帳號:guest(3.22.242.141)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃育智
作者(外文):Huang, Yu-chih
論文名稱(中文):不同尺寸電子銲點中之相生成與相變化
論文名稱(外文):Phase formation and phase transformation in the electronic solder joints of different sizes
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-wen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:933602
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:185
中文關鍵詞:固化過冷界面反應尺寸效應相圖無鉛銲料
外文關鍵詞:SolidificationUndercoolingInterfacial reactionSize effectphase diagramPb-free solder
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
銲點中的相生成與相變化對銲點的性質影響甚鉅,並進而左右電子產品的可靠度,由於不同的構裝層次中有不同尺寸的銲點,尺寸效應是軟銲技術中的一個重要議題;本研究探討不同尺寸電子銲點在固化與界面反應中的相生成與相變化,並建構相關系統的相圖,對固化與界面反應中的相生成與相變化現象有清楚的解釋。
本研究探討銲料合金的過冷現象與固化路徑,銲料合金的過冷程度同時受到第一析出相以及基材種類的影響,而在第一析出相以及基材皆相同時,過冷仍會稍微受到組成的影響;過冷程度隨著合金尺寸下降而升高,但彼此之間的相對大小維持不變。本研究完成Sn-Zn-Cu三元系統的液相線投影圖,並根據實驗結果建立其熱力學模型,此系統共有十個第一析出相、六個第二類反應、以及一個第三類反應。
本研究探討銲料合金與基材的界面反應,Sn-0.7wt%Cu/Fe比起Sn-37wt%Pb/Fe有較劇烈的反應速率與溶解行為;Sn-37wt%Pb/Fe與Sn-57wt%Bi/Fe在高溫時反應生成相的變化可以由三元系統中缚線的改變得到合理的解釋。Sn-8.8wt%Zn/Cu與Sn-57wt%Bi/Cu中反應生成相的厚度隨著銲料合金中Co添加的含量增加而分別減低與增加;Sn-8.8wt%Zn/Cu中反應生成相的變化以及Sn-57wt%Bi/Cu中反應生成相的型態皆同時受到微量Co的添加以及銲點尺寸的影響。
本研究建立Sn-Zn-Cu三元系統的熱力學模型,並以其計算液相線投影圖與計算等溫截面圖討論Sn-Zn/Cu銲點中的固化與界面反應;建立Sn-Zn-Co三元系統的液相線投影圖,並用以瞭解Sn-Zn-(Co)銲料合金的固化;建立Sn-Fe二元系統、Sn-Pb-Fe三元系統、以及Sn-Bi-Fe三元系統的熱力學模型,並依據其計算等溫截面圖解釋Sn-Pb/Fe與Sn-Bi/Fe銲點中的界面反應。
Very different sizes of solder joints are produced in different packaging levels. The phase formation and phase transformation in the solder joints are crucial to the reliabilities of electronic products. This study examines the phase formation and phase transformation from the solidification and interfacial reactions in the solder joints of different sizes. Phase diagrams are also proposed in this study based on phase equilibria, and the results in solidification and interfacial reactions are well illustrated by the phase diagrams.
The degrees of undercooling of various solder alloys are examined. The primary factors controlling undercooling are the primary solidification phase and the substrates. When the primary solidification phase and the substrates are the same, the degrees of undercooling could be different if the compositions of the melts are different. However, this compositional effect is not very significant. The degrees of undercooling and their variations are more significant for smaller-sized solders, but the relative orders of undercooling of various solders remain the same. The liquidus projection of Sn-Zn-Cu ternary system is experimentally determined, and the thermodynamic modeling is developed. Ten primary solidification phases, six class II and one class III invariant reactions are found.
Interfacial reactions between solders and substrates are investigated. The reaction rates and substrate dissolution in the Sn-0.7wt%Cu/Fe couples are higher than those in the Sn-37wt%Pb/Fe couples. The reactive phase transitions at higher temperatures in the Sn-37wt%Pb/Fe and Sn-57wt%Bi/Fe couples are caused by the ternary phase equilibria tie-line shift. With increasing Co additions, the reaction phase thicknesses in the Sn-8.8wt%Zn/Cu and Sn-57wt%Bi/Cu couples are decreased and increased, respectively. The transition of different reaction stages in the Sn-8.8wt%Zn/Cu couples and the morphology of reaction phase in the Sn-57wt%Bi/Cu couples are influenced by both the minor Co additions and the sizes of solder joints.
Phase diagrams including Sn-Zn-Cu liquidus projection and isothermal section, Sn-Zn-Co liquidus projection, Sn-Fe phase diagram, Sn-Pb-Fe isothermal sections, and Sn-Bi-Fe isothermal sections are established. The solidification phases and solidification paths of solder alloys and the reaction phases and reaction paths in the interfacial reactions are well illustrated by the phase diagrams.
一 前言 1
二 文獻回顧 6
2-1 相圖 6
2-1.1 Sn-X-Fe系統 7
2-1.1.1 Sn-Pb 7
2-1.1.2 Sn-Cu 7
2-1.1.3 Sn-Bi 7
2-1.1.4 Sn-Fe 8
2-1.1.5 Pb-Fe 8
2-1.1.6 Cu-Fe 8
2-1.1.7 Bi-Fe 8
2-1.1.8 Sn-Cu-Fe 9
2-1.2 Sn-Zn-Co-Cu系統 16
2-1.2.1 Sn-Zn 16
2-1.2.2 Sn-Co 16
2-1.2.3 Zn-Co 16
2-1.2.4 Zn-Cu 16
2-1.2.5 Co-Cu 17
2-1.2.6 Sn-Zn-Cu 18
2-1.2.7 Sn-Co-Cu 18
2-1.3 Sn-Bi-Co-Cu系統 25
2-1.3.1 Bi-Co 25
2-1.3.2 Bi-Cu 25
2-1.3.3 Sn-Bi-Cu 25
2-2 固化 28
2-2.1 過冷現象 29
2-2.2 液相線投影圖 30
2-3 界面反應 34
2-3.1 Sn-X/Fe系統 38
2-3.1.1 Sn/Fe 38
2-3.1.2 Sn-X/Fe 39
2-3.2 Sn-X/Cu系統 40
2-3.2.1 Sn/Cu 40
2-3.2.2 Sn-Zn/Cu 42
2-3.2.3 Sn-Bi/Cu 43
2-4 尺寸效應 44
2-5 合金效應 45
三 研究方法 46
3-1 相圖 46
3-2 過冷程度量測 49
3-3 液相線投影圖 50
3-4 液固界面反應 51
3-5 固固界面反應 53
3-6 溶解度量測 54
四 結果與討論 56
4-1 固化 56
4-1.1 銲料合金的過冷程度 56
4-1.1.1 尺寸效應 58
4-1.1.2 基材效應 62
4-1.1.3 合金效應 71
4-1.2 Sn-Zn-Cu三元系統的液相線投影圖 78
4-2 界面反應 95
4-2.1 銲料/Fe界面反應 95
4-2.1.1 Sn-0.7wt%Cu/Fe液固界面反應 95
4-2.1.2 Sn-37wt%Pb/Fe液固界面反應 101
4-2.1.3 Sn-57wt%Bi/Fe液固界面反應 112
4-2.1.4 Sn-8.8wt%Zn/Fe液固界面反應 130
4-2.1.5 Fe在銲料中的溶解度 131
4-2.2 銲料/Cu界面反應 133
4-2.2.1 Sn-8.8wt%Zn/Cu液固界面反應 133
4-2.2.1.1 合金效應 133
4-2.2.1.2 尺寸效應 139
4-2.2.2 Sn-8.8wt%Zn/Cu固固界面反應 146
4-2.2.2.1 合金效應 146
4-2.2.3 Sn-57wt%Bi/Cu液固界面反應 151
4-2.2.3.1 合金效應 151
4-2.2.3.2 尺寸效應 156
4-2.2.4 Sn-57wt%Bi/Cu固固界面反應 160
4-2.2.4.1 合金效應 160
4-2.2.5 Sn-0.7wt%Cu/Cu界面反應 168
五 結論 169
六 參考文獻 173
1.R. J. Klein Wassink, Soldering in Electronics, 2nd ed., p.1, Electrochemical Publications, Scotland (1989).
2.www.chinareviewnews.com/doc/55_1155_100206692_1_0911123624.html
3.P. T. Vianco and D. R. Frear, "Issues in the replacement of lead-bearing solders", JOM, 45(7), 14 (1993).
4.Official Journal of the European Union, L37, 19 (2003).
5.D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, "Pb-free solders for flip-chip interconnects", JOM, 53(6), 28 (2001).
6.K. N. Tu and K. Zeng, "Tin-lead solder reaction in flip chip technology", Mater. Sci. Eng., R34(1), 1 (2001).
7.S. Lassig, "Manufacturing integration considerations of through-silicon via etching", Solid State Technol., 50(12), 48 (2007).
8.H. Y. Chang, S. W. Chen, D. S. Wong, and H. F. Hsu, "Determination of reactive wetting properties of Sn, Sn-Cu, Sn-Ag and Sn-Pb alloys by using a wetting balance technique", J. Mater. Res., 18(6), 1420 (2003).
9.A. Sharif, Y. C. Chan, and R. A. Islam, "Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging", Mat. Sci. Eng. B-Solid, B106, 120 (2004).
10.C. W. Wang and S. W. Chen, "Sn-0.7we%Cu/Ni interfacial reactions at 250°C", Acta Mater., 54, 247 (2006).
11.C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, "Effects of limited Cu supply on soldering reactions between SnAgCu and Ni", J. Electron. Mater., 35(5), 1017 (2006).
12.H. T. Chen, C. Q. Wang, C. Yan, Y. Huang, and Y. H. Tian, "Effects of solder volume on formation and redeposition of Au-containing intermetallics in Ni/Au-SnAgCu-Ni(P) solder joints", J. Electron. Mater., 36(1), 33 (2007).
13.S. C. Yang, Y. W. Wang, C. C. Chang, and C. R. Kao, "Analysis and experimental verification of the volume effect in the reaction between Zn-doped solders and Cu", J. Electron. Mater., 37(10), 1591 (2008).
14.J. Glazer, "Metallurgy of low temperature Pb-free solders for electronic assembly", Int. Mater. Rev., 40(2), 65 (1995).
15.M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics", Mat. Sci. Eng. R., R27, 95 (2000).
16.S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu, "Phase Diagrams of Pb-Free Solders and their Related Materials Systems", J. Mater. Sci.-Mater. El., 18, 19 (2007).
17.S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, and C. C. Chen, "Phase transformation and microstructural evolution in solder joints", JOM, 59(1), 39 (2007).
18.K. Zeng and K. N. Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology", Mat. Sci. Eng. R., R38, 55 (2002).
19.T. Laurila, V. Vuorinen, and J.K. Kivilahti, "Interfacial reactions between lead-free solders and common base materials", Mat. Sci. Eng. R., R49, 1 (2005).
20.D. Turnbull, "Kinetics of heterogeneous nucleation", J. Chem. Phys., 18(2), 198 (1950).
21.B. E. Sundquist and L. F. Mondolfo, "Heterogeneous nucleation in the liquid-to-solid transformation of alloys", Trans. Metall. Soc. AIME, 221, 157 (1961).
22.W. P. Allen and J. H. Perepezko, "Solidification of undercooled tin-antimony peritectic alloys: part I. Microstructural evolution", Metall. Trans. A, 22A(3), 753 (1991).
23.F. N. Rhines, Phase Diagrams in Metallurgy, p.4, McGraw-Hill, New York (1956).
24.S. L. Chen, Y. Yang, S. W. Chen, X. G. Lu, and Y. A. Chang, "Solidification simulation using scheil model in multicomponent systems", J. Phase Equilib. Diff., 30(5), 429 (2009).
25.S. W. Chen, H. J. Wu, Y. C. Huang, and W. Gierlotka, "Phase equilibria and solidification of ternary Sn-Bi-Ag alloys", J. Alloy Comp., 497, 110 (2010).
26.C. A. Chang, S. W. Chen, C. N. Chiu, and Y. C. Huang, "Primary solidification phases of the Sn-rich Sn-Ag-Cu-Ni quaternary system", J. Electron. Mater., 34(8), 1135 (2005).
27.S. W. Chen, H. F. Hsu, and C. W. Lin, "Liquidus projection of the ternary Ag-Sn-Ni alloys", J. Mater. Res., 19(8), 2262 (2004).
28.C. N. Chiu, Y. C. Huang, A. R. Zi, and S. W. Chen, "Isoplethal sections of the liquidus projection and the 250ºC phase equilibria of the Sn-Ag-Cu-Ni quaternary system at the Sn-rich corner", Mater. Trans., 46(11), 2426 (2005).
29.A. Rahn, The Basics of Soldering, Wiley Interscience, New York (1993).
30.S. W. Chen and C. M. Chen, "Electromigration effects upon interfacial reactions", JOM, 55(2), 62 (2003).
31.H. Conrad, "Effects of electric current on solid state phase transformations in metals", Mat. Sci. Eng. A-Struct., A287, 227 (2000).
32.I. Karakaya and W. T. Thompson, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.3014, ASM International, Ohio (1990).
33.N. Saunders and A. P. Miodownik, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1481, ASM International, Ohio (1990).
34.W. Gierlotka, S. W. Chen, and S. K. Lin, "Thermodynamic description of the Cu-Sn system", J. Mater. Res., 22(11), 3185 (2007).
35.T. B. Massalski, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.794, ASM International, Ohio (1990).
36.H. Okamoto, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1774, ASM International, Ohio (1990).
37.B. P. Burton, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1749, ASM International, Ohio (1990).
38.L. J. Swartzendruber, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1408, ASM International, Ohio (1990).
39.H. Okamoto, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.736, ASM International, Ohio (1990).
40.V. Raghavan, Phase Diagrams of Ternary Iron Alloys, Part 6, p.768, ASM International, Ohio (1992).
41.V. Raghavan, "Cu-Fe-Sn (Copper-Iron-Tin)", J. Phase Equilib., 23(3), 271 (2002).
42.Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.3416, ASM International, Ohio (1990).
43.H. Okamoto, "Co-Sn (Cobalt-Tin)", J. Phase Equilib. Diff., 27(3), 308 (2006).
44.M. Jiang, J. Sato, I. Ohnuma, and K. Ishida, "A thermodynamic assessment of the Co-Sn system", Calphad, 28, 213 (2004).
45.S. W. Chen, Y. K. Chen, H. J. Wu, Y. C. Huang, and C. M. Chen, "Co solubility in Sn and interfacial reactions in the Sn-Co/Ni couples", submitted to J. Electron. Mater..
46.T. B. Massalski, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1261, ASM International, Ohio (1990).
47.A. P. Miodownik, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.1508, ASM International, Ohio (1990).
48.W. Gierlotka and S. W. Chen, "Thermodynamic descriptions of the Cu-Zn system", J. Mater. Res., 23(1), 258 (2008).
49.T. Nishizawa and K. Ishida, in Binary Alloy Phase Diagrams 2nd ed., T. B. Massalski, Editor, p.1181, ASM International, Ohio (1990).
50.B. J. Lee, N. M. Hwang, and H. M. Lee, "Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation", Acta Mater., 45(5), 1867 (1997).
51.C. Y. Chou and S. W. Chen, "Phase equilibria of the Sn-Zn-Cu ternary system", Acta Mater., 54(9), 2393 (2006).
52.陳昱愷,Sn-Co-Cu-Ni相平衡與Sn-Co-(Cu)/Ni之界面反應,碩士論文,國立清華大學,中華民國台灣 (2009).
53.K. Ishida and T. Nishizawa, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.725, ASM International, Ohio (1990).
54.D. J. Chakrabarti and D. E. Laughlin, in Binary Alloy Phase Diagram, 2nd ed., T. B. Massalski, Editor, p.732, ASM International, Ohio (1990).
55.K. Doi, H. Ohtani, and M. Hasebe, "Thermodynamic study of the phase equilibria in the Sn-Ag-Bi-Cu quaternary system", Mater. Trans., 45(2), 380 (2004).
56.S. K. Kang, M. G. Cho, P. Lauro, and D. Y. Shih, "Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process", J. Mater. Res., 22(3), 557 (2007).
57.M. G. Cho, S. K. Kang, and H. M. Lee, "Undercooling and microhardness of Pb-free solders on various under bump metallurgies", J. Mater. Res., 23(4), 1147 (2008).
58.M. G. Cho, S. K. Kang, S. K. Seo, D. Y. Shih, and H. M. Lee, "Effects of under bump metallization and nickel alloying element on the undercooling behavoir of Sn-based Pb-free solders", J. Mater. Res., 24(2), 534 (2009).
59.R. Kinyanjui, L. P. Lehman, L. Zavalij, and E. Cotts, "Effect of sample size on the solidification temperature ans microstructure of SnAgCu near eutectic alloys", J. Mater. Res., 20(11), 2914 (2005).
60.C. L. Tsao and S. W. Chen, "Interfacial reactions in the liquid diffusion couples of Mg/Ni, Al/Ni, and Al/(Ni)-Al2O3 systems", J. Mater. Sci., 30, 5215 (1995).
61.J. B. Clark, "Conventions for plotting diffusion paths in multiphase ternary diffusion couples on isotheraml section of a ternary phase diagram", Trans. Met. Soc. AIME, 227, 1250 (1963).
62.S. W. Chen and C. H. Wang, "Interfacial reactions of Sn-Cu/Ni couples at 250°C", J. Mater. Res., 21(9), 2270 (2006).
63.W. T. Chen, C. E. Ho and C. R. Kao, "Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders", J. Mater. Res., 17(2), 263 (2002).
64.C. H. Lin, S. W. Chen, and C. H. Wang, "Phase equilibria and solidification properties of Sn-Cu-Ni alloys", J. Electron. Mater., 31(9), 907 (2002).
65.C. M. Chen and S. W. Chen, "Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures", Acta Mater., 50(9), 2461 (2002).
66.C. W. Wang, C. N. Chiu, and S. W. Chen, "Investigations on the interfacial reactions at the reentrant corners", accepted by J. Mater. Res..
67.S. W. Chen and Y. W. Yen, "Interfacial reactions in the Ag-Sn/Cu couples", J. Electron. Mater., 28(11), 1203 (1999).
68.R. P. Frankenthal and A. W. Loginow, "Kinetics of the formation of the iron-tin alloy FeSn2", J. Electrochem. Soc., 107(11), 920 (1960).
69.D. R. Gabe, "Diffusion-coating characteristics of the tinplate alloy layer", J. Iron Steel I., 204(2), 95 (1966).
70.T. Ishida, "The reaction of solid iron with molten tin", Mater. T. JIM, 14, 37 (1973).
71.J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, "Multiphase diffusion in the systems Fe-Sn and Ni-Sn", Z. Metallkd., 73(7), 439 (1982).
72.G. Habenicht and P. Schindele, "Iron contamination in solder baths", Schweissen & Schneiden, 35(11), 530 (1983).
73.T. Takemoto, T. Uetani, and M. Yamazaki, "Dissolution rates of iron plating on soldering iron tips in molten lead-free solders", Solder Surf. Mt. Tech., 16(3), 9 (2004).
74.H. Nishikawa, T. Takemoto, K. Kifune, T. Uetane, and N. Sekimori, "Effect of iron plating condition on reaction in molten lead-free solder", Mater. Trans., 45(3), 741 (2004).
75.H. Nishikawa, A. Komatsu, and T. Takemoto, "Interfacial reaction between Sn-Ag-Co solder and metals", Mater. Trans., 46(11), 2394 (2005).
76.H. Sueyoshi, H. Odo, S. Mizokuchi, S. Abe, and K. Saikusa, "Consumption of soldering iron by Pb-free solder", Mater. Trans., 47(4), 1221 (2006).
77.K. N. Tu and R. D. Thompson, "Kinetics of interfacial reaction in bimetallic Cu-Sn thin film", Acta Metall. Mater., 30, 947 (1982).
78.Z. Mei, A. J. Sunwoo, and J. W. Morris, Jr., "Analysis of low-temperature intermetallic growth in copper-tin diffusion couples", Metall. Trans. A, 23A, 857 (1992).
79.A. Paul, A. A. Kodentsov, and F. J. J. van Loo, "Intermetallic growth and kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples", Z. Metallkd., 95(10), 913 (2004).
80.S. Bader, W. Gust, and H. Hieber, "Rapid formation of intermetallic compound by interdiffusion in the Cu-Sn and Ni-Sn systems", Acta Metall. Mater., 43(1), 329 (1995).
81.A. Hayashi, C. R. Kao, and Y. A. Chang, "Reactions of solid copper with pure liquid tin and liquid tin saturated with copper", Scripta Mater., 37(4), 393 (1997).
82.L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, "Interfacial reactions in molten Sn/Cu and molten In/Cu couples", Metall. Mater. Trans. B, 28B, 927 (1997).
83.J. Gorlich, G. Schmitz, and K. N. Tu, "On the mechanism of the binary Cu/Sn solder reaction", Appl. Phys. Lett., 86, 053106 (2005).
84.K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, "Wetting and interface microstructure between Sn-Zn binary alloys and Cu", J. Mater. Res., 13(10), 2859 (1998).
85.Y. C. Chan, M. Y. Chiu, and T. H. Chuang, "Intermetallic compounds formed during the soldering reactions of eutectic Sn-9Zn with Cu and Ni substrates", Z. Metallkd., 93(2), 95 (2002).
86.C. Y. Chou, S. W. Chen, and Y. S. Chang, "Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples", J. Mater. Res., 21(7), 1849 (2006).
87.K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, "Heat resistance of Sn-9Zn solder/Cu interface with or without coating", J. Mater. Res., 15(4), 884 (2000).
88.S. P. Yu, H. J. Lin, M. H. Hon, and M. C. Wang, "Effect of process parameters on the soldering behavior of the eutectic Sn-Zn solder on Cu substrate", J. Mater. Sci.-Mater. El., 11, 461 (2000).
89.I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, "Interfacial reaction and mechanical properties of Lead-free Sn-Zn alloy/Cu joints", Mater. Trans., 43(8), 1797 (2002).
90.M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, "Interfacial reactions and impact reliability of Sn-Zn solder joints on Cu or electroless Au/Ni(P) bond-pads", J. Mater. Res., 19(10), 2887 (2004).
91.C. W. Huang and K. L. Lin, "Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging at 150°C", J. Mater. Res., 19(12), 3560 (2004).
92.Z. Mei and J. W. Morris, Jr., "Characterization of eutectic Sn-Bi solder joints", J. Electron. Mater., 21(6), 599 (1992).
93.C. H. Raeder, L. E. Felton, V. A. Tanzi, and D. B. Knorr, "The effect of aging on microstructure, room temperature deformation, and fracture of Sn-Bi/Cu solder joints", J. Electron. Mater., 23(7), 611 (1994).
94.P. T. Vianco, A. C. Kilgo, and R. Grant, "Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper", J. Electron. Mater., 24(10), 1493 (1995).
95.H. W. Miao and J. G. Duh, "Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging", Mater. Chem. Phys., 71, 255 (2001).
96.P. L. Liu and J. K. Shang, "Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect", Scripta Mater., 44, 1019 (2001).
97.K. S. Kim, S. H. Huh, and K. Suganuma, "Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu", Microelectron. Reliab., 43, 259 (2003).
98.I. E. Anderson and J. L. Harringa, "Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength", J. Electron. Mater., 33(12), 1485 (2004).
99.J. M. Song, C. F. Huang, and H. Y. Chung, "Microstructural characteristics and vibration fracture properties of Sn-Ag-Cu-TM (TM = Co, Ni, and Zn) alloys", J. Electron. Mater., 35(12), 2154 (2006).
100.H. Nishikawa, A. Komatsu, and T. Takemoto, "Morphology and pull strength of Sn-Ag-(Co) solder joint with copper pad", J. Electron. Mater., 36(9), 1137 (2007).
101.Y. W. Wang, Y. W. Lin, C. T. Wu, and C. R. Kao, "Effects of minor Fe, Co, Ni additions on the reaction between SnAgCu solder and Cu", J. Alloy Comp., 478, 121 (2009).
102.N. Saunders and A. P. Miodownik, Calphad (Calculation of Phase Diagrams): A Comprehensive Guide, p.1, Pergamon, Oxford (1998).
103.S. W. Chen, C. C. Huang, and J. C. Lin, "The relationship between the peak shape of a DTA curve and the shape of a phase diagram", Chem. Eng. Sci., 50(3), 417 (1995).
104.S. W. Chen, C. C. Lin, and C. M. Chen, "Determination of the melting and solidification characteristics of solders by using DSC", Metall. Mater. Trans. A, 29A, 1965 (1998).
105.W. J. Boettinger, U. R. Kattner, K.-W. Moon, and J. H. Perepezko, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing, NIST, Washington, DC (2006).
106.J. H. Perepezko, "Nucleation reactions in undercooled liquids", Mat. Sci. Eng. A-Struct., A178, 105 (1994).
107.J. H. Perepezko and M. J. Uttormark, "Undercooling and nucleation during solidificaion", ISIJ Int., 35(6), 580 (1995).
108.I. E. Anderson, J. Walleser, and J. L. Harringa, "Observations of nuncleation catalysis effects during solidification of SnAgCuX solder joints", JOM, July, 38 (2007).
109.O. F. Hudson and R. M. Jones, "The constitution of brasses containing small percentages of tin", J. Institute of Metals, 14(2), 98 (1915).
110.M. Hansen, "The constitution of red brass", Z. Metallkd., 18(11), 347 (1926).
111.O. Bauer and M. Hansen, "The influence of third metals upon the constitution of the brasses. III. The effect of tin", Z. Metallkd., 22, 405 (1930).
112.S. L. Hoyt, "The copper-rich kalchoids (Copper-Tin-Zinc Alloys)", J. Institute of Metals, 10(2), 235 (1913).
113.G. Tammann and M. Hansen, "The ternary system copper-tin-zinc", Z. Anorg. Allgem. Chem., 138, 137 (1924).
114.K. Yamaguchi and I. Nakamura, "Equilibrium diagram of the copper-rich ternary system: copper-tin-zinc", Rikagaku Kenkyusho-Iho, 11, 1330 (1932).
115.C. F. Yang, F. L. Chen, W. Gierlotka, S. W. Chen, K. C. Hsieh, and L. L. Huang, "Thermodynamic properties and phase equilibria of Sn-Bi-Zn ternary alloys", Mater. Chem. Phys., 112, 94 (2008).
116.B. Onderka, T. Pomianek, J. Romanowska, G. Wnuk, and J. Wypartowicz, "Solubility of lead in liquid iron and the assessment of Fe-Pb system", Arch. Metall. Mater., 49(1), 144 (2004).
117.H. Ohtani, K. Okuda, and K. Ishida, "Thermodynamic study of phase equilibria in the Pb-Sn-Sb system", J. Phase Equilib., 16(5), 416 (1995).
118.K. C. Hari Kumar, P. Wollants, and L. Delaey, "Thermodynamic evaluation of Fe-Sn phase diagram", Calphad, 20(2), 139 (1996).
119.V. N. Eremenko, L. E. Pechentkovskaya, and M. M. Churakov, "Formation of an intermediate layer of the phase FeSn2 during hot Leading", Fiz. Khim. Obrab. Mater., 3, 124 (1976).
120.D. Boa, S. Hassam, K. P. Kotchi, and J. Rogez, "Thermodynamic investigation of the moderately dilute liquid Bi-Fe-Sb alloys", Thermochim. Acta, 444, 86 (2006).
121.B. Predel and M. Frebel, "Precipitation behavior of α-solid solutions of the iron-tin system", Metall. Trans., 4, 243 (1973).
122.C. A. Edwards and A. Preese, "Constitution of the iron-tin alloy", J. Iron Steel Inst. London, 124, 41 (1931).
123.K. C. Mills and E. T. Turkdogan, "Liquid miscibility gap in iron-tin system", Trans. Metall. Soc. AIME, 230, 1202 (1964).
124.O. Kubaschewski, Iron-Binary Phase Diagrams, p.139, Springer-Verlag, Berlin (1982).
125.K. C. H. Kumar, P. Wollants, and L. Delaey, "Thermodynamic evaluation of Fe-Sn phase diagram", Calphad, 20, 139 (1996).
126.E. Isaac and G. Tammann, "On the alloys of iron with tin and gold", Z. Anorg. Chem., 53, 281 (1907).
127.D. Treheux and P. Guiraldenq, "Determination of solubility limits in alpha and gamma iron phases", Mem. Sci. Rev. Met., 71, 289 (1974).
128.A. N. Fedorenko and V. G. Brovkin, "Vapor pressure of tin and thermodynamic properties of the tin-iron system", Sb. Nauchn. Tr. Gos. Proektn. Nauchno-Issled. Inst. Gipronikel, 3, 83 (1977).
129.M. Singh and S. Bhan, "Contribution to the Fe-Sn system", J. Mater. Sci. Let., 5, 733 (1986).
130.J. J. Connolly and J. V. McAllan, "Tin-iron eutectic", Acta Metall., 23, 1209 (1975).
131.S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, "Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu", J. Mater. Res., 21(10), 2436 (2006).
132.Y. H. Chao, S. W. Chen, C. H. Chang, and C. C. Chen, "Phase equilibria of Sn-Co-Ni system and interfacial reactions in Sn/(Co, Ni) couples", Metall. Mater. Trans. A, 39(3), 477 (2008).
133.C. H. Wang and S. W. Chen, "Sn/Co solid/solid interfacial reactions", Intermetallics, 16, 524 (2008).
134.S. W. Chen, S. H. Wu, and S. W. Lee, "Interfacial reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) systems", J. Electron. Mater., 32(11), 1188 (2003).
135.H. Yu, V. Vuorinen, and J. Kivilahti "Effect of Ni on the formation of Cu6Sn5 and Cu3Sn intermetallics", IEEE T. Electron. Pack., 30(4), 293 (2007).
136.K. Nogita and T. Nishimura, "Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys", Script. Mater., 59, 191 (2008).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *