帳號:guest(3.133.12.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):伍家麟
作者(外文):Chia-Lin Wu
論文名稱(中文):以自組裝模板壓印之表面結構對發光元件出光效率之改善
指導教授(中文):李明昌
指導教授(外文):Ming-Chang Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:934134
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:自組裝模板奈米壓印表面結構出光效率
外文關鍵詞:AAOnanoimprintsurface structureOLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:368
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本論文致力於將可大面積化之自組裝陽極氧化鋁模板(Anodic Aluminum Oxide template, AAO template)應用於熱壓式奈米壓印技術以及聚二甲基矽氧烷(PDMS)鑄模技術作為有機或無機發光元件(Inorganic\Organic Light Emitting Devices)的表面處理,以提高其出光效率。當前的奈米壓印技術多以微影蝕刻製程製作出的模板來作為壓印模仁(mold),但此模仁的成本高、且無法大面積化,使用數次之後容易產生結構損毀,因此傳統的奈米壓印技術至今尚欠缺應用於元件上的實例;AAO模板的製程簡單便宜、孔洞密度等各項參數可隨意調整,遂成為微奈米技術中極具應用性的工具。PDMS為一種常見的合成塑膠,在固化前具有良好的流動性,適合翻鑄超精細結構;且表面能非常低,固化後抗酸鹼、抗有機溶劑腐蝕,亦可作為奈米壓印之模仁使用;曾有文獻提及將具有微透鏡陣列(microlens array)之PDMS薄膜貼附在OLED之出光面,作為增加取光效率之設計,因此,利用AAO模板做為奈米壓印模仁,搭配PDMS鑄模技術,可望為OLED之表面處理打開一條新路。
本研究第一部份使用市售的氧化鋁濾膜作為熱壓式奈米壓印之模仁,探討其壓印製程之穩定性、結構均勻度、有效壓印面積及模具表面抗沾黏的能力等;若配合正確的製程條件,有機會達到大面積均勻壓印。本研究進一步使用PDMS灌鑄AAO模板,期望能控制PDMS之固化條件以達到合適的深寬比而順利脫模,並測試此奈米結構之光學性質,發現有機會增加元件出光效率90%。
A new, low-cost approach for enhancing light extraction of organic or inorganic light emitting devices by texturing emitting surfaces was studied in this research. The surface is textured either by nanoimprinting or nanocasting technologies which use Anodic Aluminum Oxide templates (AAO templates) as molds. Unlike other nanoimprinting molds AAO templates have advantages in easy fabrication, controllable pore sizes and large printing area. Polydimethyl siloxane (PDMS) is one kind of common polymers as nanoimprinting materials. Fluidity and low surface energy make it easy to conform to the surface and demold. Therefore, it is suitable for casting fine structures.
中文摘要..................................................I
英文摘要.................................................II
誌謝....................................................III
目錄......................................................V


第一章 導 論
1.1 研究背景與動機.......................................1
1.1.1 有機發光二極體之效率改善.......................1
1.1.2 表面結構之製作.................................1
1.1.3 研究目的.......................................2
1.2 論文架構.............................................3

第二章 理論背景與文獻回顧
2.1 OLED 或 LED出光效率的改善............................4
2.2 奈米壓印技術介紹....................................12
2.2.1 熱壓式奈米轉印技術之介紹......................12
2.2.2 步進光感成形式奈米轉印........................15
2.2.3 可撓性奈米轉印................................16
2.2.4 奈米轉印之關鍵技術............................17
2.3 陽極氧化鋁模板......................................19
2.3.1 AAO模板的形成機制.............................19
2.3.2 AAO模板的應用.................................21
2.4 PDMS鑄模............................................23

第三章 實驗設置與步驟
3.1 壓印實驗............................................24
3.1.1 壓印設備介紹..................................24
3.1.2 壓印製程步驟..................................26
3.1.2.1 AZ1500(38cP)壓印實驗..................26
3.1.2.2 PMMA壓印實驗..........................28
3.2 PDMS鑄模實驗........................................29
3.2.1 將 PDMS 澆淋於封底之 AAO 上...................29
3.2.2 利用毛細現象讓 PDMS 滲入 AAO 孔洞中...........30
3.3 光學實驗............................................32
3.4 AAO表面處理.........................................34
3.5 AAO拋光實驗.........................................36

第四章 製程結果與討論
4.1 壓印於AZ1500(38cP)阻劑..............................37
4.1.1 壓印成果分析..................................37
4.1.2 壓力效應分析..................................40
4.2 壓印於PMMA..........................................42
4.2.1 壓印結果分析..................................42
4.2.2 厚膜PMMA壓印結果.............................48
4.2.3 壓印溫度之探討................................52
4.2.4 AAO拋光實驗...................................55
4.3 PDMS鑄模實驗........................................58
4.3.1 將AAO封底之後澆鑄............................58
4.3.2 製作PDMS奈米線...............................64
4.4 光學實驗結果分析....................................66

第五章 結論與未來展望
5.1 結論................................................68
5.2 未來展望............................................70
參考文獻.................................................71
[1]C. Aydin, A. Zaslavsky, G. J. Sonek and J. Goldstein. Applied Physics Letters, Vol.80, number 13 (2002)

[2] S. J. Wilson and M. C. Hutley. Opt. Acta, Vol.29, pp.993 (1982)

[3] K Hadob´as, S Kirsch, A Carl, M Acet and E F Wassermann. Nanotechnology , Vol.11, pp.161–164. (2000)

[4] Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. SchereP. Appl. Phys. Lett, Vol.83, No.18, (1993)

[5]N. K. Patel, S. Cinà, and J. H. Burroughes. IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol.8, NO.2, (2002)

[6] Mao-Kuo Wei, I-Lin Su. OPTICS EXPRESS 5777, Vol.12, No.23, (2004)

[7] Huajun Peng, Yeuk Lung Ho, Xing-Jie Yu, Man Wong, Senior Member, and Hoi-Sing Kwok. JOURNAL OF DISPLAY TECHNOLOGY, Vol.1, NO.2, (2005)

[8] Helmut Bechtel, Wolfgang Busselt, Joachim Opitz. Proc. of SPIE, Vol. 5519

[9] Young Rag Do, Yong-Hee Lee, Yoon-Chang Kim and Young-Woo Song. JOURNAL OF APPLIED PHYSICS, Vol.96, NO.12 (2004)

[10] Yong-Jae Lee, Se-Heon Kim, Joon Huh, Guk-Hyun Kim, and Yong-Hee Lee,Sang-Hwan Cho, Yoon-Chang Kim, and Young Rag Do. APPLIED PHYSICS LETTERS, Vol.82, NO.21 (2003)

[11] R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Do¨ hler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans. APPLIED PHYSICS LETTERS, Vol.79, NO.15

[12] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom. J. Vac. Sci. Technol. B 14(6), Nov/Dec (1996)

[13] Stephen Y. Chou, Chris Keimel, Jian Gu. Nature, Vol.417, pp.835-837, (2002)

[14] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake,T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C. G. Willson.

[15] Younan Xia and George M. Whitesides. Angew. Chem. Int. Ed. 37, 550-575, (1998)

[16] 93 年9 月 213 期 工業材料雜誌

[17] Reiner Windisch, Barun Dutta, Maarten Kuijk, Alexander Knobloch, Stefan Meinlschmidt,Stefan Schoberth, Peter Kiesel, Gustaaf Borghs, Gottfried H. Döhler, and Paul Heremans. IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.47, NO.7, JULY (2000)

[18] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu. APPLIED PHYSICS LETTERS, 86, 221101 (2005)

[19] Chiao-Chih YANG, Ray-Hua HORNG_, Chia-En LEE1, Wen-Yu LIN1, Kuan-Fu PAN,Ying-Yong SU and Dong-Sing WUU1. Japanese Journal of Applied Physics
Vol.44, No.4B, pp. 2525–2527, (2005)

[20] Mao-Kuo Wei, I-Ling Su, Yi-Jia Chen1, Ming Chang,Hong-Yi Lin and Tung-Chuan Wu. INSTITUTE OF PHYSICS PUBLISHINGJ. Micromech. Microeng. 16 (2006) 368–374

[21] Takashi Yamasaki and Tetsuo Tsutsui. 1998 IEEE

[22] R. F. Oulton and C. S. Adjiman, K. Handa and S. Aramaki. arXiv:physics/0411095 Vo1.9, Nov (2004)

[23] Han-Youl Ryu, Jeong-Ki Hwang, Yong-Jae Lee, and Yong-Hee Lee. IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol.8, NO.2, MARCH/APRIL (2002)

[24] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh, Heonsu Jeon,a_ and Yoon Soo Park, Jaehee Cho, Jin Seo Im, Cheolsoo Sone, and Yongjo Park, Won Jun Choi and Q-Han Park. APPLIED PHYSICS LETTERS, 87, 203508 , (2005)

[25] M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohhata,T. Tsuji, H. Nakada and N. Shimoji. ELECTRONICS LETTERS, Vol.39, NO.24, 27th November (2003)

[26] T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kuo, and S. C. Wang. IEEE PHOTONICS TECHNOLOGY LETTERS, Vol.17, NO.6, JUNE (2005)

[27] By Klaus Meerholz* and David C. Müller. Adv. Funct. Mater. 11, No. 4, August, (2001)

[28] M.-H. Lua) and J. C. Sturm. APPLIED PHYSICS LETTERS, Vol.78, NUMBER 13, 26 MARCH (2001)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *