帳號:guest(3.139.83.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鳳鴒
作者(外文):Feng-Ling Chen
論文名稱(中文):無鉛銲料合金之熱力學性質
論文名稱(外文):Thermodynamic properties of Pb-free solder alloys
指導教授(中文):陳信文
謝克昌
指導教授(外文):Sinn-Wen Chen
Ker-Chang Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:933601
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:無鉛銲料熱力學性質電動勢量測方法錫鉍合金錫鋅合金錫鋅鉍合金
外文關鍵詞:lead-free solderthermodynamic propertieselectromotive force methodSn-Bi alloySn-Zn alloySn-Zn-Bi alloy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
摘要
無鉛銲料之開發是近年來電子工業中最重要議題之一。目前文獻中關於無鉛銲料之研究,以針對合金之溼潤性、界面反應與機械性質討論為主。本研究擬探討無鉛銲料合金之熱力學性質,以提供十分重要但文獻中卻缺少之知識。本研究測定無鉛銲料之熔點、熔化焓(enthalpy of fusion)、與活性(activity),並探討應用於無鉛銲料合金之Sn-Bi、Sn-Zn與Sn-Bi-Zn系統之熱力學性質。本研究主要使用微差熱卡儀(Differential Scanning Calorimetry, DSC)來測定熔化溫度與熔化焓,並建構一可靠的電動勢(electromotive force, EMF)實驗方法,以量測 Sn或Zn之活性。EMF方法主要是量測液態Sn或Zn與合金間平衡之開路電位(open circuit potential,OCP),由於純物質與合金中(添加不同莫耳分率之Bi與Zn)的Sn或Zn其氧化還原能力不同,當反應達到平衡即有一平衡電位,利用熱力學與電化學平衡關係式可求得,在平衡狀態下電位與活性之關係,進一步求得其它熱力學性質。Sn在Sn-Bi合金的活性呈正偏差趨勢;其混合焓相當小,略呈吸熱反應。Zn在Sn-Bi-Zn、 Sn-Zn合金的活性呈正偏差趨勢;在Sn-Zn添加入與Sn分率相等的Bi時,會使Zn於合金中的活性較單純Sn-Zn系統中增大,但整體自由能則較Sn-Zn合金低;Sn-Bi-Zn合金所量測Class I :L ↔ (Sn) + (Bi) + (Zn) 相變化溫度為134 oC,而非文獻值之130 oC。
Abstract
Development of lead-free solders is an important subject in the electronic industry. Present investigations of lead-free solders focus on the wettability, interfacial reaction and mechanical properties. Thermodynamic properties of lead-free solder alloys which are important but only few information is available, are investigated in this study. Thermodynamic properties, such as melting temperatures, fusion enthalpies and activities, of Sn-Bi, Sn-Zn, Sn-Bi-Zn lead-free solders materials are determined. The melting temperatures and fusion enthalpies of alloys are measured by differential scanning calorimetry. Reliable electromotive force method (EMF method) is developed to measure the activities of Sn or Zn. EMF method measures the open circuit potential between the Sn (or Zn) and alloys in liquid state. The equilibrium potentials of the difference of the red-ox ability of pure element and the alloy samples are determined. The relationship of the potentials and the activities and other thermodynamic properties are calculated by using the thermodynamic and electrochemical equilibrium functions. The mixing enthalpies are very small in the Sn-Bi alloys. The activities of Sn in Sn-Bi alloys are nearly ideal and show slightly positive deviation. The activities of Zn in Sn-Bi-Zn and Sn-Zn alloys show positive deviation; in the same content of Zn and temperature, the activities of Zn in Sn-Bi-Zn alloys are larger than in Sn-Zn alloys, but mixing Gibbs free energy of Sn-Bi-Zn alloys are lower than Sn-Zn alloys. The invariant temperature of the class I: L ↔ (Sn) + (Bi) + (Zn) phase transformation in Sn-Bi-Zn alloys is 134 oC.
目錄
摘要…………………………………………………………………………………..Ⅰ
目錄…………………………………………………………………………………. Ⅲ
圖目錄……………………………………………………………………………… Ⅳ
表目錄………………………………………………………………………………..Ⅶ
ㄧ、前言………………………………………………………………………………..1
二、文獻回顧…………………………………………………………………………..4
2-1 電化學………………………………………………………………………...4
2-1-1 電位與熱力學之關係…………………………………………………...5
2-1-2 可逆平衡電位…………………………………………………………...6
2-2 Electromotive Force Method(EMF method) …………………………………7
2-3 熱力學性質………………………………...………………………………..10
2-3-1 Partial molar property…………………..………………………………10
2-3-2 Gibbs-Duhem equation………………….…………………………….. 11
2-3-3 Models of the excess Gibbs free energy………………………………..13
2-3-4 Sn-Bi二元系統之熱力學性質………………………………………...15
2-3-5 Sn-Zn二元系統之熱力學性質..……………………………………….19
2-3-6 Sn-Bi-Zn三元系統之熱力學性質…………………………..…………25
三、研究方法……………………………………………………………..…………..32
3-1 EMF量測……………………………………………………………………32
3-1-1 實驗裝置架設…………………………………………….……………33
3-1-2 材料製備……………………………………………………………….34
3-1-3 實驗步驟.………………………………………………………………35
3-2 熱分析實驗………………………………………………………………….36
四、結果與討論………………………………………………………..……………..37
4-1 EMF實驗結果………………………………………………………………...39
4-1-1 Sn-Bi二元系統…………………………………………..………………41
4-1-2 Sn-Zn二元系統…………………………………………..………………52
4-1-3 Sn-Bi-Zn三元系統…………………….…………………………………59
4-2 熱力學性質計算……………………………………………………………...69
4-2-1 Sn-Bi二元系統………………………….……………………………….69
4-2-2 Sn-Zn二元系統………………………….……………………………….73
4-2-3 Sn-Bi-Zn三元系統……….………………………………………………77
4-3 DSC分析結果………………………………………………………………...80
五、結論………………………………………………..……………………………..95
六、參考文獻…………………………………………..……………………………..96
附錄………………………………………………………………………..………..100
[1] 陳信文、陳立軒、林永森、陳志銘,《電子構裝技術與材料》,高立,pp.85-86,(2004)。
[2] 台灣電路板協會,《高密度印刷電路板技術》,台灣電路板協會,pp.223-228,(2004)。
[3] A. Rae, A. Handwerker, “NEMI’s Lead-Free Alloy”, Circuits Assembly, pp. 20-25, April (2004).
[4] K. J. Puttlitz, K. A.Stalter, “Handbook of lead-free solder technology for microelectronic assemblies”, Marcel Dekker, New York, pp.239-300, (2004).
[5] K Sugamuma, Current Opinion in Solid State and Materials Science, 5, pp.55-64, (2001).
[6] M. Y. Chiu, S. S. Wang, T. H. Chuang, Journal of Electronic Materials, 31(5), pp. 494-499, (2002).
[7] Y. A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schemid-Fetzer, W. A. Oates, Progress in Materials Science, 49, pp.313-345, (2004).
[8] 黃進益翻譯,D. R. Crow原著,《電化學的原理及應用》”Principles and Applications of Electrochemistry”,高立,pp. 1-3,(1998)。
[9] P. H. Rieger, “Electrochemistry”, Chapman & Hall, New York, pp. 5-10, (1993).
[10] 田福助,《電化學/理論與應用》,高立,pp. 86-91;pp. 167-171,(1987)。
[11] A. Mikula, “Thermodynamics of Alloy Formation”, The Minerals, Metals & Materials Society, Orlando, pp.77-98, (1997).
[12] D. Jendrzejczyk, W. Gierlotka, K. Fitzner, “Thermodynamic Properties of Liquid Silver-Indium-Antimony Alloys Determined from E.M.F. Measurements”. (Private communication, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Poland)
[13] S. I. Sandler, “Chemical and Engineering Thermodynamics”, John Wiley & Sons, New York, pp.324-337; pp.414-434, (1999).
[14] C.H. P. Lupis, “Chemical Thermodynamics of Materials”, North-Holland, New York, pp. 163-167; pp. 441-446 , (1983).
[15] H.-G. Lee, “Chemical Thermodynamics for Metals and Materials ”, Imperial College Press, London, pp. 74-95, (1999).
[16] J. M. Smith, H. C. Van Ness, M. M. Abbott, “Introduction to Chemical Engineering Thermodynamics ”, McGraw-Hill, Boston, pp. 432-435, (2001).
[17] J. W. Tester, M. Modell, “Thermodynamics and Its Applications ”, Prentice Hall PTR, New Jersey, pp.457-484, (1996)
[18] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagram”, ASM International, Ohio, pp.794-796, (1990).
[19] H. Ohtani, K. Ishida, Journal of Electronic Materials, 23, pp. 747-755, (1994).
[20] F. E. Wittig, F. Huber, Z. Electrochemie, 60, p.1181, (1956).
[21] R. L. Sharkey, M. J. Pool, Metallurgical Transactions, 3, p.1773-1776, (1972).
[22] W. Oelsen, K. F. Golucke, Arch. Eisenhuffenw., 29, p.689, (1958).
[23] H. Seltz, F. J. Dunkerley, Journal of the American Chemical Society, 64, pp.1392-1395, (1942).
[24] N. A. Asryan, A. Mikula, Inorganic Materials, 40(4), pp.386-390, (2004).
[25] B.-J. Lee, C.-S. Oh, J.-H. Shim, Journal of Electronic Materials, 25(6), pp. 983-991, (1996).
[26] H. Ito, Y. Hasegawa, Journal of Chemical and Engineering Data, 46, pp. 1203-1205, (2001).
[27] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagram”, ASM International, Ohio, pp.3416-3417, (1990).
[28] W. Oelsen, Zeitschrift fur Metallkunde., 48, pp.1-8, (1957).
[29] E. Schurmann, H. Trager, Arch. Eisenhuttenwes., 32, p.397, (1961).
[30] O. J. Kleppa, Journal of physical chemistry, 59, pp.354-361, (1955).
[31] H. Ohtani, M. Miyashite, K. Ishida, Journal of the Japan Institute of Metals《日本金屬會誌》, 63, pp. 685-694, (1999).
[32] W. Ptak, ”Thermodynamic Properties of Liquid Zinc-Tin Solutions” Archiwum Hutnictwa, 2, pp.169-194, (1960).
[33] Z. Moser, W. Gasior, Bulletin of the Polish Academy of Sciences Technical Sciences, 31, pp.19-25, (1983).
[34] B.-J. Lee, Calphad, 20(4), pp. 471-480, (1996).
[35] Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, Bulletin of Alloy Phase Diagrams, 6(4), pp.330-334, (1985).
[36] Z. Moser, Archiwum Hutnictwa, 14(3), pp. 269-283, (1969).
[37] H. Okamoto, Journal of Phase Equilibria, 18(2), p.218, (1997).
[38] A. D. Pelton, C. W. Bale, M. Rigaud, Zeitschrift fur Metallkunde, 68, pp. 135-150, (1977).
[39] D. V. Malakhov, X. J. Liu, I. Ohnuma, K. Ishida, Journal of Phase Equilibria, 21(6), pp. 514-520, (2000).
[40] S. D. Muzaffar, Journal of Chemical Society, 123, pp. 2341-2354, (1923).
[41] D. V. Malakhov, Calphad, 24(1), pp.1-14, (2000).
[42] W. Ptak, Z. Moser, Archiwum Hutnictwa, 11, pp. 207-234, (1966).
[43] V. N. S. Mathur, M. L. Kapoor, Zeitschrift fur Metallkunde, 76, pp.16-23, (1985).
[44] C. W. Bale, A. D. Pelton, M Rigaud, Zeitschrift fur Metallkunde, 68, pp. 69-74, (1966).
[45] S. Karlhuber, A. Mikula, F. Sommer, Metallurgical and Materials Transactions B, 27B, pp. 921-928, (1996).
[46] S. Karlhuber, M. Peng, A. Mikula, Journal of Non-Crystalline Solids, 205-207, pp. 421-424, (1996).
[47] M. Peng, A. Mikula, Journal of Alloys and Compounds, 247, pp. 185-189, (1997).
[48] M. Peng, Z. Qiao, A. Mikula, Calphad, 22(4), pp. 459-468, (1998).
[49] Z. Li, S. Knott, A. Mikula, “Thermodynamic Properties fo Liquid Ag-Bi-Sn Alloys”. (Private communication, Institut fur Anorganische Chemie-Matrialchemie, Universitat Wien, Austria)
[50] J. F. Elliott, J. Chipman, Journal of the American Chemical Society, 73, pp. 2682-2693, (1951).
[51] K. Kameda, T. Azakami, Transactions of the Japan Institute of Metals, 41, pp.1087-1092, (1976).
[52] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagram”, ASM International, Ohio, p.811, (1990).
[53] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagram”, ASM International, Ohio, p.3411, (1990).
[54] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagram”, ASM International, Ohio, pp.3532-3533, (1990).
[55] R. O. Frantik, H. J. McDonald, Transactions of the American Electrochemical Society, 88, pp. 253-262, (1945).
[56] K. L. Komarek, H. Ipser, Pure and Applied Chemistry, 56(11), pp. 1511-1526, (1984).
[57] D. R. Lide, “CRC Handbook of Chemistry and Physics”, CRC Press, Boca Raton, pp. 12-218-12-219, (2002).
[58] ASM International Handbook Committee, “Metals Handbook”, Vol. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Ohio, pp.1103-1174, (1990).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *