帳號:guest(18.223.169.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳奕靜
作者(外文):Yi-Ching Chen
論文名稱(中文):使用奈米鎳硼觸媒探討對氯硝基苯於二氧化碳膨脹之甲醇中氫化反應速率之影響
論文名稱(外文):Hydrogenation of p-Chloronitrobenzene by Ni-B Nanocatalysts in the CO2-Expanded Methanol
指導教授(中文):談駿嵩
指導教授(外文):Chung-Sung Tan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:933628
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:對氯硝基苯氫化反應二氧化碳膨脹液體質傳阻力
相關次數:
  • 推薦推薦:0
  • 點閱點閱:457
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
對氯苯胺(p-Chloroaniline;p-CA)是有機合成、精細化工中間體的重要化工原料,廣泛應用於醫藥、有機合成、農藥、溶劑、染料、顏料、橡膠助劑等各領域中,主要應用於生產苯酚、硝基苯、苯胺、二苯醚以及殺蟲劑DDT等。
p-CA可由對氯硝基苯(p-Chloronitrobenzene;p-CNB)的直接氫化得到。在鹵素硝基芳香族的選擇性氫化製程中,沒有脫氯反應的產生是我們最希望得到的結果,而這個選擇性的結果則取決於觸媒的種類與反應的條件。在鹵素硝基芳香族之氫化中,常因為Hydro- Dehalogenation的發生造成一些副產物的生成,為避免不必要的反應發生,反應製程與觸媒的選擇是最重要的。本研究以p-CNB之觸媒氫化為反應系統,並於實驗中選用自行製備之奈米Ni-B觸媒,此觸媒是依中央大學陳郁文教授實驗室所提供的觸媒製備方法,以化學還原法所製得的Ni-B奈米合金觸媒。此觸媒對於主要產物p-CA的選擇率能達到99 %以上,可避免過度氫化的現象。
在氫化反應過程中,由於氫氣在有機溶劑中之溶解度不高,氣液間會存在著相當大之界面質傳阻力,此外在液體內部的擴散阻力也會對反應速率造成限制。本研究中在半批次操作下進行存在高壓二氧化碳之氫化反應,分別以不同反應物濃度、操作壓力、溫度及二氧化碳分壓比例為變數,用以觀察高壓二氧化碳的存在對氫化反應之影響。由實驗結果可知對於此p-CNB氫化反應,二氧化碳的存在是可以提升p-CNB轉化率的。在溫度為343、353或363 K下進行氫化反應,結果顯示不論在低溫或高溫下含有二氧化碳時的p-CNB轉化率皆大幅的提升,提升比例高達60 %以上。而在不同溫度操作時,反應系統中存在二氧化碳之最佳分壓比例亦有所不同,其分壓比例值由363 K時的20 %變成353及343 K時的10 %。而溫度353 K下存在二氧化碳之氫化反應時的p-CNB轉化率可高於363 K純氫氣實驗時的轉化率,意即在較低溫與較低的氫氣壓力下就可得到相同的轉化率,如此便能達到降低操作成本的成效。
從膨脹度實驗以及平衡溶解度實驗數據來看,二氧化碳的引進確實造成了甲醇體積的膨脹與氫氣溶解度的增加。CO2的存在使甲醇形成CO2-Expanded Methanol,除了可增加氫氣溶解度外,亦因溶劑體積膨脹導致液體密度與黏度的降低,而減少質傳阻力,例如液相中之擴散阻力,進而使p-CNB轉化率增加。
摘要 I
目錄 III
表目錄 IV
圖目錄 V
壹、緒論 1
貳、文獻回顧 6
2.1 硝基芳香族之觸媒選擇性氫化反應 7
2.2 Ni-B奈米觸媒之研究 10
2.3 存在高壓二氧化碳之應用與化學反應研究 13
2.4 CO2-Expanded Solvent之研究 17
參、實驗方法 25
3.1. 實驗儀器與藥品 26
3-1-1實驗儀器 26
3-1-2 實驗藥品 27
3.2. Ni-B奈米觸媒製備步驟 28
3.3. 對氯硝基苯之氫化反應 29
3.4. 甲醇之體積膨脹度反應 30
3.5. CO2 + H2 +MeOH三元系統之平衡溶解度 30
肆、實驗結果與討論 38
4.1 p-CNB氫化反應 38
4.1.1 轉速的影響 38
4.1.2 p-CNB初濃度的影響 39
4.1.3 壓力與溫度的影響 40
4.2 甲醇體積膨脹度實驗 43
4.3 H2+CO2+MeOH三元系統中之氫氣溶解度 44
伍、結論 77
陸、參考文獻 79
Bae, H. K.; Jeon, J. H. and Lee, H. “Influence of Co-solvent on Dye Solubility in Supercritical Carbon Dioxide.” Fluid Phase Equilib. 222-223 (2004) 119.
Bezanehtak, K.; Combes, G. B.; Dehghani, F. and Foster, N.R. “Vapor- Liquid Equilibri um for Binary System of Carbon Dioxide+Methanol, Hydrogen+Methanol, and Hydrogen+Carbon Dioxide at High Pressure.” J. Chem. Eng. Data. 47 (2002) 161.
Chang, C. J.; Day, C. Y.; Ko, C. M. and Chiu, K. L. “Densities and P-x-y Diagrams for Carbon Dioxide Dissolution in Methanol, Ethanol, and Acetone Mixtures.” Fluid. Phase. Equilib. 131 (1997) 243.
Chen, Y. Z. and Chen, Y. C. “Hydrogenation of para-Chloronitrobenzen over Nickel Borides.” Appl. Catal. 115 (1994) 45.
Chiang, T. C.; Chan, J. C. and Tan, C. S. “Alkylation of toluene with isopropanol over cld modified HZSM-5 under atmospheric and supercritical operations.” Ind. Eng. Chem. Res. 42 (2003) 1334.
Chouchi, D.; Gourgouillon, D.; Courel, M.; Vital, J. and Ponte, M. N. “The Influence of Phase Behavior on Reactions at Supercritical Conditions: The Hydrogenation of α-Pinene.” Ind. Eng. Chem. Res. 40 (2001) 2551.
Coen, E. M.; Quinn, J. F.; Dehghani, F.; Foster, N. R. and Davis, T. P. “Molecular Weight Fractionation of Poly(Methyl Methacrylate) Using Gas Anti-Solvent Techniques.” Polymer 44 (2003) 3477.
Combes, G. B.; Dehghani, F.; Lucien, F. P.; Dillow, A. K. and Foster, N. R. “Asymmetric Catalytic Hydrogenation in CO2 Expanded Methanol–An Application of Gas Anti-solvent Reactions (GASR).” React. Eng. Pollut. Prev. (2000) 173.
Coq, B.; Tijani, A. and Figueras, F. “Particle Size Effect on Kinetic of p-Chloronitrobenzene Hydrogenation over Platinum/Alumina Catalysts.” J. Mol. Catal. 68 (1991) 331.
Coq, B.; Tijani, A. and Figueras, F. “Hydrogenation of para- Chloronitrobenzene over Supported Ruthenium-Based Catalysts.” Appl. Catal. 76 (1991) 255.
Devetta, L.; Giovanzana, A.; Canu, P.; Bertucco, A. and Minder, B.J., “Kinetic Experiments and Modeling of a Three-Phase Catalytic Hydrogenation Reaction in Supercritical CO2.” Catalysis Today 48 (1999) 337.
Fujita, S.; Akihara, S.; Zhao, F.; Liu, R.; Hasegawa, M. and Arai, M. “Selective hydrogenation of cinnamaldehyde using ruthenium-phosphine complex catalysts with multiphase reaction systems in and under pressurized carbon dioxide:Signficance of pressurization and interfaces for the control of selectivity.” J. Catal. 236 (2005) 101.
Greenfield, H. and Dovell, F. S. “Metal Sulfide Catalysts for Hydrogenation of Halonitrobenzenes to Haloanilines.” J. Org. Chem. 32 (1967) 3670.
Kuo, T. W. and Tan, C. S. “Alkylation of toluene with propylene in supercritical carbon dioxide over chemical liquid deposition HZSM-5 pellets.” Ind. Eng. Chem. Res. 40 (2001) 4724.
Han, X.; Zhou, R.; Zheng, X. and Jiang, H. “Effect of Rare Earths on the Hydrogenation Properties of p-Chloronitrobenzene over Polymer- anchored Platinum Catalysts.” J. Mol. Catal. A. Chem. 193 (2003) 103.
Han, X.; Zhou, R.; Lai, G. and Zheng, X. “Influence of Support and Transition Metal (Cr, Mn, Fe, Co, Ni and Cu) on the Hydrogenation of p-Chloronitrobenzene over Supported Platinum Catalysts.” Catal. Today. 93-95 (2004) 433.
Hannay, J. B. and Hogarth, J. “On the Solubility of Solids in Gases.” Proc. Roy. Soc. (London) 29 (1879) 324.
Hemminger, O.; Marteel, A.; Mason, M. R.; Davies, J. A.; Tadd, A. R. and Abraham, M.A. Hydroformylation of 1-Hexene in Supercritical Carbon Dioxide Using a Heterogeneous Rhodium Catalyst. 3. Evaluation of Solvent Effect. Green Chem. 4 (2002) 507.
Hou, Y.; Wang, Y.; Mi, W.; Li, Z.; Han, S.; Mi, Z.; Wu, W. and Min, E. “Effects of Lanthanum Addition on Ni-B Amorphous Alloy Catalysts Used in Anthraquinone Hydrogenation.” React. Kinet. Catal. Lett. 80 (2003) 233.
Huang, Z. Y. MSc. Thesis, National Central University (2005)
Jin, H. and Subramaniam, B. “Homogeneous Catalytic Hydroformylation of 1-Octene in CO2-expanded Solvent Media.” Chem. Eng. Sci. 59 (2004) 4887.
Khilnani, V. L. and Chandalia, S. B. “Selective Hydrogenation. I. para- chloroaniline Platinum on Carbon as Catalyst.” Org. Process. Res. Dev. 5 (2001) 257.
Kho, Y. W.; Conrad, D. C. and Knutson, B. L. “Phase Equilibria and Thermophysical Properties of Carbon Dioxide-expanded Fluorinated Solvents.” Fluid Phase Equilib. 206 (2003) 179.
Kordikowski, A.; Schenk, A. P.; Van Nielen, R. M. and Peters, C.J. “Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents.” J. Supercri. Fluids 8 (1995) 205-216.
Kritzler, H.; Bohm, W.; Kiel, W. and Birkenstock, U. “Chlorinated Aromatic Amines.” U. S. 4 (1977) 059, 627.
Kuo, T. W. and Tan, C. S. “Alkylation of Toluene with Propylene in Supercritical Carbon Dioxide over Chemical Liquid Deposition HZSM-5 Pellets.” Ind. Eng. Chem. Res. 40 (2001) 4724.
Lee, S. P. and Chen, Y. W. “Selective Hydrogenation of Furfural on Ni-P, Ni-B, and Ni-P-B Ultrafine materials.” Ing. Eng. Chem. Res. 38 (1999) 2548.
Lee, S. P. and Chen, Y. W. “Nitrobenzene Hydrogenation on Ni-P, Ni-P, and Ni-P-B Ultrafine Materials.” J. Mol. Catal. A: Chem. 152 (2000) 213.
Lee, S. P. and Chen, Y. W. “Catalytic Properties of Ni-P and Ni-P Ultrafine Materials. J. Catal. Technol. Biotechnol. 75 (2000) 1073- 1079.
Lee, S. P. and Chen, Y. W. “Effects of Preparation on the Catalytic Properties of Ni-P-B Ultrafine Materials.” Ing. Eng. Chem. Res. 40 (2001) 1495.
Li, H.; Li, H.; Dai, W. and Qiao, Minghua. “Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity.” Appl. Catal. A 238 (2003) 119.
Liaw, B. J.; Chiang, S. J.; Tsai, C. H. and Chen, Y. Z. “Preparation and Catalysis of Polymer-stabilized NiB Catalysts on Hydrogenation of Carbonyl and Olefinic Groups.” Appl. Catal. A 284 (2005) 239.
Liu, Q. S.; Takemura, F. and Yabe, A. “Solubility of Hydrogen in Liquid Methanol and Methyl Formate at 20℃ to 140℃.” J. Chem. Eng. Data. 41 (1996) 1141.
Lopez-Castillo, Z. K.; Flores, R.; Kani, I.; Fackler Jr, J. P. and Akgerman, A. “Evaluation of polymer-supported rhodium catalysts in 1-octene hydroformylation in supercritical carbon dioxide.” Ind. Eng. Chem. Res. 42 (2003) 3893.
Matsuyama, K.; Zhang, D.; Urabe T. and Mishima, K. “Formation of L-poly(lactic acid) Microspheres by Rapid Expansion of CO2 Saturated Polymer Suspensions.” J. Supercri. Fluids. 33 (2005) 275.
Musie, G.; Wei, M.; Subramaniam, B. and Busch, D.H. “Catalytic Oxidations in Carbon Dioxide-Baseed Reaction Media, Including Novel CO2-Expanded Phases.” Coord. Chem. Rev. 219 (2001) 789.
Page, S.H.; Goates, S.R. and Lee, M.L. “Methanol /CO2 phase behavilr in supercritical fluid chromatography and extraction.” J. Supercri. Fluids 4 (1991) 109.
Phiong, H. S.; Lucien, F. P. and Adesina, A. A. “Three-Phase Catalyst Hydrogenation of α-Methylstyrene in Supercritical Carbon Dioxide.” J. Supercrit. Fluids. 25 (2003) 155.
Poliakoff, M.; Meehan, N. J. and Ross, S. K. “A Supercritical Success Story.” Chem. Ind. (1999) 750-754.
Rajadhyaksha, R.A. and Karwa, S. L. “Solvent Effects in Catalytic Hydrogenation.” Chem. Eng. Sci. 41 (1986) 1765.
Shariati, A. and Peters, C. J. “Measurements and Modeling of the Phase Behavior of Ternary System of Interest for the GAS Process: I. The System Carbon Dioxide + 1-Propanol + Salicylic acid.” J. Supercrit. Fluids. 23 (2002) 195.
Subramaniam, B.; Musie, G. T.; Busch, D.H. and Wei, M. “Homogenous catalytic oxidation of olefins in CO2-expanded organic solvents.” Abstracts of Papers of Am. Chem. Soc. 220 (2000) 413.
Thomas, V. L.; Johnson, B. F. G.; Raja, R.; Sankar, G.; and Midgley, P. A.; “High-performance nanocatalysts for single-step hydrogenations” Acc. Chem. Res. 36 (2003) 20.
Tijani, A.; Coq, B. and Figueras, F. “Hydrogenation of para- Chloronitrobenzene over Supported Ruthenium-based Catalysts.” Appl. Catal. 76 (1991) 255.
Tu, W.; Liu, H. and Tang, Y. “The Metal Complex Effect on the Selective Hydrogenation of m- and p-Chloronitrobenzene over PVP–stabilized Platunum Colloidal Catalysts.” J. Mol. Catal. A. Chem. 159 (2000) 115.
Visentin, F.; Puxty, G.; Kut, O. M.; and Hungerbiihler, K. “Study of the hydrogenation of selcted nitro compounds by simultaneous measurements of calorimetric, FT-IR, and Gas-uptake signals.” Ind. Eng. Chem. Res. 45 (2006) 4544.
Vitulli, G.; Verrazzani, A.; Pitzalis, E. and Salvadori, P. “Pt/γ- Al2O3 Powders in the Selective Hydrogenation of p-Chloronitrobenzene.” Catal. Lett. 44 (1997) 205.
Wei, M.; Musie, G. T.; Busch, D. H. and Subramaniam, B. “CO2- Expanded Solvents:Unique and Versatile Media for Performing Homogeneous Catalytic Oxidations. J. Am. Chem. Soc. 124 (2002) 2513.
Wyatt, V. T.; Bush, D.; Liu, J.; Hallett, J. P.; Liotta, C. L. and Eckert, C. A. “Determination of Solvatochromic Solvent Parameters for the Characterization of Gas-expanded Liquids.” J. Supercrit. Fluids. 36 (2005) 16.
Xie, S.; Li, H.; Li, H. and Deng, J. F. “Selective Hydrogenation of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Comparison with Other Ni-based Catalysts.” Appl. Catal. A 189 (1999) 45.
Xie, X. F.; Liotta, C. L. and Eckert, C. A. “CO2-Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids.” Ind. Eng. Chem. Res. 164 (2004) 117.
Xie, X. F.; Brown, J. S.; Bush, D. and Eckert, C. A. “Bubble and Dew Point Measurements of the Ternary System Carbon Dioxide + Methanol + Hydrogen at 313.2 K.” J. Chem. Eng. Data. 50 (2005) 780.
Yin, J.Z. and Tan, C.S. “Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Toluene from 305 to 343 K and 1.2 to 10.5 MPa.” Fluid Phase Equil. 242 (2006) 111.
Yu, Z.; Liao, S.; Xu, Y.; Yang, B. and Yu, D. “A Remarkable Synergic Effect of Polymer-anchored Bimetallic Palladium-Ruthenium Catalysts in the Selective Hydrogenation of p-Chloronitrobenzene.” J. Chem. Soc, Chem. Commum. (1995) 1155.
Zhang, Y.; Fei, J.; Yu, Y. and Zheng, X. “Silica Immobilized Ruthenium Catalyst Used for Carbon Dioxide Hydrogenation to Formic Acid (I): The Effect of Functionalizing Group and Additive on the Catalyst Performance.” Catal. Comm. 5 (2004) 643.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *