帳號:guest(3.144.38.130)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡秉興
作者(外文):Ping-Hsing Tsai
論文名稱(中文):綠豆防禦素第一型對於麵包蟲(α-)澱粉水解酶之定點突變研究
論文名稱(外文):Identification of critical amino-acid residues in Vigna radiata plant defensin 1 involved in inhibiting Tenebrio molitor α-amylase
指導教授(中文):呂平江
指導教授(外文):Ping-Chiang Lyu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:934230
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:綠豆防禦素第一型澱粉水解□抗蟲抗菌
外文關鍵詞:Vigna radiata plant defensinAmylaseinsecticidalantimicrobial
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1193
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
綠豆防禦素第一型是個由四十六個胺基酸所組成的鹼性蛋白質,其中又以胱胺酸最為豐富。在前人的研究中發現這個蛋白質具有殺蟲的效果,立體結構也已經被用核磁共振光譜所解出,然而對於殺蟲的機制仍然是不清楚。此外在我們先前的研究中發現綠豆防禦素第一型除了殺蟲以外也具有抑制麵包蟲(α-)澱粉水解□的能力,抑制澱粉水解□是否對於殺蟲的效果有何影響是我們感興趣的,但是綠豆防禦素第一型在結構上是如何與澱粉水解□發生作用?哪些位點上的胺基酸對於抑制功能是重要的?對於這些疑問我們需要大量的蛋白質來實驗,所以我們建構綠豆防禦素第一型在能夠在大腸桿菌上表現的載體,利用定點突變的技術來觀察胺基酸的性質與位置對於功能上的影響。根據一級結構的分析與三級結構的比對,我們預測十一個胺基酸會是重要的,十三個突變經過抑制澱粉水解□的檢驗下,我們發現了三個帶正電的胺基酸(Lys6、Arg26和Arg38)對於功能有很大的影響。此外我們發現二級結構在點突變下改變並不大,在結構沒改變下卻影響到了功能,所以我們認為在這三個位點與澱粉水解□的作用對於抑制功能是重要的。
Vigna radiata defensin 1 (VrD1) is a small, basic and cysteine-rich peptide of 46 amino acids. In former study, VrD1 was reported to exhibit insecticidal activity, and three dimensional structure of VrD1 have been determined by nuclear magnetic resonance (NMR) spectroscopy. However, the insecticidal mechanism of VrD1 is still indistinct. Our preliminary data showed that VrD1, which was purified from mung bean, inhibited Tenebrio molitor α-amylase. To elucidate the α-amylase inhibition mechanism of VrD1, recombinant VrD1 was constructed, expressed and purified from Escherichia coli. According to amino acid sequence analysis and protein structure comparison, specific residues involved in α-amylase inhibition were identified by site-directed mutagenesis. Eleven mutants were totally obtained and analyzed by circular dichroism (CD) for secondary structure and α-amylase activity assay for the inhibition function. The CD spectra showed that all recombinant VrD1 proteins have similar secondary structures. The results of α-amylase inhibition assay show that three mutants, K6A, R26E and R38A, significantly decrease in □-amylase inhibition. These three residues may play important roles in inhibitory function in VrD1.
Abstract 3
摘要 4
Abbreviations 5
Chapter 1. Introduction 6
1.1 Plant defensins 6
1.2 Vigna radiata plant defensin 1 (VrD1) 6
1.3 Tenebrio molitor α-amylase (TMA) 7
1.4 The theme of this thesis 8
Chapter 2. Materials & Methods 10
2.1 Materials 10
2.2 Construction of recombinant VrD1 (rVrD1) 10
2.3 VrD1 variants construction 11
2.4 Expression and purification of rVrD1 11
2.5 Purification of α-amylase from T. molitor larvae 12
2.6 Mass spectrometry 13
2.7 Protein concentration 15
2.8 Assay of inhibitory function against TMA 14
2.9 Circular dichroism (CD) spectra 15
Chapter 3. Result & Discussion 16
3.1 Cloning of the recombinant VrD1 16
3.2 Purification of rVrD1 16
3.3 Characterization of rVrD1 17
3.4 Purification of TMA 18
3.5 Targets for site-directed mutagenesis 18
3.6 Expression and purification of VrD1 variants 19
3.5 Titration of VrD1 mutants 19
3.7 K6A and K7A 20
3.8 R26E and R26K 20
3.9 K12A and R38A 21
3.10 Modification of the loop L2 (T37D and 39insA) 21
Chapter 4. Conclusion 23
1. Ganz, T. (2004) Defensins: antimicrobial peptides of vertebrates. C R Biol 327, 539-549
2. Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108, 1353-1358
3. Thevissen, K., Terras, F. R., and Broekaert, W. F. (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65, 5451-5458
4. Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem 194, 533-539
5. Bloch, C., Jr., and Richardson, M. (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett 279, 101-104
6. Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B., and Polya, G. M. (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Science 159, 243-255
7. Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers. FEBS Lett 440, 302-306
8. Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A., Ptak, M., and Vovelle, F. (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3, 435-448
9. Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Biol 5, 427-431
10. Zhang, H., and Kato, Y. (2003) Common structural properties specifically found in the CSalphabeta-type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin? Dev Comp Immunol 27, 499-503
11. Landon, C., Sodano, P., Hetru, C., Hoffmann, J., and Ptak, M. (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci 6, 1878-1884
12. Maget-Dana, R., and Ptak, M. (1997) Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J 73, 2527-2533
13. Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljansky, Y., Menez, A., and Toma, F. (1991) Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. Eur J Biochem 196, 19-28
14. Kanzaki, H., Nirasawa, S., Saitoh, H., Ito, M., Nishihara, M., Terauchi, R., and Nakamura, I. (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus ( Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105, 809-814
15. Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50, 7258-7263
16. Chen, J. J., Chen, G. H., Hsu, H. C., Li, S. S., and Chen, C. S. (2004) Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem 52, 2256-2261
17. Colilla, F. J., Rocher, A., and Mendez, E. (1990) gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270, 191-194
18. Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins
19. Kobayashi, H., Takaki, Y., Kobata, K., Takami, H., and Inoue, A. (1998) Characterization of alpha-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the mariana trench. Extremophiles 2, 401-407
20. Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Lett 409, 109-114
21. Gottschalk, T. E., Tull, D., Aghajari, N., Haser, R., and Svensson, B. (2001) Specificity modulation of barley alpha-amylase through biased random mutagenesis involving a conserved tripeptide in beta --> alpha loop 7 of the catalytic (beta/alpha)(8)-barrel domain. Biochemistry 40, 12844-12854
22. Payan, F. (2004) Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors. Biochim Biophys Acta 1696, 171-180
23. Pommier, G., Cozzone, P., and Marchis-Mouren, G. (1974) The sulfhydryl groups of porcine pancreatic alpha-amylase: unmasking, reactivity and function. Biochim Biophys Acta 350, 71-83
24. Levitzki, A., and Steer, M. L. (1974) The allosteric activation of mammalian alpha-amylase by chloride. Eur J Biochem 41, 171-180
25. Granger, M., Abadie, B., and Marchis-Mouren, G. (1975) Limited action of trypsin on porcine pancreatic amylase: characterization of the fragments. FEBS Lett 56, 189-193
26. Granger, M., Abadie, B., Mazzei, Y., and Marchis-Mouren, G. (1975) Enzymatic activity of TNB blocked porcine pancreatic amylase. FEBS Lett 50, 276-278
27. Buonocore, V., Poerio, E., Silano, V., and Tomasi, M. (1976) Physical and catalytic properties of alpha-amylase from Tenebrio molitor L. larvae. Biochem J 153, 621-625
28. Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 A resolution. Structure 6, 911-921
29. Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution. Structure 7, 1079-1088
30. Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr D Biol Crystallogr 55 ( Pt 1), 360-362
31. Thevissen, K., Francois, I. E., Takemoto, J. Y., Ferket, K. K., Meert, E. M., and Cammue, B. P. (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226, 169-173
32. Thevissen, K., Osborn, R. W., Acland, D. P., and Broekaert, W. F. (2000) Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13, 54-61
33. Thevissen, K., Osborn, R. W., Acland, D. P., and Broekaert, W. F. (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272, 32176-32181
34. Fant, F., Vranken, W. F., and Borremans, F. A. (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Proteins 37, 388-403
35. Terras, F. R., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Torrekens, S., Van Leuven, F., Vanderleyden, J., and et al. (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7, 573-588
36. De Samblanx, G. W., Goderis, I. J., Thevissen, K., Raemaekers, R., Fant, F., Borremans, F., Acland, D. P., Osborn, R. W., Patel, S., and Broekaert, W. F. (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272, 1171-1179
37. LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11, 187-193
38. Elmorjani, K., Lurquin, V., Lelion, A., Rogniaux, H., and Marion, D. (2004) A bacterial expression system revisited for the recombinant production of cystine-rich plant lipid transfer proteins. Biochem Biophys Res Commun 316, 1202-1209
39. Kazzazi, M., Bandani, A. R., Ashuri, A., and Hosseinkhani, S. (2005) A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Commun Agric Appl Biol Sci 70, 863-867
40. Kamal, J. K., and Behere, D. V. (2002) Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry 41, 9034-9042
41. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85
42. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., and Li, Y. (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32, e98
43. Thevissen, K., Warnecke, D. C., Francois, I. E., Leipelt, M., Heinz, E., Ott, C., Zahringer, U., Thomma, B. P., Ferket, K. K., and Cammue, B. P. (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279, 3900-3905
(此全文限內部瀏覽)
封面
謝誌
目錄
圖表目錄
摘要
中文摘要
縮寫表
第一章
第二章
第三章
第四章
圖表
參考文獻
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *