電極與奈米線接觸部分的阻值。為了避免接觸阻值的影響,我們利用四點量測的方式經由計算來求得奈米線本身真正的阻值。除此以外,由於我們利用有機溶劑將奈米線轉移到量測用的晶片上,所以表面會有殘留物引發漏電流的現象導致元件無法導通。
由於它們都屬於半導體材料,因此它們的場效特性是相當令人期待的。對於氧化鎢(WO3)奈米線的電性量測中,在閘極電壓的施加下(從-20伏特到+20伏特),並沒有出現任何的場效特性。而且在低溫(T = 4K)的量測下,計算出來的活化能大約為0.02電子伏特。我們推測是由於氧化鎢奈米線本身具有相當大的能隙,在電性表現上比較接近本質半導體的行為。
至於氧化鐵(α-Fe2O3)奈米線的部分,我們利用四點探針的方法求得奈米線本身真正的阻值。藉由施加不同的閘極電壓,可以量測到氧化鐵奈米線具有p型和n型半導體的特性。我們推測可能是由於在不同的氣氛底下成長,以及內部氧缺陷濃度不同導致這種現象的產生。
而在另外一種氧化鐵(Fe3O4)奈米線量測的部分,施加不同的閘極電壓(從-20伏特到+20伏特),並沒有出現任何的場效特性。而在低溫(T = 4K)的量測下,可以計算出活化能大約為0.214電子伏特。此值大於Fe3O4與MgO的同軸結構(0.1電子伏特),推測是由於使用的金屬電極不同所導致的結果。而且從阻值與溫度的關係曲線中,我們可以在122K處發現所謂的Verwey溫度。
In this study, a series of electrical property measurements and discussions about metal oxide nanowires were carried out, including tungsten oxide (WO3) and iron oxide (α-Fe2O3 and Fe3O4) nanowires. There was a large discrepancy in the two-probe measured resistance from various two-probe devices. In general, a total measured resistance containing both of the contact resistance and the wire resistance were obtained by the two-probe measurement technique. In order to avoid the influence of contact resistance, the four-probe measurement technique was utilized to get the real resistance of α-Fe2O3 nanowire. In addition, due to the solution dispersing method utilized for transferring nanowires onto the chips, there were residual solvent contaminants on the chips to induce leakage current even the devices not work.
Due to the semiconducting behavior of tungsten oxide and iron oxide nanowires, their field effect characteristics are interesting. In the measurement of tungsten oxide nanowires, there was no field effect when applying high gate voltage from +20 volt to -20 volt. In addition, by measuring at lower temperature (T~4K), the activation energy can be calculated as 0.02 eV caused by the high bandgap and more intrinsic transport property of the WO3 nanowires.
In the case of α-Fe2O3 nanowires, the four-probe measurement technique was utilized to get the real resistance in nature. In addition, the p-type behavior for semiconductor was first measured, and then the n-type character for semiconductor was measured. The appearance of different atmosphere and the existence of oxygen vacancy are explained.
In the study of Fe3O4 nanowires, the field-effect can’t be found from the Fe3O4 nanowires even through the gate voltage is increased to ±20 volt and the source-drain bias is also increased to ±2 V, the I-V characteristic almost remains unchanged. Moreover, by measuring at lower temperature (T~4K), the activation energy can be calculated as 0.214 eV higher than the value of Fe3O4 core-shell structure (0.1eV). This could be explained by the different work functions between metal electrodes we chose and nanowires. From the curve of resistance versus temperature, the Verwey temperature about 122 K can be found.
Contents I
Acknowledgements III
List of Acronyms and Abbreviations IV
Abstracts VI

Chapter 1 Introduction
1-1 Nanotechnology 01
1-2 Metal Oxide 02
1-3 Tungsten Oxide 03
1-3-1 Tungsten Oxide Nanowire 03
1-3-2 Fabricating of Tungsten Oxide Nanowire 04
1-3-3 Electrical property of Tungsten Oxide
Nanowire 05
1-4 Iron Oxide 05
1-4-1 Iron Oxide Nanowire 07
1-4-2 Fabrication of Iron Oxide Nanowire 08
1-4-3 Electrical property of Iron Oxide
Nanowire 09
1-5 Electrical Property Measurement 13
1-6 Motivation 14
Chapter 2 Experiment Procedures
2-1 Chip cleaning and sample preparation 16
2-2 Locating positions of nanowires 16
2-3 Defining the contact electrodes and side-gate
electrodes 17
2-4 Photoresist spin coating and soft backing 17
2-5 Electron beam lithography 17
2-6 Development 18
2-7 Thermal evaporation 18
2-8 Lift off process 18
2-9 Device evaluation 18
2-10 I-V measurement 19
2-11 Field-effect characteristic measurement 19
Chapter 3 Results and Discussions
Part I Tungsten Oxide Nanowires
3-1 I-V measurement at room temperature 20
3-2 Lower temperature (T = 4K) electronic property 23
Part II Iron Oxide (α-Fe2O3) Nanowires
3-3 Different growth conditions 25
3-4 I-V measurement at room temperature 27
3-5 N- to P- type transition of α-Fe2O3 nanowire 28
3-6 Four-probe measurement technique 30
Part III Iron Oxide (Fe3O4) Nanowires
3-7 I-V measurement at room temperature 32
3-8 Lower temperature (T = 4K) electronic property 32
Chapter 4 Summary and Conclusions 36

Reference 38
Table Captions 50
Figure Captions 51
Tables 56
Figures 58
[01] Z. L. Wang
“Characterization of Nanophase Materials” (2000)
[02] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber
“Gallium Nitride Nanowires and Nanodevices”
Nano Letter, Vol.2, p101-104 (2002)
[03] K. L.Wang, S. Tong, and H. J. Kim
“Properties and Applications of SiGe Nanodots”
Material Science in Semiconductor Processing, Vol.8,
p389-399 (2005)
[04] T. I. Kamins, K. L. Wang, and G. E. Davis
“SiGe/Si Supperlattices on Implanted Buried-oxide
Structures”
J. Appl. Phys., Vol.65, p1505-1509 (1989)
[05] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and
P. Yang,
“Catalytic Growth of Zinc Oxide Nanowires by Vapor
Transport”
Advanced Materials, Vol.13, p113-116 (2001)
[06] E. Bengu and L. D. Marks
“Single-Walled BN Nanostructures”
Phys. Rev. Lett., Vol. 86, p2385-2387 (2001)
[07] R. Tenne, M. Homyonfer, and Y. Feldman
“Nanoparticles of Layered Compounds with Hollow Cage
Structures”
Chem. Mater., Vol. 10, p3225-3238 (1998)
[08] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M.
Lieber
“Synthesis and Characterization of Carbide Nanorods”
Nature, Vol. 375, p769 (1995)
[09] Z. W. Pan, Z. R. Dai, and Z. L. Wnag
“Nanobelts of Semiconducting Oxides”
Science, Vol.291, p1947 (2001)
[10] Matt Law, Hannes Kind, Benjamin Messer, Franklin Kim,
and Peidong Yang
“Photochemical Sensing of NO2 with SnO2 Nanoribbon
Nanosensors at Room Temperature”
Angew. Chem. Int. Ed., Vol. 41, p2405-2408 (2002)
[11] Joong Hee Nam, Won Ki Kim, and Sang Jin Park
“Synthesis of Nanocrystalline Ni Ferrite as a
Superparamagnetic Material”
Phys. Stat. Sol., Vol. 201, p1838-1841 (2004)
[12] The International Technology Roadmap for Semiconductors
http://public.itrs.net
[13] Paui S. Peercy
“The Drive to Miniaturization”
Nature, Vol. 406, p1023-1026 (2000)
[14] Kuniyoshi Yoshikawa
“Technology Requirements for Next Decade Flash
Memories”
ESSDERC, p11 (2000)
[15] F. Lime, R. Clerc, G. Ghibaudo, G. Pananakakis, and G.
Guegan
“Impact of Gate Tunneling Leakage on the Operation of
NMOS Transistors with Ultra-Thin Gate Oxides”
Microelectronic Engineering, Vol.59, p119-125 (2001)
[16] L. Ottaviano, L. Lozzi, M. Passacantando, and S.
Santucci
“On the Spatially Resolved Electronic Structure of
Polycrystalline WO3 Films with Scanning Tunneling
Spectroscopy”
Surface Science, Vol.475, p73-82 (2001)
[17] R. Le Bihan, C. Vacherand, Croissance Composes, and
Miner.
Monocrist., Vol.2, p147 (1969)
[18] E. Salje, and K. Viswanathan
“Physical Properties and Phase Transitions in WO3”
Acta Crystallogr. A, Vol.31, p356 (1975)
[19] C. G. Granqvist
“Electrochromic Tungsten Oxide Films: Review of
Progress”
Sol. Energy Mat and Sol. Cells, Vol.60, p201-262 (2000)
[20] I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R.
Reisfeld, and D. Mandler
“Writing-Reading-Erasing on Tungsten Oxide Films Using
the Scanning Electrochemical Microscope”
Adv. Mater., Vol.12, p330-333 (2000)
[21] W. M. Qu, and W. Wlodarski
“A Thin-Film Sensing Element for Ozone, Humidity and
Temperature”
Sens. Actuators B, Vol. 64, p42-48 (2000)
[22] Hung Qi, Cuiying Wang, and Jie Liu
“A Simple Method for the Synthesis of Highly Oriented
Potassium-Doped Tungsten Oxide Nanowires”
Adv. Mater., Vol.15, p441 (2003)
[23] Brinda B. Lakshmi, Charles J. Patrissi, and Charles R.
Martin
“Sol-Gel Template Synthesis of Semiconductor Oxide
Micro- and Nanostructures”
Chem. Mater., Vol. 9, p2544-2550 (1997)
[24] B. C. Satishkumar, A. Govindaraj, Manashi Nath and C.
N. R. Rao
“Synthesis of Metal Oxide Nanorods Using Carbon
Nanotubes as Templates”
J. Mater. Chem., Vol.10, p2115 (2000)
[25] M.G. Hutchins, N.A. Kamel, and N. El-Kadry
”Preparation and Properties of Electrochemically
Deposited Tungsten Oxide Films”
phys. Stat. sol., Vol. 175,p991(1999)
[26] Yoon, Ki Hyun; Lee, Jeong Won; Cho, Yong Soo; Kang,
and Dong Heon
Appl. Phys. Lett. (1996)
[27] K. Miyake, H. Kaneko, M. Sano, and N. Suedomi
“Physical and electrochromic properties of the
amorphous and crystalline tungsten oxide thick films
prepared under reducing atmosphere”
J. Appl. Phys., Vol. 55, p2747-2753 (1984).
[28] Y. W. Liu, X. F. Rui, Y. Y. Fu, and H. Zhang
“Synthesis of α-Fe2O3 Nanowire and Its Magnetic
Properties”
Journal of Metastable and Nanocrystalline Materials,
Vol.23, p243 (2005)
[29] R. M. Cornell, and U. Schwertmann
”The Iron Oxides - structure, properties, reactions,
occurrences, and uses, 2nd ed.”
Wiley-VCH (2003)
[30] R. A. de Groot and F. M. Mueller
“New Class of Materials:Half-Metallic Ferromagnets”
Phys. Rev. Lett., Vol.50, p2024-2027 (1993)
[31] X. Batlle, P. J. Cuadra, Zhongzhi Zhang, S. Cardoso,
and P. P. Freitas
“Study of the oxygen migration versus anneal in
Co/AlOx/Fe–FeOy/Ti tunnel junctions”
J. Magn. Magn. Mater., Vol.26, p305 (2003)
[32] Z. Z. Zhang, S. Cardoso. P. P. Freitas, X. Batlle, P.
Wei, N. Barradas, and J. C. Soares
“40% tunneling magnetoresistance after anneal at 380°C
for tunnel junctions with iron–oxide interface
layers”
J. Appl. Phys., Vol.89, p6665-6667 (2001)
[33] Woochul Kim, Kenji Kawaguchi, Naoto Koshizaki, Mitsugu
Sohma, and Tetsuro Matsumoto
“Fabrication and magnetoresistance of tunnel junctions
using half-metallic Fe3O4”
J. Appl. Phys., Vol. 93, p8032-8034 (2003)
[34] J. S. Moodera, Lisa R. Kinder, Terrilyn M.Wong, and R.
Meservey
“Large Magnetoresistance at Room Temperature in
Ferromagnetic Thin Film Tunnel Junctions”
Phys. Review Letters, Vol.74, p3273-3276 (2005)
[35] Riitsu Takagi
Journal of the Physical Society of Japan, Vol.12,
p1212 (1957)
[36] Y. Y. Fu, Jing Chen, and Han Zhang
“Synthesis of Fe2O3 Nanowires by Oxidation of Iron”
Chem. Phys. Lett., Vol.350, p491-494 (2001)
[37] Y. Y. Fu, R. M. Wang, J. Xu, J. Chen, Y. Yan, A. V.
Narlikar, and H. Zhang
“Synthesis of Large Arrays of Aligned α-Fe2O3
Nanowires”
Chem. Phys. Lett., Vol.379, p373-379 (2003)
[38] Suoyuan Lian, Enbo Wang, Lei Gao, Zhenhui Kang, Di
Wu,Yang Lan, and Lin Xu
“Growth of single-crystal magnetite nanowires from
Fe3O4 nanoparticles in a surfactant-free hydrothermal
process”
Solid State Communications 1(2004)
[39] Suoyuan Liana, Zhenhui Kanga, Enbo Wanga , Min Jianga,
Changwen Hua, and Lin Xu
“Convenient synthesis of single crystalline magnetic
Fe3O4 nanorods”
Solid State Communications, Vol.127, p605-608 (2003)
[40] Jun Wang, Zhenmeng Peng, Yujie Huang, and Qianwang Chen
“Growth of magnetite nanorods along its easy-
magnetization axis of [110]”
Journal of Crystal Growth, Vol. 263, p616-619 (2004)
[41] R. M. Cornell and U. Schwertmann
“The Iron Oxide:Structure, Properties, Reactions,
Occurences and Uses”
WILEY-VCH GmbH & Co. KGaA
[42] M. Catti, G. Valerio, and R.Dovesi
“Theoretical study of electronic, magnetic, and
structural properties of α-Fe2O3 (hematite)”
Phys. Review B, Vol.51, p7441-7450(1995)
[43] Zhiyong Fan, Xiaogang Wen and Shihe Yang, and Jia G.
Lua
“Controlled p- and n-type doping of Fe2O3 nanobelt
field effect transistors“
Applied Physics Letters, Vol.87, p013113 (2005)
[44] A. Gurlo, M. Sahm, A. Oprea, N. Barsa, and U. Weimar
“A p- to n-transition on α-Fe2O3-based thick film
sensors studied by conductance and work function
change measurements”
Sens. Actuators B, Vol.102, p291-298 (2004)
[45] A. Gurlo, N. Bârsan, A. Oprea, M. Sahm, T. Sahm, and
U. Weimar
“An n- to p-type conductivity transition induced by
oxygen adsorption on α-Fe2O3”
Appl. Phys. Lett., Vol.85, 2280-2282 (2004)
[46] Daihua Zhang, Zuqin Lin, and Song Han
“Magnetite Core-Shell Nanowires: Synthesis and
Magnetoresistance”
Nano letter, Vol.4, p2151-2155(2004)
[47] A. Aviram and M. A. Ratner
“Molecular Rectifiers”
Chem. Phys. Lett., Vol.29, p277-283 (1974)
[48] Joachim C., Gimzewski J. K., Schittler R. R., and
Chavy C.
“Electronic Transparemce of A Single C60 Molecule”
Phys. Rev. Lett., Vol.74, p2102-2107 (1995)
[49] Trans. S. J. et al.
“Individual Single-Wall Carbon Nanotubes as Quantum
Wires”
Nature, Vol.386, p474 (1997)
[50] Shu-Fen Hu, Wei-Zhe Wong, and Shiue-Shin Liu et al.
“A Silicon Nanowire With a Coulomb Blockade Effect at
Room Temperature”
Adv. Mater., Vol.14, p736-739 (2002)
[51] Raffaella Calarco, Michel Marso, and Thomas Richter et
al.
“Size-Dependent Photoconductivity in MBE-Grown GaN
Nanowires”
Nano letters (2005)
[52] J. W. G. Wildaer, L. C. Venama, A. G. Rinzler, R. E.
Smalley, and C. Dekker
“Electronic Structure of Atomically Resolved Carbon
Nanotubes”
Nature, Vol.391, p59-62 (1998)
[53] A. Bezryadin, C. N. Lau, and M. Tinkham
“Quantum Suppression of Superconductivity in Ultrathin
Nanowires”
Nature,Vol.404, p971-974 (2000)
[54] D. Natelson, R. L. Willett, K. W. West, and L. N.
Preiffer
“Molecular Scale Metal Wires”
Solid State Commun., Vol.115, p269-274, (2000)
[55] Jorg Muster, Gyu Tae Kim, and Vojislav Krstic et al.
“Electrical Transport Through Individual Vanadium
Pentoxide Nanowires”
Adv. Mater., Vol.12, p420-424 (2000)
[56] Daihua Zhang, Chao Li, Song Han, and Chongwu Zhou et al
“Electronic Transport Studies of Single-Crystalline
In2O3 Nanowires”
Appl. Phys. Lett., Vol.82, p112-114 (2003)
[57] Jae Ryoung Kim, Hye Mi So, Jong Wan Park, and Ju-Jin
Kim
“Electrical Transport Properties of Individual Gallium
Nitride Nanowires Synthesized by Chemical Vapor
Deposition”
Appl. Phys. Lett., Vol.80, p3548-3550 (2002)
[58] Hiroyuki Okino, Iwao Matsuda, Rei Hobara, Yoshikazu
Hosomura, and Shuji Hasegawa
“In situ resistance measurements of epitaxial cobalt
silicide nanowires on Si (110)”
Appl. Phys. Lett., Vol.86, p233108 (2005)
[59] Dieter K. Schroder
“Semiconductor Material and Device Characterization
2nd“
Wiley –Interscience, Vol.47 1998
[60] Miyake, K. Kaneko, H. Sano, and M. Suedomi
“Physical and electrochromic propertoes of the
amorphous and crystalline tungsten oxide thick films
prepared under reduucing atmosphere”
J. Appl. Phys., Vol.55, p2747-2753 (1984)
[61] Kofstad
“Diffusion and Electrical conductivity in Binary Metal
Oxides”
Wiley, New York (1972)
[62] N. F. Mott, and E.A. David
“Electronic Processes in Noncrystalline Materials”
Oxford University Press, Oxford (1979)
[63] B. I. Shklovskii, and A.L. Efros
“Electronic properties of Doped Semiconductors”
Springer, Berlin (1979)
[64] C. Colliex, T. Manoubi, and C. Ortiz
“Electron-energy-loss-spectroscopy near-edge fine
structures in the iron-oxygen system”
Phys. Rev. Lett., Vol.44, p11402-11411(1991)
[65] F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen,
G.A. Sawatzky, and H. Peterson
“Oxygen 1s x-ray-adsorption edges of transition-metal
oxides”
Phys. Rev. B, Vol.40, p5715-5723 (1989)
[66] Y. F. Hsiou, Y. J. Yang, L. Stobinski, Watson Kuo, and
C. D. Chen
“Controlled Placement and Electrical Contact
Properties of IndividualMultiwalled Carbon Nanotubes
on Patterned Silicon Chips”
Appl. Phys. Lett., Vol. 84, p984-986(2004)
[67] S. M. Sze
“Modern Semiconductor Device Physics”
Wiley, New York (1998)
[68] A. Gurlo, M. Sahm, A. Oprea, N. Barsa, and U. Weimar
“A p- to n-transition on α-Fe2O3-based thick film
sensors studied by conductance and work function
change measurements”
Sens. Actuators B, Vol.102, p291 (2004)
[69] A. Gurlo, N. Bârsan, A. Oprea, M. Sahm, T. Sahm, and
U.Weimar
“An n- to p-type conductivity transition induced by
oxygen adsorption on α-Fe2O3”
Appl. Phys. Lett., Vol.85, p2280-2282 (2004)
[70] Yoon, Ki Hyun; Lee, Jeong Won; Cho, Yong Soo; Kang,
and Dong Heon
Appl. Phys. Lett. (1996)
[71] Y. W. Liu, X. F. Rui, Y. Y. Fu, and H. Zhang
“Synthesis of α-Fe2O3 Nanowire and Its Magnetic
Properties”
Journal of Metastable and Nanocrystalline Materials,
Vol.23, p243 (2005)
[72] R. M. Cornell and U. Schwertmann
”The Iron Oxides - structure, properties, reactions,
occurrences, and uses, 2nd ed.”
Wiley-VCH (2003)
[73] R. A. de Groot and F. M. Mueller
“New Class of Materials:Half-Metallic Ferromagnets”
Phys. Rev. Lett., Vol.50 (1993)
[74] E. J. W. Verwey
Nature (London)144, 327(1939)
[75] Chih-Huang Lai, Po-Hsiang Huang, and Yu-Jen Wang
“Room-temperature growth of epitaxial Fe3O4 films by
ion beam deposition”
Journal of Appl. Phys. Volume 95, (2004)
[76] H. Takahashi, S. Soeya, J. Hayakawa, K. Ito, A. Kida,
H. Asano, and M. Matsui
“Half-Metallic Fe3O4 Films for High-Sensitivity
Magneto-resistive Devices”
Transactions on Magnetics, Vol.40, p313-318(2004)
[77] P. Man and D. S. Pan
“Hot-carrier-temperature model for the dark current of
quantum-well infrared”
Appl. Phys. Lett., Vol.66, p192-194 (1995)
[78] C. H. Kuan and D. C. Tsui
“Hot-electron distribution in multiple quantum well
infrared photodetectors”
Appl. Phys. Lett., Vol. 63, p2091-2093 (1993)
[79] E. Pelve, F. Beltram, C. G. Bethea, B. F. Levine, V.
O. Shen, and S. J. Hsieh
“Analysis of the dark current in doped-well multiple
quantum well AlGaAs infrared photodetectors”
J. Appl. Phys., Vol.66, p5656-5659 (1989)
[80] Wen-Hsing Hsieh, Chun-Chi Chen, Jet-Ming Chen, Yuen-
Wuu Suen, and Chieh-Hsiung Kuan
“Characteristics of Dark Current and Photocurrent in
Superlattice Infrared Photodetectors”
Proc. SPIE, Vol.4283 (2001)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *