帳號:guest(18.223.185.138)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭浩德
作者(外文):Hao-Der Cheng
論文名稱(中文):微型光學定位晶片於光碟機讀寫頭循軌聚焦之應用
論文名稱(外文):Integrated Tracking and Focusing Micro-Optical-System for the Application of Optical Pickup Head
指導教授(中文):方維倫
指導教授(外文):Weileun Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:933765
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:微機電製造技術
相關次數:
  • 推薦推薦:0
  • 點閱點閱:172
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
摘要
隨著科技的進步以及時代的演進,個人儲存的需求越來越高,其中光儲存依舊扮演了重要的角色。目前光儲存的目標除了希望儲存容量加大之外,隨著個人化攜帶式的資訊產品蓬勃發展,微小化、輕量化也是發展的重點。為了達到這些目標,必須提升光學讀寫頭的技術,但是以目前的光學讀寫頭技術似乎遇到了難以解決的瓶頸。為了尋求解決之道,本文希望藉由微機電系統技術來達到未來的目標,因為機電技術本身的元件特性就是微小化、輕量化、動態響應快、精準度高、批量製造等等。
本文以光學讀寫頭中致動器的部分為研究目標。在光學讀寫頭當中,需要具備有同平面運動的循軌致動器以及出平面運動的聚焦致動器。本文利用微機電中面型微加工技術以及體型微加工來製造出同平面及出平面大位移致動器。此外,還期望將兩種致動器整合在同一元件上面,並且在致動時能夠獨立操控且互不偶合。並且將光學透鏡整合於微機電元件當中,讓元件擁有光學上的性能。
本文將提出的設計概念主要是利用電磁式致動器以及電熱式致動器來達成致動目標。

關鍵字:光學讀寫頭、微機電系統、微致動器。
目錄
目錄 I
圖目錄 III
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2.1 光學讀寫頭原理 2
1-2.2 微機電元件 4
1-3 研究動機與目標 7
第2章 設計與分析 16
2-1 微型讀寫頭系統設計 16
2-2 出平面聚焦致動器設計 18
2-3 同平面循軌致動器設計 21
第3章 製程步驟與結果 33
3-1 製程步驟 33
3-2 製程結果與討論 35
3-2.1 製程結果 35
3-2.2 製程注意事項討論 36
3-3 製程問題與討論 37
3-3.1 最初製程設計問題 37
3-3.2 SOI晶片絕緣層應力問題 38
3-3.3 元件釋放問題 38
3-3.4 UV膠透鏡問題 39
第4章 實驗架設與元件測試 55
4-1 實驗架設 55
4-2 出平面聚焦致動量測 55
4-3 同平面循軌致動量測 57
4-4 光學量測 58
第5章 結論 70
5-1 結論與本文貢獻 70
5-2 未來工作 71
第6章 參考文獻 75


圖目錄
圖1-1 光碟機系統示意圖 9
圖1-2 光學讀寫頭的示意圖 9
圖1-3光碟規格圖表 10
圖1-4 傳統四弦型(4-Wire)光學讀寫頭 11
圖1-5 Ty Harness的雙軸致動器 11
圖1-6 M. Helmbrecht微面鏡 12
圖1-7 Kwang-Cheol Lee雙軸致動平台 12
圖1-8 Wen-Chih Chen出平面熱致動器 12
圖1-9 Jack W. Judy同平面磁致動結構 13
圖1-10 Chang Liu 出平面面型加工磁致動平板 13
圖1-11 Seiichi Hata光碟機飛行讀寫頭聚焦平台 14
圖1-12 M. Wu微光學桌 14
圖1-13 雙階段調整系統架設示意圖 15
圖1-14 微機電元件系統架設示意圖 15
圖2-1 系統設計概念示意圖 24
圖2-2 元件設計概念示意圖 24
圖2-3 聚焦致動頻率響應圖模擬 25
圖2-4 循軌致動頻率響應圖模擬 26
圖2-5 聚焦致動原理示意圖 27
圖2-6 電磁致動示意圖 27
圖2-7 元件上視圖 28
圖2-8 雙層金屬導線側視圖 28
圖2-9 不同聚焦致動彈簧模擬結果 29
圖2-10 V型彎曲臂熱致動器 29
圖2-11 V型彎曲臂熱致動器設計可調變幾何參數 29
圖2-12 循軌致動器模擬結果 30
圖2-13 聚焦致動造成循軌致動器變形模擬 31
圖2-14 聚焦致動造成循軌致動器變形模擬 31
圖2-15 兩對V型彎曲臂模擬結果 32
圖3-1製作流程圖 40
圖3-1製作流程圖(續) 41
圖3-1製作流程圖(續) 42
圖3-2整合聚焦透鏡步驟 42
圖3-3 製程步驟到達圖(3-1d)時結果 43
圖3-4 第一層金屬導線 43
圖3-5 第一層金屬導線與定義完圖案的氮化矽層 44
圖3-6 SOI晶片正面蝕刻結果 44
圖3-7 大尺寸雙向循軌致動元件 45
圖3-8 小尺寸雙向循軌致動元件 45
圖3-9 循軌致動器(V-beam thermal actuator) 46
圖3-10 聚焦致動元件陣列 46
圖3-11 聚焦致動元件 47
圖3-12 雙層導線平面線圈 47
圖3-13 聚焦循軌致動元件 48
圖3-14 整合商用聚焦物鏡之元件 48
圖3-15 商用聚焦物鏡之近拍 49
圖3-16 整合UV膠透鏡之元件 49
圖3-17 第一層電鍍銅導線脫層 50
圖3-18 第一層電鍍銅導線脫層與氧化 50
圖3-19 第二層電鍍銅導線脫層 51
圖3-20 SOI晶片氧化層應力造成氧化層波紋 51
圖3-21 SOI晶片氧化層破裂 52
圖3-22 氧化層應力造成元件變形 52
圖3-23 氧化層應力造成元件破壞 53
圖3-24 第二層鋁導線脫離 53
圖3-25 UV膠灘流 54
圖4-1 聚焦致動量測架設示意圖 59
圖4-2聚焦致動量測架設圖 59
圖4-3 循軌致動量測架設示意圖 60
圖4-4 聚焦致動位移量 60
圖4-5 聚焦致動頻率響應圖 61
圖4-6 聚焦致動頻率響應實驗與模擬(製程前模擬)比較 62
圖4-7 聚焦致動頻率響應實驗與模擬(製程後模擬)比較 62
圖4-8 大位移元件聚焦致動位移量 63
圖4-9 大位移聚焦元件致動頻率響應圖 63
圖4-10 V-beam thermal actuator,(a)致動前,(b)致動後 64
圖4-11 單向循軌致動位移量 64
圖4-12 循軌致動頻率響應圖 65
圖4-13 循軌致動頻率響應實驗與模擬(製程前模擬)比較 66
圖4-14 循軌致動頻率響應實驗與模擬(製程後模擬)比較 66
圖4-15 大位移元件循軌致動位移量 67
圖4-16 光路架設示意圖 67
圖4-17 實際光路架設圖 68
圖4-18光路架設後元件圖 68
圖4-19 透鏡聚焦效果,(a)光線離焦,(b)光線聚焦 69
圖5-1元件規格比較表 72
圖5-2 商用讀寫頭致動部件與微機電元件 73
圖5-3 雙階段調整平台示意圖 73
圖5-4 光纖定位架構圖 74
圖5-5 定位元件與光纖近拍圖 74
[1] 黃戴廷,“創新光學讀寫頭致動器設計,” 國立清華大學動機系碩士論文, 1999.
[2] H.C. Nathanson, W.E. Newell, R.A. Wickstrom, and J.R. Davis, Jr.,
“The Resonant Gate Transistor,” IEEE Trans. on Electorn Devices, 1967, pp.117.
[3] W. Piyawattanametha, L. Fan, S. S. Lee, J. G. D. Su, M. C. Wu, “MEMS Technology for Optical Crosslink for Micro/Nano Satellites,” International Conference of Integrated Nano/Microtechnolgy for Space Applications (NANOSPACE98), NASA/Johnson Space Center, Houston, TX, Nov 1-6, 1998.
[4] Tae-Sik Kim, Sang-Shin Lee, Youngjoo Yee, Jong-Uk Bu, Chil-Geun Park, and Man-Hyo Ha, “Large Tilt Angle Electrostatic Force
Actuated Micro-Mirror,” IEEE PHOTONICS TECHNOLOGY LETTERS, November, 2002, 1569-1571.
[5] J. Branebjerg, and P. Gravesen, “A new electrostatic actuator
providing improved stroke length and force,” Micro Electro
Mechanical Systems, Germany, February, 1992, pp 6-11.
[6] M. A. Helmbrecht, U. Srinivasan, C. Rembe, and R. T. Howe,
“Micromirrors for Adaptive-Optics Arrays,” Solid-State Sensors and Actuators, Germany, June, 2001, pp 1290-1293.
[7] W. C. Tang, T. H. Nguyen, and R. T. Howe, “Laterally Driven
Polysilicon Resonant Microstructures,” Sensors and Actuators, 1989, pp. 25-32.
[8] John D. Grade, Hal Jerman, and Thomas W. Kenny, “Design of Large Deflection Electrostatic Actuators,” Journal of Microelectromechanical
Systems, June, 2003, pp 335 – 343.
[9] Hyoung J Cho and Chong H Ahn, “Magnetically-driven bi-directional optical microscanner,” Journal of Micromechanics and Microengineering, February, 2003, pp 383–389.
[10] Sunghoon Kwon, Veljko Milanovic, and Luke P. Lee, “Large-Displacement Vertical Microlens Scanner With Low Driving Voltage,” IEEE PHOTONICS TECHNOLOGY LETTERS, November, 2002, pp 1572-1574.
[11] Uma Krishnamoorthy, Daesung Lee, and Olav Solgaard, " Self-Aligned Vertical Electrostatic Combdrives for Micromirror Actuation,” Journal of Microelectromechanical Systems, August, 2003, pp 458-464.
[12] C Tsou, W T Lin, C C Fan and Bruce C S Chou, “A novel self-aligned vertical electrostatic combdrives actuator for scanning micromirrors,” Journal of Micromechanics and Microengineering, 2005, pp 855-860.
[13] Zhihong Li and Norman Tien, “LOW-COST ELECTROPLATED VERTICAL COMB-DRIVE,” Proceedings of the Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head, SC, 2004, pp. 220-223.
[14] Ki-Hun Jeong and Luke P. Lee, ” A NOVEL FABRICATION METHOD OF A VERTICAL COMB DRIVE USING A SINGLE SOI WAFER FOR OPTICAL MEMS APPLICATIONS,” Journal of Micromechanics and Microengineering, 2005, pp 277-281.
[15] Dooyoung Hah, Pamela R. Patterson, Hung D. Nguyen, Hiroshi Toshiyoshi, and Ming C. Wu, “Theory and Experiments of Angular Vertical Comb-Drive Actuators for Scanning Micromirrors,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, , MAY/JUNE, 2004, pp 505-513.
[16] T. Akiyama, and K. Shono, “Controlled Stepwise Motion in
Polysilicon Microstructures,” Journal of Microelectromechanical
Systems, September, 1993, pp. 106-110.
[17] H. Guckel, J.Klein, T. Christenson, K. Skrobis, M. Laudon, and E.
Lovell, “Thermo-magnetic metal flexure actuators,” Solid-State
Sensor and Actuator Workshop, Hilton Head Island, SC, June, 1992, pp.73-75.
[18] John H. Corntois, Victor M. Bright, “Applications for surface-rnicromachined polysilicon thermal actuators and arrays,” Sensors and Actuators, January, 1997, pp 19-25.
[19] Harald Sehr, Alan G R Evans, Arthur Brunnschweiler, Graham J Ensell and Trevor E G Niblock, “Fabrication and test of thermal vertical
bimorph actuators for movement in the wafer plane,” Journal of Micromechanics and Microengineering, 2001, pp 306-310.
[20] J P Yang, X C Deng, and T C Chong, “An electro-thermal bimorph-based microactuator for precise track-positioning of optical disk drives,” Journal of Micromechanics and Microengineering, March, 2005, pp 958–965.
[21] M.J. Sinclair, “A high force low area MEMS thermal actuator” Thermal and Thermomechanical Phenomena in Electronic Systems, May, 2000, pp 127-131.
[22] Neal B Hubbard and Larry L Howell, “Design and characterization of a dual-stage, thermally actuated nanopositioner,” Journal of Micromechanics and Microengineering, June, 2005, pp 1482–1493.
[23] Holzer R., Shimoyama I., Miura H., “Lorentz force actuation of flexible thin-film aluminum microstructures,” Intelligent Robots and Systems, August, 1995, pp 156-161.
[24] Shimoyama I., Kano O., Miura H., “3D micro-structures folded by Lorentz force,” Micro Electro Mechanical Systems, January, 1998, pp 24-28.
[25] Si-Hong Ahn and Yong-Kweon Kim, “Silicon scanning mirror of two DOF with compensation current routing,” Journal of Micromechanics and Microengineering, August, 2004, pp 1455–1461.
[26] Isabelle P.F. Harouche, C. Shafai, “Simulation of shaped comb drive as a stepped actuator for microtweezers application,” Sensors and Actuators, September 2005, pp 540-546.
[27] Wagner B., Benecke W., “Microfabricated actuator with moving permanent magnet,” Micro Electro Mechanical Systems, Jan.- Feb., 1991, pp 27-32.
[28] Shekhar Bhansali, Andy Lei Zhang, Ronald B. Zmood, Paul E. Jones,and Dinesh K. Sood, “Prototype Feedback-Controlled Bidirectional
Actuation System for MEMS Applications,” Journal of Microelectromechanical Systems, June, 2000, pp 245-251.
[29] Jack W. Judy, and Richard S. Muller, “Magnetically Actuated, Addressable Microstructures,” Journal of Microelectromechanical Systems, September, 1997, pp 249-256.
[30] Chang Liu, Tsao T., Yu-Chong Tai, Tzong-Shyng Leu, Chih-Ming Ho, Wei-Long Tang, Miu D., “Out-of-plane permalloy magnetic actuators for delta-wing control,” Micro Electro Mechanical Systems, Jan.-Feb., 1995, pp 7.
[31] Yong W. Yi and Chang Liu, “Magnetic Actuation of Hinged Microstructures,” Journal of Microelectromechanical Systems, March, 1999, pp 10-17.
[32] Iwase, E., Takeuchi, S., Shimoyama, “Sequential batch assembly of 3-D microstructures with elastic hinges by a magnetic field,” Micro Electro Mechanical Systems, January, 2002, pp 188-191.
[33] Ty Harness and Richard R A Syms, “Characteristic modes of electrostatic comb-drive X–Y microactuators,” Journal of Micromechanics and Microengineering, May, 1999, pp 7-14.
[34] Veljko Milanovic´, Sunghoon Kwon, and Luke P. Lee, “High Aspect Ratio Micromirrors With Large Static Rotation and Piston Actuation,” IEEE PHOTONICS TECHNOLOGY LETTERS, August, 2004, pp 1891-1893.
[35] Kwang-Cheol Lee, Seung S. Lee, “Deep X-ray mask with integrated electro-thermal micro,” Sensors and Actuators, 2004, pp 37-43.
[36] W.-C. Chen, C.-C. Chu, J. Hsieh, and W. Fang, “A Reliable Single-layer Out-of-plane Micromachined Thermal Actuator,” Sensors and Actuators, 2003,pp 48-58.
[37] Jack W. Judy, Richard S. Muller Fellow, and Hans H. Zappe, “Magnetic Microactuation of Polysilicon Flexure Structures,” Journal of Microelectromechanical System, December, 1995, pp 162-169.
[38] Chang Liu , Tom Tsao, Yu-Chong Tai, Chih-Ming Ho, “Surface Micromachined Magnetic Actuators,” MEMS '94, Japan, 1994, pp 57-62.
[39] Seiichi Hata, Yutaka Yamada, Junichi Ichihara and Akira Shimokohbe, “A MICRO LENS ACTUATOR FOR OPTICAL FLYING HEAD,” MEMS’ 02, USA, 2002, pp 507-510.
[40] Seong-Hvok Kim, Youngioo Yee, Junghoon Choi, Hyouk Kwon, Man-Hyo Ha, Changhoon Oh and Jong Uk Bu, “A MICRO OPTICAL FLYING HEAD FOR A PCMCIA-SIZED OPTICAL DATA STORAGE,” MEMS’04, 2004, pp 85-88.
[41] M. C. Wu, L. Y. Lin, S. S. Lee, and K. S. J. Pister, ”Micro-machined free-space integrated micro-optics,” Sensors and Actuators, 1995, pp 127-134.
[42] Jenq-Yang Chang, Chih-Ming Wang, Chien-Chieh Lee, Hsi-Fu Shih, and Mount-Learn Wu, “Realization of Free-Space Optical Pickup Head
With Stacked Si-Based Phase Elements,” IEEE PHOTONICS TECHNOLOGY LETTERS, January, 2005
[43] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” OPTICS LETTERS, January, 1996, pp 155-157.
[44] I. J. Busch-Vishniac, “The case for magnetically driven microactuators,” Sensors and Actuators, 1992, pp 207-220.
[45] R.C. Hibbeler, Mechanics of Materials, 4th Ed., Prentice Hall International, 2000.
[46] Giuseppe Barillaro, Antonio Molfese, Andrea Nannini1 and Francesco Pieri, “Analysis, simulation and relative performances of two kinds of serpentine springs,” Journal of Micromechanics and Microengineering, December, 2004, pp 736-746.
[47] Yogesh B. Gianchandani, and Khalil Najafi, “Bent-Beam Strain Sensors”, Journal of Microelectromechanical System, May, 1996, pp 52-58.
[48] L. Que, J.-S. Park, and Y.B. Gianchandani, “Bent-beam electro-thermal actuators for high force application,” MEMS’99, January, 1999, pp 31-36.
[49] Henri Jansen, Meint de Boer, Remco Wiegerink, Niels Tas, Edwin Smulders, Christina Neagu, Miko Elwenspoek, “RIE lag in high aspect ratio trench etching of silicon,” Microelectronic Engineering, March, 1997, pp 45-50.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *