帳號:guest(3.128.199.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉澤宏
論文名稱(中文):以化學氣相沉積法成長選區跨接碳管之研究
指導教授(中文):戴念華
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:933574
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:單壁奈米碳管鋁鐵鉬跨接
相關次數:
  • 推薦推薦:0
  • 點閱點閱:195
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
在實驗中改變鋁鐵鉬催化劑鍍膜順序及分層結構,發現單壁奈米碳管之成長會因不同鍍膜程序而有所差異,由此本研究探討鋁鐵鉬催化劑系統在成長碳管過程中所呈現的狀態對其成長的影響並探討其機制。此外,也將鋁鐵鉬催化劑系統鍍於不同的基板上(氧化鋁、氧化鎂及氮化鋁),比較不同基板上所成長出來的碳管之差異性,可以更了解不同的基板能否適用於鋁鐵鉬催化劑系統。
研究中包括了用鋁鐵鉬催化劑來成長跨接碳管,並使用覆蓋阻絕層來作選區定位以成長跨接碳管,控制了碳管生長位置並使碳管具側向成長,使試片上存在著跨接碳管。藉由本實驗之設計,吾人發現阻絕層與催化劑應有的適當比例調配,方能成長出跨接碳管。
Abstract

In this work, the influences of sequence of the deposited thin films (Al, Fe and Mo), which were coated onto SiO2/Si substrates for forming multi-layer catalyst system, on the growth of single-walled carbon nanotubes (SWNTs) were studied. Experimental results showed that different morphologies and number of SWNTs were obtained when different catalyst systems were adopted. The feasible mechanism of the Al-Fe-Mo catalyst system for growing SWNTs wsa discussed. Besides, Al-Fe-Mo catalyst system was also deposited on different substrates (sapphire, MgO and AlN), and difference of the synthesized CNTs on these substrates was discussed. The result shows that Al-Fe-Mo catalyst system was suitable for sapphire and MgO substrates for grown SWNTs.
Growth of the bridging SWNTs using Al-Fe-Mo catalyst system is also studied. In this study, the bridging SWNTs were synthesized successfully by covering insulated layer (MgO) on catalyst. By controlling the growth of SWNTs grown in the lateral direction, bridging SWNTs connecting catalyst pads were made. This work also found that a proper ratio of insulated layer to catalyst layer is required for obtaining bridging SWNTs.
總目錄

摘要………………………………………………………………………I
英文摘要………………………………………………………………II
誌謝……………………………………………………………………III
總目錄…………………………………………………………………IV
圖表目錄………………………………………………………………VII

第一章 緒論……………………………………………………………1
1-1奈米碳管的結構………………………………………………1
1-2 奈米碳管之製程方法…………………………………………2
1-3 奈米碳管的應用………………………………………………4
1-4 實驗動機………………………………………………………4

第二章 文獻回顧………………………………………………………11
2-1 單壁奈米碳管(SWNTs)的成長模型…………………………11
2-2 基板的選擇…………………………………………………14
2-3 承載層對奈米碳管成長的影響探討………………………16
2-4 鋁作為承載層以成長SWNTs………………………………17
2-5 鉬對於SWNTs成長的作用…………………………………17
2-6 跨接碳管的製作……………………………………………19

第三章 研究方法與實驗步驟…………………………………………33
3-1 實驗步驟流程………………………………………………33
3-2 製備催化劑薄膜……………………………………………33
3-3 熱處理………………………………………………………34
3-4 熱裂解碳源成長碳管………………………………………34
3-5 奈米碳管的分簡介…………………………………………34
3-6 成長跨接碳管試片前處理…………………………………35

第四章 結果與討論……………………………………………………38
4-1 以鋁鐵鉬催化劑成長碳管的探討…………………………38
4-1-1 改變鋁膜與鐵鉬共濺鍍薄膜的順序之影響………38
4-1-2 鋁鐵鉬夾層結構催化劑的影響……………………39
4-2 以鋁鐵鉬作催化劑在不同的基板上成長碳管……………43
4-2-1 以sapphire作為基板…………………………………43
4-2-2 以氧化鎂(MgO)作為基板……………………………44
4-2-3 以氮化鋁(AlN)作為基板……………………………45
4-3 定位選區之碳管側向成長…………………………………47
4-4 具阻絕層的定位選區碳管側向成長………………………49
4-4-1 以鈦(Ti)作為阻絕層…………………………………49
4-4-2 以氧化鎂(MgO)作為阻絕層…………………………52
第五章 結論……………………………………………………………86

第六章 參考文獻………………………………………………………88





























圖表目錄

表2-1 不同基板上所成長的奈米碳管在拉曼光譜上G/D band強度比及直徑分佈的情形[33]……………………………………………21
表2-2 不同底層材料與催化劑金屬對於奈米碳管成長的比較[37]…22
表2-3 SWNTs成長的整理[41]…………………………………………23
表4-1 CVD製程參數…………………………………………………57
表4-2 側向成長試片鍍膜參數(鈦阻絕層)……………………………57
表4-3 側向成長試片鍍膜參數(氧化鎂阻絕層)………………………57
表4-4 比較在固定阻絕層厚度下不同催化劑厚度的參數(1)………58
表4-5 比較在固定阻絕層厚度下不同催化劑厚度的參數(2)………58

圖1-1 碳可以分為四種晶體結構:(a)鑽石 (b)石墨 (c)C60 (d)奈米碳管[2]………………………………………………………………………6
圖1-2 Iijima首次發表奈米碳管的HRTEM圖[3]………………………6
圖1-3 單壁奈米碳管的三種結構(a)arm-chair (b)zigzag (c)chiral[4,5]…7
圖1-4 奈米碳管的結構向量示意圖[4,5]………………………………7
圖1-5 電弧放電法裝置示意圖[6]………………………………………8
圖1-6 HRTEM觀察電弧放電法所產奈米碳管的影像,比例尺為5 nm[6]
……………………………………………………………………………8
圖1-7 石墨雷射熱昇華法裝置示意圖[7]………………………………9
圖1-8 雷射昇華法中改變雷射功率對碳管結構及直徑的影響[8]……9
圖1-9 化學氣相沉積法裝置示意圖[9]………………………………10

圖2-1 不同溫度和碳源供給下奈米碳管成長的模型[31]……………24
圖2-2 SLS生長機制的示意圖[32]………………………………………25
圖2-3 橫切面TEM圖,鎳奈米顆粒在(a)鉬化矽(b)氮化鈦基板上的形貌[34]……………………………………………………………………25
圖2-4 奈米碳管在(a)鉬化矽(b)氮化鈦承載層上成長的SEM圖[34]…26
圖2-5 SWNTs在不同結晶面的sapphire基板上具有不同的方向性,每個圖裡的sacle bar為1 um……………………………………………27
圖2-6對三種緩衝層上的鐵作XPS的分析結果[38]…………………28
圖2-7 以氧化鋁作緩衝層成長奈米碳管的SEM圖[39]………………28
圖2-8 SWNTs成長的示意圖[42]………………………………………29
圖2-9 (a)TEM下催化顆粒形成的表面形貌;(b)和(c)為對兩個白色顆粒作X-ray的線性掃描[41]………………………………………………29
圖2-10 CNT-FET結構示意圖[23]………………………………………30
圖2-11 (a)-(c)製作CNT-FET流程示意圖,(d)元件的SEM side view [50]………………………………………………………………………30
圖2-12 (a) 單根SWNT跨接[51]………………………………………30
圖2-12 (b) bundle SWNT跨接[51]………………………………………31
圖2-13 試片製備流程示意圖[52]………………………………………31
圖2-14 成長碳管後結果示意圖[52]……………………………………32
圖2-15 碳管連接兩側的催化劑[52]……………………………………32

圖3-1 高溫爐管系統的示意圖………………………………………36
圖3-2 FE-SEM…………………………………………………………36
圖3-3 Micro Raman system……………………………………………37

圖4-1 鍍膜程序示意圖 (a)對照組:先鍍鋁10 nm在共濺渡鐵鉬0.5 nm (b)實驗組:先共濺鍍鐵鉬0.5 nm再鍍上鋁10 nm………………59
圖4-2 (a)對照組 (b)實驗組的SEM圖………………………………59
圖4-3 (a)對照組 (b)實驗組的拉曼光譜………………………………60
圖4-4 實驗組的(a)RBM訊號放大 (b)G、D band訊號放大………60
圖4-5 夾層結構示意圖 (a)未夾層 (b)夾一層 (c)夾兩層…………60
圖4-6 夾一層的SEM照片 (a)低倍率 (b)高倍率……………………61
圖4-7 夾兩層的SEM照片 (a)低倍率 (b)高倍率……………………61
圖4-8 夾一層的拉曼光譜 (a)圓點以外區域 (b)圓點內的區域……61
圖4-9 夾兩層的拉曼光譜 (a)圓點以外區域 (b)圓點內的區域……62
圖4-10 夾兩層試片的EDX分析……………………………………62
圖4-11 夾層結構示意圖 (a)夾一層 (b)夾兩層 (c)夾四層…………63
圖4-12 未夾層的SEM照片(催化劑 : 鋁膜60 nm,鐵鉬薄膜3 nm)………………………………………………………………………63
圖4-13 夾一層的SEM照片(a)低倍率 (b)高倍率……………………64
圖4-14 夾兩層的SEM照片(a)低倍率 (b)高倍率……………………64
圖4-15 夾四層的SEM照片(a)低倍率 (b)高倍率……………………64
圖4-16 拉曼光譜 (a)未夾層 (b)夾一層 (c)夾兩層 (d)夾四層……65
圖4-17 以鋁鐵鉬催化劑在sapphire基板上成長的SWNTs…………65
圖4-18 拉曼光譜 (a)sapphire基板 (b)成長碳管後…………………66
圖4-19 氧化鎂基板上以鋁鐵鉬為催化劑成長碳管的SEM照片 (a)低倍率 (b)高倍率………………………………………………………66
圖 4-20 經過熱處理的氧化鎂基板以鋁鐵鉬催化劑成長碳管的SEM照片 (a)低倍率 (b)高倍率……………………………………………67
圖4-21 (a)在氧化鎂基板上以鋁鐵鉬為催化劑成長碳管前的拉曼光譜 (b)成長碳管後的拉曼光譜……………………………………………67
圖4-22 (a)在經過熱處理的氧化鎂基板以鋁鐵鉬催化劑成長碳管前的拉曼光譜 (b)成長碳管後的拉曼光譜………………………………68
圖4-23 AFM分析結果 (a)氧化鎂基板,粗糙度:1.21 nm (b)經熱處理後的氧化鎂基板,粗糙度:8.59 nm…………………………………68
圖4-24 以鋁鐵鉬催化劑在氮化鋁基板上成長碳管後的SEM照片
(催化劑 : 鋁膜20 nm,鐵鉬薄膜1 nm)………………………………69
圖4-25 (a)在氮化鋁基板以鋁鐵鉬催化劑成長碳管前的拉曼光譜 (b)成長碳管後的拉曼光譜………………………………………………69
圖4-26 以鋁鐵鉬催化劑在氮化鋁基板成長碳管後的 (a)SEM照片 (b)拉曼光譜 (催化劑 : 鋁膜60 nm,鐵鉬薄膜1 nm)…………………70
圖4-27 光罩設計圖案,灰色部分為催化劑鍍上基板的區域………71
圖4-28 (a)(b)以鋁鐵鉬催化劑成長跨接碳管在不同位置上的SEM圖………………………………………………………………………71
圖4-29 以鋁鐵鉬催化劑成長跨接碳管的拉曼光譜…………………72
圖4-30 (a)鍍上鉬電極與催化劑成長跨接SWNTs的結果 (b)較細的跨接碳管 (c)較粗的跨接碳管……………………………………………73
圖4-31 鍍上鉬電極與催化劑成長跨接SWNTs的拉曼光譜………74
圖4-32 SEM照片:鈦阻絕層2 nm (a) 薄膜間跨接的碳管 (b)薄膜上表面;鈦阻絕層5 nm (c)薄膜間跨接的碳管 (d)薄膜上表面;鈦阻絕層10 nm (e)薄膜間跨接的碳管 (f)薄膜上表面………………………75
圖4-33 拉曼光譜 (a) 鈦阻絕層2 nm (b) 鈦阻絕層5 nm (c) 鈦阻絕層10 nm……………………………………………………………………76
圖4-34 SEM照片 鈦阻絕層50 nm (a) 薄膜間跨接的碳管 (b)薄膜上表面……………………………………………………………………76
圖4-35 SEM照片 鈦阻絕層100 nm 薄膜間跨接的碳管 (a)較多的碳管跨接 (b)較少的碳管跨接…………………………………………77
圖 4-36拉曼光譜 (a)鈦阻絕層50 nm (b)鈦阻絕層100 nm…………77
圖4-37 先鍍鈦再鍍催化劑的SEM照片 (a)薄膜區間 (b)區塊上表面………………………………………………………………………77
圖 4-38 先鍍鈦再鍍催化劑的拉曼光譜……………………………78
圖4-39 氧化鎂阻絕層12.5 nm (a)(b)為在不同位置上跨接碳管的SEM照片……………………………………………………………………78
圖4-40 氧化鎂阻絕層18.75 nm (a)(b)為在不同位置上的跨接碳管的SEM照片………………………………………………………………79
圖4-41拉曼光譜 (a)氧化鎂阻絕層12.5 nm (b)氧化鎂阻絕層18.75 nm………………………………………………………………………79
圖4-42 氧化鎂阻絕層25 nm的SEM照片 (a)薄膜區塊 (b)(c)橫跨薄膜區塊的碳管…………………………………………………………80
圖4-43 氧化鎂阻絕層25 nm的拉曼光譜 (a)薄膜區塊上 (b)區塊間………………………………………………………………………80
圖4-44 氧化鎂阻絕層25 nm區塊間的拉曼光譜放大 (a)RBM (b)G、D band…………………………………………………………………81
圖4-45 氧化鎂阻絕層25 nm的SEM side view照片 (a) 曲折的跨接管 (b)筆直的跨接碳管………………………………………………81
圖4-46 碳管經由接觸基板而跨接……………………………………82
圖4-47 SEM照片 (a)氧化鎂阻絕層35 nm (b)氧化鎂阻絕層62.5 nm………………………………………………………………………82
圖4-48 拉曼光譜 (a)氧化鎂阻絕層35 nm (b)氧化鎂阻絕層62.5 nm………………………………………………………………………82
圖4-49 催化劑為鋁40 nm、鐵鉬2 nm,氧化鎂阻絕層25 nm的SEM照片 (a)薄膜區塊 (b)橫跨薄膜區塊的碳管…………………………83
圖4-50 催化劑為鋁40 nm、鐵鉬2 nm,氧化鎂阻絕層25 nm的拉曼光譜……………………………………………………………………83
圖4-51 催化劑為鋁10 nm、鐵鉬0.5 nm,氧化鎂阻絕層18.75 nm的SEM照片 (a)薄膜區塊 (b)橫跨薄膜區塊的碳管……………………84
圖4-52 催化劑為鋁10 nm、鐵鉬0.5 nm,氧化鎂阻絕層18.75 nm的拉曼光譜 (a)薄膜區塊上 (b)區塊間…………………………………84
圖4-53 催化劑為鋁10 nm、鐵鉬0.5 nm,氧化鎂阻絕層18.75 nm的拉曼光譜放大 (a)RBM (b)G、D band…………………………………85
1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
2. Rice University: Rick Smalley’s Group Home Page Image Gallery.
3. J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
4. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
5. Carbon Nanotubes and Related Structures-new materials for the twenty-first century, Peter J. F. Harris, Department of Chemisty,University of Reading.
6. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169, (1999).
7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett. 243, 49 (1995).
8. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chem. Phys. Lett., 316, 13 (2000).
9. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282 (1998).
10. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Appl. Phys. Lett., 73, 3845 (1998).
11. C. Bower, W. Zhu, S. Jin and O. Zhou, “Plasma-induced alignment of carbon n.anotubes”, Appl. Phys. Lett., 77, 830 (2000).
12. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 77, 3468 (2000).
13. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995).
14. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
15. G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature,393, 346 (1998).
16. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chem. Phys. Lett., 307, 153 (1999).
17. H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, “Lithium intercalation into etched single-wall carbon nanotubes”, Physica B, 323, 133 (2002).
18. A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, ‘Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377(1997).
19. S. Mi Lee and Y. Hee Lee, “Hydrogen storage in single walled carbon nanotubes”, Appl. Phys. Lett., 76 (20), 2877 (2000).
20. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , “Hydrogen storage in aligned carbon nanotubes”, Appl. Phys. Lett.,78 ,2128 (2001).
21. W. Qikun, Z. Changchun, L. Weihua, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, nInternational Journal of Hydrogen Energy, 27, 497 (2002).
22. S. J. Tans, Alwin R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49 (1998).
23. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett.,73 (17), 2447 (1998).
24. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices”, Appl. Sur. Sci., 141, 201 (1999).
25. M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, “Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties”, Appl. Phys. Lett., 77 (24), 4037 (2000).
26. B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes and beyond”, American Scientist, 85, 324 (1997).
27. P. Calvert, “Strength in disunity”, Nature, 357, 356 (1992).
28. L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73, 1197 (1998).
29. David A. Britz, Andrei N. Khlobystov, Kyriakos Porfyrakis, Arzhang Ardavan, G. Andrew D. Briggs, “Chemical reactions inside single-walled carbon nano test-tubes”, Chem. Commun., 1, 37 (2005).
30. J. Wei, H. Zhu, D. Wu, B. Weib, “Carbon nanotube filaments in household light bulbs”, Appl. Phys. Lett., 84, 4869 (2003).
31. H. Kanzow, A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Phys. Rev. B, 60, 11180 (1999).
32. A. Gorbunov, O. Jost, W. Pompe, A. Graff, “Solid–liquid–solid growth mechanism of single-wall carbon Nanotubes”, Carbon, 40, 113 (2002).
33. J. W. Ward, B.Q. Wei, P.M. Ajayan, “Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane”, Chem. Phys. Lett. 376, 717 (2003).
34. A. C. Wright, Y. Xiong, N. Maung, S.J. Eichhornb, R.J. Young, “The influence of the substrate on the growth of carbon nanotubes from nickel clusters—an investigation using STM, FE-SEM, TEM and Raman spectroscopy“, Materials Science and Engineering C, 23, 279 (2003).
35. H. Hongo, M. Yudasaka, T. Ichihashi, F. Nishey, S. Iijima, “Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates”, Chemical Physics Letters 361, 349-354 (2002).
36. Hiroki Ago, Kazuhiro Nakamura, Ken-ichi Ikeda, Naoyasu Uehara, Naoki Ishigami, Masaharu Tsuji, “Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface”, Chem. Phys. Lett. 408, 433-438 (2005).
37. H. T. Ng, B. Chen, J. E. Koehne, A. M. Cassell, J. Li, J. Han, M. Meyyappan, “Growth of Carbon Nanotubes: A Combinatorial Method To Study the Effects of Catalysts and Underlayers”, J. Phys. Chem. B 107, 8484 (2003).
38. T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen, D. Mathys, “The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth ”, J. Phys. Chem. B, 108, 7728 (2004).
39. T. de los Arcos , M. G. Garnier , P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo , “Strong influence of buffer layer type on carbon nanotube characteristics”, Carbon, 42, 187 (2004).
40. L. Delzent, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth ”, Chem. Phys. Lett. 348, 368 (2001).
41. R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, F. Kreupl, “Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 ℃ and a Simple Growth Model”, J. Phys. Chem. B 108, 1888 (2004).
42. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst, Nano Lett. 3, 731 (2003).
43. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, “Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation”, Appl. Phys. Lett. 84, 269 (2004).
44. R. Seidel, M. Liebau, G. S. Duesberg, F. Kreupl, E. Unger, A. P. Graham, “In-Situ Contacted Single-Walled Carbon Nanotubes and Contact Improvement by Electroless Deposition”, Nano Lett. 3, 965 (2003).
45. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 103, 6484 (1999).
46. J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, D. E. Resasco, “Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation”, J. Catalysis, 204, 129 (2001).
47. Y. J. Yoona, J. C. Baea, H. K. Baika, S. J. Chob, S. J. Leec, K. M. Song, “Nucleation and growth control of carbon nanotubes in CVD process”, Phys. B, 323, 318 (2002).
48. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition”, Chem. Phys. Lett. 374, 222 (2003).
49. S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, “Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts ”, Chem. Phys. Lett. 350, 19 (2001).
50. Nathan R. Franklin, Qian Wang, Thomas W. Tombler, Ali Javey, Moonsub Shim, and Hongjie Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Appl. Phys. Lett. 81, 913 (2002).
51. Daisuke Takagi, Yoshikazu Hommaa, Yoshihiro Kobayashi, “Selective growth of individual single-walled carbon nanotubes suspended between pillar structures”, Physica E 24 (2004) 1-5
52. Young-Soo Han, Jin-Koog Shin, and Sung-Tae Kim, “Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”, JOURNAL OF APPLIED PHYSICS 90, 11 (2001).
53. 陳嘉勻「在基板上成長單壁奈米碳管及其催化劑作用的研究」,國立清華大學材料科學工程研究所碩士論文〞中華民國九十四年六月
54. Yoshikazu Homma, Satoru Suzuki, Yoshihiro Kobayashi, and Masao Nagase, “Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy”, Appl. Phys. Lett. 84, 1750 (2004).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *