帳號:guest(3.147.55.42)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃啟訓
作者(外文):Chi-Shin Hwang
論文名稱(中文):基因重組合成抗癌核醣核酸酶之活體細胞穿透機制與治療中樞神經細胞腫瘤潛能之研究
論文名稱(外文):The in vivo Cell Entry Ability of Recombinant Antitumor Ribonuclease & Its Potential Role in the Therapy of Brain Tumor
指導教授(中文):張大慈
指導教授(外文):Dr. Margaret Dah-Tsyr Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:934279
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:123
中文關鍵詞:人類嗜伊紅球陽離子蛋白嗜伊紅球神經毒蛋白細胞穿透蛋白heparan sulfate 受器chondroitin sulfate 受器醣蛋白
外文關鍵詞:eosinophil cationic proteineosinophil-derived neurotoxincell penitrating proteinheparan sulfate receptorchondroitin sulfate receptorproteoglycans
相關次數:
  • 推薦推薦:0
  • 點閱點閱:273
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
中文摘要

自從1982年以來,癌症一直高居台灣十大死亡原因之首。其中腦瘤是15-35歲族群的主要癌症死亡原因。 針對無法切除的腦部腫瘤,一般只能使用放射治療或化學療法。然而到目前為止,這些治療方法的效果都不甚理想。目前我們所使用的癌症化療藥物皆無法穿透血腦屏障,所以對腦瘤幾乎沒有任何療效。近年來由於台灣人口加速老化,腦瘤與腦部退化性疾病的發生率正不斷的增加,因此研發新一代能穿透血腦屏障以治療腦部腫瘤及退化性疾病的藥物實為當務之急。
目前使用的癌症化療藥物都是利用破壞癌細胞的去氧核醣核酸(DNA)以達到療效。然而近年來科學家們發現,能破壞癌細胞核醣核酸(RNA)的核醣核酸酶(RNase)可能是一個更好的選擇。其中胞外分泌型人類嗜伊紅球陽離子蛋白(ECP)及嗜伊紅球神經毒蛋白(EDN)已被證實對癌細胞有毒殺作用因而被命名為抗癌核醣核酸酶。
在本研究中,我們使用重組基因技術製造這兩種抗癌核醣核酸酶‐即:以大腸桿菌製備成熟人類嗜伊紅球陽離子蛋白(rECP)及成熟嗜伊紅球神經毒蛋白(rEDN),以研究其活體細胞穿透機制及其應用於治療腦部腫瘤等疾病的可能性。我們的研究結果發現rECP 和rEDN 兩種基因重組的抗癌核醣核酸酶都對呼吸道及腸道柱狀上皮細胞具有高度的親和性與細胞穿透性。在我們的進一步研究中更發現這種細胞穿透作用可能是透過與細胞膜上的Heparan sulfate受器結合而達成的。同時在本研究中發現雖然rECP和 rEDN 都無法穿透血腦屏障,但是如果我們把rECP或 rEDN 注射入腦脊液中,這兩種人工合成的抗癌核醣核酸酶都對腦中的大型神經元細胞(pyramidal neuron及 Purkinje neuron)具有高度的親和性與細胞穿透性。
未來如果能利用基因工程搭配定點突變的人工合成方法改變rECP或rEDN的分子結構以加強其專一性及減少其副作用,便能進一步提升這兩種抗癌核醣核酸酶成為癌症化療藥物的潛力;甚至可以當作特洛伊木馬分子以協助治療腦部腫瘤及退化性疾病,或呼吸道及腸道相關的其他疾病。
Abstract
Cancer has been the leading cause of death in Taiwan since 1982. Among which brain tumors are the leading factors of cancer deaths in the population of 15-35 years old. Traditionally therapeutic strategies for unresectable brain tumors were radiation therapy and chemotherapy. However, most of these strategies are not satisfactorily successful. Meanwhile, due to the progressive aging of our society, there is increasing incidence of brain tumors and degenerative diseases. The development of new generation brain targeting drugs for brain tumors and degenerative diseases is very important.
Traditional chemotherapeutic strategies for cancer are developed mainly based on DNA damaging mechanism. However, recently scientists found that RNA damage caused by ribonucleases (RNases) could be an important alternative. Among these, the secretory human eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) have been shown to be effective for some cancers and are classified as antitumor RNases.
In the study, recombinant DNA technology was applied to produce the two antitumor RNases, i.e. recombinant mature human eosinophil cationic protein (rECP) and recombinant mature human eosinophil-derived neurotoxin (rEDN). The cell entry ability and potential roles of these human eosinophil Rnases in the therapy of brain tumor and other diseases were investigated. It was found that both rECP and rEDN internalized the columnar epithelium of respiratory and intestinal tracts efficiently. Further study proved that such cell entry effect occurred very likely through the binding with some special type of membrane bound heparan sulfate receptors on the cell surface. Although neither rECP nor rEDN could directly penetrate through blood brain barrier (BBB), once they were forcefully injected into the subarachnoid spaces both showed highly selective cell binding and cell entry effect to the pyramidal neurons and Purkinje neurons.
Further modification of the rECP and rEDN molecules by genetic engineering techniques such as chimeric or site-directed mutagenesis can be carried out in the future to improve the selectivity and decrease possible side effects of the two recombinant RNases, the modified eosinophil RNases can be further used as potential chemotherapeutic agents or even as molecular Trojan horses for the therapy of brain tumors, brain degenerative diseases, and other special diseases related to respiratory and digestive organs.
目錄
Chapter 1:General Background ……………………P1-7
Figures of Chapter 1…………………………P8-10
Chapter 2:The Acute Stage in vivo Biodistribution and Cell
Entry Ability of rECP and REP-24 peptide…P11-27
Figures of Chapter 2………………………P28-42
Chapter 3:The Chronic Stage in vivo Biodistribution and
Cell Entry Ability of rECP and rEDN………P43-53
Figures of Chapter 3………………………P54-68
Chapter 4:The Study About Membrane Bound Receptor and Cell
Entry Ability of rECP and rEDN………………P69-74
Figures of Chapter 4………………………P75-83
Chapter 5:Osmotic Opening of BBB to Facilitate the Entry
of Antitumor RNases into CNS System …………P84-87
Figures of Chapter 5…………………………P88-90
Chapter 6:Direct Intrathecal Injection of rECP and rEDN to
Observe Their Cell Entry Ability Within CNS
System…………………………P91-95
Figures of Chapter 6………………………P96-99
Chapter 7:Final Discussion…………………………P100-103
Figures of Chapter 7………………………P104
References………………………………………………P105-110
Appendices………………………………………………P111-122
Abbreviations…………………………………………………P123
References

1.Makarov AA, Ilinskaya ON. Cytotoxtic ribonucleases: Molecular weapons and their targets. FEBS letters 2003;540:15-20.
2.Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucleic Acid Res Mol Biol 2001:66;67-105.
3.Matousek J. Ribonucleases and their antitumor activity. Comp Biochem Physiol C Toxicol Pharmacol 2001;129:175-91.
4.Leland P A, Raines R T. Cancer chemotherapy – ribonucleases to the rescue. Chem Biol. 2001;8:405-13.
5.Youle RJ, D’Alessio G. Ribonuclease: structures and functions. (D’Alessio G. and Riordan JF Eds.) pp. 491-514, Academic press, San Diego, CA, USA.
6.Newton DL, Rybak SM. Unique recombinant human ribonuclease and inhibition of Kaposi’s sarcoma cell growth. J Natl Cancer Inst 1998;90:1787-91.
7.Chang C, Newton DL, Rybak SM, et al. Crystallographic and functional studies of a modified form of eosinophil-derived neurotoxin (EDN) with novel biological activities. J Mol Biol 2002;317:119-30.
8.Maeda T, Mahara K, Kitazoe M, et al. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNase. J biochem 2002;132:737-42.
9.Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpiranase in patients with unresectable malignant mesothelioma. J Clin Oncol 2002;132:737-42.
10.Hursey M, Newton DL, Hansen HJ, et al. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: a new generation of therapeutics. Leuk Lymphoma;2002:43:953-9.
11.Bystrom J, Tenno T, Hakansson L, et al. Monocyte but not macrophage, produces the eosinophil cationic protien. APMIS 2001;109:507-16.
12.Rosenberg HF. The eosinopil ribonucleases. Cell Mol Life Sci 1998;54:795-803.
13.Mallorqui-Fernandez G, Pous J, Peracaula R., et al. Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 Å resolution. J Mol Biol 2000; 300:1297-307.
14.Boix E, Leonidas DD, Nikolovski Z, et al. Crystal structure of eosinophil cationic protein at 2.4 Å resolution. J Biochem 1999;38:16794-801.
15.Wu CM, Chang HT, Chang M DT. Membrane-bound carboxypeptidase E facilitates the entry of eosinophil cationic protein into neuroendocrine cells. J Biochem 2004;382:841-8.
16.Young JD, Peterson CG, Venge P, et al. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 1986;321:613-6.
17.Rosenberg HF. Recombinant human eosinophil cationic protein: ribonuclease activity is not essential for cytotoxicity. J Biol Chem 1995;270:7876-81.
18.Yang D, Biragyn A, Hoover DM, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotixin in host defense. Ann Rev Immunol 2004;22:181-215.
19.Yang D, Rosenberg HF, Chen Q, et al. Eosinophile-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activity for dendritic cells. Blood 2003;102:3396-403.
20.Swaminathan GJ, Holloway DE, Veluraja K, et al. Atomic Resolution (0.98 Å) structure of eosinophil-derived neurotoxin. Biochemistry 2002;41:3341-52.
21.Mosimann SC, Newton DL, Youle RJ, et al. X-ray crystallographic structure of recombinant eosinophil-derived neurotoxin at 1.83 Å resolution. J Mol Biol 1996;260:540-52.
22.Gleich GJ, Loegering DA, Bell MP, et al. Biochemical and functional similarities between human eosinphil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. PNAS 1986;83:3146-50.
23.Dricu A, Sergiu-Bogdan C, Brismar K, et al. A synthetic peptide derived from the human eosinophil-derived neurotoxin induces apoptosis in Kaposi’s sarcoma cells. Anticancer Res 2004;24:1427-32.
24.Newton DL, Kaur G, Rhim JS, et al. RNA damage and inhibition of neoplastic endothelial cell growth: effects of human and amphibian ribonucleases. Radiat Res 2001;155:171-4.
25.Chang C, Newton DL, Rybak SM, et al. Crystallographic and functional studies of a modified form of eosinophil-derived neurotoxin (EDN) with novel biological activities. J Mol Biol 2002;317:119-30.
26.Maeda T, Kitazoe M, Tada H, et al. Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 2002;269:307-16.
27.Newton DL, Walbridge S, Mikulski SM, et al. Toxicity of an antitumor ribonuclease to Purkinje neurons. J Neuroscience 1994;14:538-44.
28.Newton DL, Xue Y, Boque L, et al. Expression and characterization of a cytotoxic human-frog chimeric ribonucleases: potential for cancer therapy. Protein Engineering 1997;10:463-70.
29.Pai T W, Su BH, Wu PC, et al. Unique peptide identification of Rnase A superfamily sequences based on reinforced merging algorithms. J Bioinform Comput Biol 2006;4:75-92.
30.Chang HT, Pai TW, Fan TC, et al. A reinforced merging methodology for mapping unique peptide motifs in members of protein families. BMC Bioinformatics 2006;7:38-79.
31.Mattias B. Heparan sulfate proteoglycan as a plasma membrane carrier. TRENDS in Biochemical Sciences 2003;28:145-51.
32.Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001;108:349-55.
33.Iozzo RV. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 2001;108:165-7.
34.Prydz K, Dalen KT. Synthesis and sorting of proteoglycans. Journal of Cell Science 2000;113:193-205.
35.Oetke C, Hinderlich S, Brossmer R, et al. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. Eur J Bioch 2001;4553-61.
36.Stamatos NM, Liang F, Nan X, et al. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J 2005;272:2545-56.
37.Abulrob A, Sprong H, Van Bergen en Henegouwent P, et al. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochemistry 2005;95:1201-14.
38.Dalton SR, Wiegert RL, Casey CA. Receptor-mediated endocytosis by the asialoglycoprotein receptor: effect of ethanol administration on endosomal distribution of receptor and ligand. Liver Int 2003;23:484-91.
39.Ecsedy JA, Holthaus KA, Yohe HC, et al. Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J Neurochem 1999;73:254-9.
40.Kramer G, Steiner GE, Prinz-Kashani M, et al. Cell-surface matrix proteins and sialic acids in cell-crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. BJU International 2003;91:554-9.
41.Pardridge WM, Triguero D, Buciak JB. Transport of histone through the blood-brain barrier. J Pharmacol Exp Ther 1989;251:821-6.
42.Shimura T, Tabata S, Ohnishi T, et al. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier. J Pharmacol Exp Ther 1991;258:459-65.
43.Pardridge WM, Buciak JL, Yoshikawa T. Transport of recombinant CD4 through the rat blood-brain barrier. J Pharmacol Exp Ther 1992;261:1175-80.
44.Fawell S, Seery J, Daikh Y. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci 1994;91:664-8.
45.Dorossi D, Joliot AH, Chassaing G, et al. The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994;269:10444-50.
46.William EJ, Dunican DJ, Green PJ, et al. Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable grb2-binding peptide. J Biol Chem 1997;272:22349-54.
47.Rouselle C, Clair P, Lefauconnier JM et al. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000;57:679-86.
48.Schwarze SR, Ho Alan, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biological active protein into the mouse. Science 1999;285:1569-72.
49.Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J neurocytol 1989;18:359-68.
50.Fredens K, Dybdahl H, Dahl R, et al. Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage. Am Rev Respir Dis 1988;96:711-9.
51.Motojima S, Frigas E, Loegering DA, et al. Toxicity of esonophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 1989;139:801-805.
52.Durack DT, Sumi SM, Klebanoff SJ. Neurotoxicity of human eosinophils. Proc Natl Acad Sci USA. 1979;76:1443-7.
53.Fredens K, Dahl R, Venge P. The Gorden phenomenon induced by the cationic protein and eosinophil protein X. J Allergy Clin Immunol. 1982;70:361-6.
54.Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. Neuro Rx 2005;2:3-14.
55.Pardridge WM. The blood-brain barrier and neurotherapeutics. Neuro Rx 2005;2:1-2.
56.Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv. 2003;3:90-105.
57.Pardridge WM. Brain drug targeting: the future of drug development. Cambridge, UK: Cambridge University Press, 2001:pp1-12.
58.Broman T. The permeability of the cerebrospinal vessels in normal and pathological conditions. German: Compenhangen, Ejnar Munksgarrd, 1949: pp 1-92.
59.Rapoport SI, Fredericks WR, Ohno K, et al. Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol 1980;238:421-31.
60.Inamura T, Black KL. Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J Cere Blood Flow Metab 1994;14:862-70.
61.Black KL, Cloughesy T, Huang SC, et al. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J Neurosurg 1997;86:603-9.
62.Iordanov MS, Ryabinina OP, Wong J, et al. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res 2000;60:1983-94.
63.Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem 2002;277:15142-6.
64.Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002;62:6132-40.
65.陳依文, 黃啟訓, 范丹琪. Cellular Uptake of ECP and EDN involves cell surface heparan sulfate.清華大學生命科學院第三屆海報暨論文比賽2006 (poster presentation).
66.Mi Z, Ma J, Lu X, et al. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther 2000;2:339-47.
67.Johnstone SA, Gelmon K, Mayer LD, et al. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Antcancer Drug Des 2000;15:151-60.
68.Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metast Rev 1992;11:121-39.
69.Verheij M, Bartelink H. Radiation-induced apoptosis. Cell Tissue Res 2000;301:133–42.
70.Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 1995;33:781-96.
71.Eggert A, Grotzer MA, Zuzak TJ, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 2001;61:1314–9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *