帳號:guest(18.188.152.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃瑞銘
作者(外文):Ruei-Ming Huang
論文名稱(中文):直接甲烷固態氧化物燃料電池之積碳與去積碳研究
論文名稱(外文):Study of Carbon Deposition and Removal on Direct Methane Solid Oxide Fuel Cells
指導教授(中文):黃大仁
指導教授(外文):Ta-Jen Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:933624
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:固態氧化物燃料電池甲烷積碳
外文關鍵詞:solid oxide fuel cellsmethanecarbon deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:367
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
本研究是以氧化釔穩定氧化鋯(YSZ) 做為電解質材料, Ni(60 wt%)-YSZ(100 wt%)作為陽極,Pt作為陰極的固態氧化物燃料電池,並進行直接甲烷反應。實驗中主要探討以甲烷為進料下,在固態氧化物燃料電池中積碳與去積碳的情形。
由於在固態氧化物燃料電池在操作過程中,陰極會持續地將氧分解為氧離子,並藉由電解質傳遞到陽極上。由此行為,我們能夠以電池的自身能力去除附著於陽極上的積碳,無須導入水氣,並可以此積碳發電。於通入氫氣或甲烷的過程中,可發現陽極YSZ的內部晶格氧會先向外擴散至表面與進料反應,而在關閉進料後,由於oxygen pumping現象,由陰極補充之前先行反應的內部晶格氧,故仍能偵測到電流。
而在50 mA/cm2電流下,通以甲烷反應5 min,可發現因甲烷裂解生成的碳物種在較高的供氧速率下,迅速反應而無法大量聚集,故可輕易去除積碳。但延長反應時間(10min、30min)後,就得由外界導入氧氣去除積碳,此種積碳隨反應時間的加長而增加。
在較低的電流下(5mA/cm2、1mA/cm2),陽極上的碳物種因供氧速率過慢,逐漸累積形成積碳,無法由自身能力去除完全,甚而由外界導入氧氣仍無法去除完全,造成電性的下降。在實驗的過程中,我們可發現反應的出口氣體CO/CO2 比值,隨著電流的下降而下降,意即在低電流(5mA/cm2、1mA/cm2)下CO2 生成比例提高。
In this study, we developed a direct methane solid oxide fuel cells that used yttria-staled zirconia and Ni(60 wt%)-YSZ(100 wt%) and platinum as electrolyte , anode, cathode respectively. Main discussion in the experiment was the condition of carbon deposition and removal on direct methane solid oxide fuel cell.
With operating the process in the solid oxide fuel cells, the cathode would divide oxygen to oxide ions and transmit that to the anode by the electrolyte. According to this behavior, we could remove the carbon deposited on the anode without adding H2O in the fuel and use the deposited carbon to generate electricity. During the operation of methane, the bulk lattice oxygen of Ni-YSZ would spread outwards and react with methane. According to the oxygen pumping, when we closed methane inlet, we still could detect electricity.
Using methane as fuel under 50 mA/cm2 current density reacted with 5min, the carbon deposited on the anode that could remove easily by the self de-coking capability. With increasing methane reaction time (10min、30min),the amount of carbon increased and couldn't remove from the anode completely.
At lower current density (5 mA/cm2、1 mA/cm2), we couldn't remove all of the carbon by the self de-coking capability and that decreased the CO/CO2 ratio in the product gas. That meant that CO2 percentage in the product gas was increased under lower current density (5 mA/cm2、1 mA/cm2).
第一章、序論...............................................1
第二章、文獻回顧...........................................4
2-1直接甲烷固態氧化物燃料電池..............................4
2-2固態氧化物電解質........................................5
2-3陰極材料................................................7
2-4陽極材料及陽極電化學反應................................8
2-4-1陽極材料..............................................8
2-4-2陽極電化學反應........................................9
2-5中溫型SOFC.............................................11
2-6電化學分析.............................................12
2-6-1開路電位(OCV)......................................12
2-6-2電流電位圖...........................................12
2-7甲烷的相關反應.........................................13
2-8積碳的來源、形式與去積碳的方法與研究...................16
第三章、研究構想..........................................18
第四章、實驗方法與步驟....................................19
4-1實驗藥品...............................................19
4-2實驗儀器...............................................20
4-3電池單元...............................................21
4-2-1陽極材料製備.........................................21
4-2-2電解質部分...........................................22
4-2-3電極塗佈.............................................22
4-4反應器裝置.............................................23
4-5實驗流程...............................................25
第五章、結果與討論........................................27
5-1電池單元微結構.........................................27
5-2電池效能 ..............................................30
5-3長時間反應性...........................................31
5-3-1導氧離子性...........................................32
5-3-2積碳與去積碳.........................................33
5-3-3不同積碳時間對去積碳的影響...........................40
5-3-4不同電流下進行積碳反應對去積碳的影響.................49
第六章、結論..............................................58
第七章、參考文獻..........................................60
【1】Proceeding of fuel cell, COE/TPC/ITRI, 1 (1999)

【2】M. Koyama, Ching-ju Wen, and Koichi Yamada, “La0.6Ba0.4CoO3 as a cathode material for solid oxide fuel cell using a BaCeO3 electrolyte” , J. Electrochem. Soc., 147, p.87 (2000)

【3】G.L. Semin, V.D. Belyaev, A.K. Demin, V.A. Sobyanin, “Methane conversion to syngas over Pt-based electrode in a solid oxide fuel cell reactor” , Appl. Catal. 181, p.131 (1999)

【4】C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, “Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane” , Catal. Today, 46, p.137 (1998)

【5】E.P. Murray, T. Tsai, S.A. Barnett, “A Direct Methane Fuel Cell With Ceria-Based Anode” , Nature 400, p.649 (1999)

【6】A.Hammou and J.Guindet, “Solid Oxide Fuel Cell” ,in the CRC Handbook of Solid State Electrochemistry, P.T.Gellmgs and H.J.M.Bouwmeester, Eds., CRC Pree., p.407 (1997)

【7】J.B.Goodenough, “Ceramic Solid Electrolytes” , Solid State Ionic, 94, p.17 (1997)

【8】J.B.Goodenough, “Oxide-ion Conductors by design” , Nature, 404, p.821 (2000)

【9】E.C. Subbarao and H.S. Maiti, “Solid Electrolytes With Oxygen Ion Conduction” , Solid State Ionics, 11, p.317 (1984)

【10】L.S. Wang, E.S. Thiele and S.A. Barnett, “Sputter deposition of yttria stabilized zirconia and silver cermet electrodes for SOFC applications” , Solid State Ionics, 52, p.261 (1992)


【11】E.C. Subbarao, Plenum, “Solid Electrolytes and Their Applications” , New York, p.109 (1980)

【12】K.Mori.Hee Y.Lee, John B.Goodenough “Sr-and Ni-doped LaCoO3 and LaFeO3 perovskit:new cathode materials for solide-oxide fuel cells” , J.Electrochem Soc, 145, p.3220 (1998)

【13】Kim kinoshta, “Electrochemical Oxygen Techenology” ,John Wiley&Sons.New York, 1992, Chap.2&Chap.4

【14】O.Yamamoto, Y.Takeda, R.Kanno and M.Noda, ”Perovskite
-type Oxides as Oxygen Electrodes for High Temperature Solid Oxide Fuel Cells’’ , Solid State Ionics, 22, p.241 (1987)

【15】陳冠蓉碩士論文, “以Ni-SDC為陽極材料之固態氧化物燃料電池研究” ,清華大學化工系, (2005)

【16】E. Hafel and H.G. Lintz,“Elektrodencharakterisierumg und Grenzteperatur Beider Elektrochemischen Messungder SauerstoFFaktivitat an Platin” , Solid State Ionics, 23, p.235 (1987)

【17】B. A. van Hassel, B. A. Boukamp, and A. J. Burggraaf, “Electrode Polarization at Au,O2(g)/Yttria Stabilized Zirconia Interface.PartI: Theoretical Considerations of Reaction Model” , Solid State Ionics, 48, p.139 (1991)

【18】J. Mizusaki, H. Tagawa, Y. Miyaki, S. yamauchi and K. Hirano, “Knetics of The Electrode Reaction at The CO-CO2, Porous Pt/Stabilized Zirconia Interface ” , Solid State Ionics, 53, p.126 (1992)



【19】J. Mizusaki, K. Amano, S. yamauchi and K. Fueki, “Electrode Reaction at Pt,O2(g)/Stabilized Zirconia Interface .PartI: Theoretical Considerations of Reaction Model ” , Solid State Ionics, 22, p.313 (1987)

【20】J.Mizusaki, H.Tagawa and T.Saito, ”Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres” , J. Electrochem. Soc., 141, p.2129 (1994)

【21】M.J.Saeki,H.Uchida and M.Watanbe, “Noble Metal Catalysts Highly-dispersed on Sm-Doped Ceria For the Application to Internal Reforming Solid Oxide Fuel Cells Operated at Medium Temperature” , Catal Lett., 26, p.149 (1994)

【22】M.Watanade, H.Uchida, M.Shibata, N.Mochizuki and K.Amikura, “High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells” , J. Electrochem. Soc., 141, p.342 (1994)

【23】K. Kendall, C.M.finnerty, G.Saunder, J.t.Chung, “Effect of dilution on methane entering an SOFC anode” , J. Power Sources, 106, p.323 (2002)

【24】M. Stoukides, “Solid Electrolyte Membrane Reactors: Current Experience and Future Outlook” , Catal. Rev. Sci. Eng., 42, p.1 (2000)

【25】E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen” , J. Catal, 81, p.429 (1983)

【26】T. P. Beebe, Jr., D. W. Goodman, B. D. Kay, and J. T. Yates, Jr., “Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single-Crystal Surfaces” ,J. Chem.Phys, 87, p.2305 (1987)

【27】Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature” , Appl. Catal. A: General, 258, p.107 (2004)

【28】J. T. Richardson and S. A. Paripatyadar, “Carbon-Dioxide Reforming of Methane with Supported Rhodium” , Appl. Catal. A: General, 61, p.293 (1990)

【29】Z. L. Zhang and X. E. Verykios, “Carbon-Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 Catalysts” , Appl. Catal. A: General, 138, p.109 (1996)

【30】M. T. Tavares, I. Alstrup, C. A. Berriardo and J. R. Rostrup-Nielsen, “CO Disproportionation on Silica-Supported Nickel and Nickel-Copper Catalysts” , J. Catal., 147, p.525 (1994)

【31】Nikolaos C. Triantafyllopoulos and Stylianos G. Neophytides “The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni–YSZ cermet catalysts” , J. Catal., 217, p.324 (2003)

【32】Caine M. Finnerty, Neil J. Coe, Robert H. Cunningham, R. Mark Ormerod, ”Carbon formation on and deactivation of nickel-based/zirconiaanodes in solid oxide fuel cells running on methane” , Catalysis Today, 46, p.137 (1998)

【33】Y. G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalyst” , Catal. Lett. 29, p.39 (1994)

【34】K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto, “Development of ultra-stable Ni catalyst for CO2 reforming of methane” , Catal. Today, 45, 35, (1998)

【35】A. Lemoniddou, M. A. Goula, I. A. Vasalos, “Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts – effect of preparation method” , Catal. Today, 46 , p.175 (1998)

【36】S. Wang, G. Q. M. Lu, “CO2 reforming of methane on Ni catalysts: Effect of the support phase and preparation technique” , Appl. Catal. B, 16, p.269 (1998)

【37】J-H. Kim, D. J. Suh, T-J. Park, K-L. Kim, “Effect of metal partical size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts” , Appl. Catal. A, 197, p.191 (2000)

【38】S. Wang, and G. Q. (Max) Lu, “Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane” , Appl. Catal. B, 19, p.267 (1998)

【39】G. Xu, K. Shi, Y. Gao, H. Xu, and Y. Wei, “Studies of reforming natural gas with carbon dioxide to produce synthesis gas: X. The role of CeO2 and MgO promoters” ,J. Mole. Catal., 147, p.47 (1999)

【40】Y. Schuurman, C. Mirodatos, P. Ferreira-Aparicio, I. Rodriguez-Ramos, and A. Guerrero-Ruiz, “Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts” , Catal. Lett., 66, p.33 (2000)

【41】J. A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon, “Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel” ,Catal. Today, 63, p.71 (2000)

【42】H. Y. Wang, E. Ruckenstein, “Carbon dioxide reforming of methane to methane to synthesis gas over supported rhodium catalysts: the effect of support” , Appl. Catal. A, 204, p.143 (2000)


【43】Goo Kim, Sung Pil Yoon, Suk Woo Nam,Sang-Hoon Hyun, Seong-Ahn Hong, “Fabrication and characterization of aYSZ/YDC composite electrolyte by a sol–gel coating method” , J. Power Sources, 110, p.222 (2002)

【44】Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang, P. Cheang, ”Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode supported solid oxide fuel cells” , J. of Power Sources , 117, p.26 (2003)

【45】R. Dieckmann, “Point Defects and Transport in Non-Stoichiometric Oxides: Solved and Unsolved Problems” , J. Phys. Chem. Solids , 59 p.507 (1998)

【46】Jenshi B. Wang,Jiun-Ching Jang,Ta-Jen Huang, ”Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells” , J. of Power Sources, 122, p.122 (2003)

【47】王俊修碩士論文, ”以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒型甲烷反應後的自身去積碳行為之研究”, 清華大學化工系,(2006)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *