帳號:guest(3.149.242.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊定罡
作者(外文):Yang, Ding-Gang
論文名稱(中文):以桿狀病毒呈現禽流感病毒之血球凝集素之研究-gp64蛋白之細胞質內區域對桿狀病毒之影響
論文名稱(外文):Surface Display of Avian Influenza Virus Hemagglutinin on Baculovirus Envelope: Effects of Cytoplasmic Domain on Virus Properties
指導教授(中文):黎耀基
胡育誠
指導教授(外文):Lai, Yiu-Kay
Hu, Yu-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:934286
出版年(民國):95
畢業學年度:94
語文別:英文中文
論文頁數:52
中文關鍵詞:桿狀病毒血球凝集素禽流感疫苗
外文關鍵詞:avian influenza virusbaculovirushemagglutininsurface displayvaccine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:220
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
血球凝集素(Hemagglutinin, HA)是構成禽流感病毒(AIV)外套膜的重要蛋白之一。因此,此研究最主要的目標便是利用兩種不同的細胞質內區域(cytoplasmic domain, CTD)來修飾HA,將HA呈現在桿狀病毒的外套膜上,並同時探討這兩種細胞質內區域對HA的呈現效果與桿狀病毒特性的影響。另外,本研究進一步地評估了以這種假性(pseudotyped)桿狀病毒作為一種創新疫苗來預防禽流感的可能性。為了達到這樣的目的,本研究中建構了兩株重組桿狀病毒。其中Bac-HA可表現經由HA CTD 修飾的HA,而另一株Bac-HA64可表現經由gp64 CTD修飾的HA(gp64 為桿狀病毒自身的封套蛋白)。之後分別以這兩種桿狀病毒來感染Sf9細胞,並以西方點墨法及共軛焦顯微鏡來偵測其表現及分佈的情形。證實這兩種經過修飾的HA均可在Sf9細胞內表現並分佈在其細胞膜上。同時藉由免疫金的標定,Bac-HA及Bac-HA64皆可分別將其表現之HA呈現在其外套膜上。然而,藉由凝膠電泳(SDS-PAGE)及西方點墨法的分析證實,在Bac-HA64的外套膜上帶有比Bac-HA還要多的HA含量,這樣的結果暗示著gp64 CTD可更有效的將HA嵌入桿狀病毒之外套膜中。而利用流式細胞儀及同步定量PCR的偵測發現,擁有較高HA含量的Bac-HA64可提升桿狀病毒進入多種哺乳動物細胞的能力,並促進轉殖基因的表現。另外,在經過37℃的置放後,Bac-HA64擁有與控制組的桿狀病毒相似的穩定性。另外,以Bac-HA64來免疫BALB/c小鼠後發現,其所誘發之免疫反應比起對照組的Bac-HA,有較高的血球凝集抑制(HI)的效果。這些實驗結果共同地證實了gp64 CTD可以更有效率的呈現HA,進而促進病毒的侵入與基因表現的能力,並且提高了免疫的效果。因此,Bac-HA64將可作為一個有潛力的新型疫苗來預防禽流感。
Hemagglutinin (HA) is the major immunogen on the envelope of avian influenza virus (AIV). To examine how the choice of cytoplasmic tail domain (CTD) affected the display of HA on baculoviral envelope and baculovirus properties, and evaluate the feasibility of HA-pseudotyped baculovirus as a vaccine against AIV infection, we constructed two pseudotyped baculoviruses: Bac-HA expressing chimeric HA with the CTD derived from HA, and Bac-HA64 expressing chimeric HA with the CTD derived from baculovirus envelope protein gp64. After infection with Bac-HA or Bac-HA64, HA with either CTD was anchored on the plasma membrane of Sf9 cells as revealed by confocal microscopy. Immunogold electron microscopy demonstrated that both Bac-HA and Bac-HA64 displayed HA on the viral surface. However, SDS-PAGE and Western blot analyses of purified viruses unraveled that a significantly higher amount of HA was incorporated into Bac-HA64 than into Bac-HA. In comparison with Bac-HA, Bac-HA64 significantly improved the gene delivery and transgene expression in mammalian cells as determined by quantitative real-time PCR and flow cytometry. Immunization of BALB/c mice with Bac-HA64 elicited significantly higher hemagglutination inhibition titers than Bac-HA and the negative controls. These data collectively confirmed that gp64 CTD, in comparison with HA CTD, endowed more efficient HA incorporation into baculovirus, more efficient transgene delivery and expression, as well as elevated immunogenicity. In conclusion, this is the first report demonstrating that the choice of CTD has a tremendous impact on baculovirus property and vaccine efficacy. The baculovirus-based vaccine may hold great promise as a novel platform to prevent avian flu epidemic and be envisaged as an alternative option in the priming-boosting vaccination scheme.
Chapter 1 INTRODUCTION 1
1.1 Avian influenza virus 1
1.2 Hemagglutinin of influenza virus 2
1.3 Baculovirus expression system 3
1.4 Baculovirus surface display 4
1.5 Motivation 5
Chapter 2 MATERIALS AND METHODS 8
2.1 Generation of recombinant baculovirus 8
2.1.1 BAC-TO-BAC® Baculovirus Expression System . 8
2.1.2 Construction of pBac-HA and pBac-HA64 vectors 8
2.1.3 Transposition 10
2.1.4 Transfection 11
2.1.5 Virus production and titration 11
2.2 Cells and culture medium 12
2.3 Virus concentration and purification 12
2.4 Western blot analysis 13
2.5 Confocal microscopy 13
2.6 Immunogold electron microscopy 14
2.7 Mammalian cell transduction and measurement of transducing titer 15
2.8 Flow cytometry 15
2.9 Real-time PCR 16
2.10 Immunization 16
2.11 Hemagglutination inhibition titration 17
Chapter 3 RESULT 21
3.1 Recombinant baculovirus construction 21
3.2 Expression of recombinant HA 22
3.3 Purification of recombinant baculovirus 23
3.4 Incorporation of recombinant HA on baculovirus 23
3.5 Characterization of recombinant baculovirus 23
3.6 Enhanced baculoviral transduction by the gp64 CTD 24
3.7 Improved virus entry ability in Bac-HA64 25
3.8 The amounts of HA incorporated influenced the baculovirus stability 26
3.9 Potentials of HA-pseudotyped baculoviruses as vaccine 26
Chapter 4 DISCUSSION 38
Chapter 5 FUTURE WORK 45
REFERENCE 47
Alexander DJ. 2000. A review of avian influenza in different bird species. Vet Microbiol. 74(1-2):3-13.
Barsoum J, Brown R, McKee M, Boyce FM. 1997. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 8(17):2011-8.
Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochindarat S, Nguyen TK, Nguyen TH, Tran TH and others. 2005. Avian influenza A (H5N1) infection in humans. N Engl J Med 353(13):1374-85.
Boublik Y, Di Bonito P, Jones IM. 1995. Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology (N Y) 13(10):1079-84.
Brown EG. 2000. Influenza virus genetics. Biomed Pharmacother 54(4):196-209.
Chazal N, Gerlier D. 2003. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67(2):226-37, table of contents.
Coligan JE, Bierer BE, Margulies DH, Shevach EM, Strober W. 2005. Short protocols in immunology. New York: John Wiley & Sons. 11-42-11-43 p.
Crawford J, Wilkinson B, Vosnesensky A, Smith G, Garcia M, Stone H, Perdue ML. 1999. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17(18):2265-74.
Dhar AK, Roux MM, Klimpel KR. 2001. Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry. J Clin Microbiol 39(8):2835-45.
Dolganiuc V, McGinnes L, Luna EJ, Morrison TG. 2003. Role of the cytoplasmic domain of the Newcastle disease virus fusion protein in association with lipid rafts. J Virol 77(24):12968-79.
Edidin M. 2003. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257-83.
Ernst W, Grabherr R, Wegner D, Borth N, Grassauer A, Katinger H. 1998. Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 26(7):1718-23.
Facciabene A, Aurisicchio L, La Monica N. 2004. Baculovirus vectors elicit antigen-specific immune responses in mice. J. Virol. 78(16):8663-8672.
Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE. 2002. Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 6(1):5-11.
Grabherr R, Ernst W, Oker-Blom C, Jones I. 2001. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol 19(6):231-6.
Hammonds J, Chen X, Ding L, Fouts T, De Vico A, zur Megede J, Barnett S, Spearman P. 2003. Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core. Virology 314(2):636-49.
Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U.S.A. 92(22):10099-10103.
Hu Y-C, Tsai C-T, Chung Y-C, Lu J-T, Hsu JT-A. 2003. Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. ENZYME MICROB TECH 33:445-452.
Hu YC, Luo YL, Ji WT, Chulu JL, Chang PC, Shieh H, Wang CY, Liu HJ. 2006. Dual expression of the HA protein of H5N2 avian influenza virus in a baculovirus system. J Virol Methods 135(1):43-8.
Hughes GJ, Smith JS, Hanlon CA, Rupprecht CE. 2004. Evaluation of a TaqMan PCR assay to detect rabies virus RNA: influence of sequence variation and application to quantification of viral loads. J Clin Microbiol 42(1):299-306.
Jarvis DL, Garcia A, Jr. 1994. Biosynthesis and processing of the Autographa californica nuclear polyhedrosis virus gp64 protein. Virology 205(1):300-13.
Jin H, Leser GP, Zhang J, Lamb RA. 1997. Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16(6):1236-47.
Kaba SA, Hemmes JC, van Lent JW, Vlak JM, Nene V, Musoke AJ, van Oers MM. 2003. Baculovirus surface display of Theileria parva p67 antigen preserves the conformation of sporozoite-neutralizing epitopes. Protein Eng 16(1):73-8.
Kaikkonen MU, Raty JK, Airenne KJ, Wirth T, Heikura T, Yla-Herttuala S. 2006. Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther 13(4):304-12.
Kilbourne ED, Smith C, Brett I, Pokorny BA, Johansson B, Cox N. 2002. The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. Proc Natl Acad Sci U S A 99(16):10748-52.
Kuroda K, Veit M, Klenk HD. 1991. Retarded processing of influenza virus hemagglutinin in insect cells. Virology 180(1):159-65.
Lee CW, Senne DA, Suarez DL. 2004. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 78(15):8372-81.
Lindley KM, Su JL, Hodges PK, Wisely GB, Bledsoe RK, Condreay JP, Winegar DA, Hutchins JT, Kost TA. 2000. Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins. J Immunol Methods 234(1-2):123-35.
Lipatov AS, Webby RJ, Govorkova EA, Krauss S, Webster RG. 2005. Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis 191(8):1216-20.
Matilainen H, Makela AR, Riikonen R, Saloniemi T, Korhonen E, Hyypia T, Heino J, Grabherr R, Oker-Blom C. 2006. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J Biotechnol.
Melikyan GB, Jin H, Lamb RA, Cohen FS. 1997. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 235(1):118-28.
Mottershead DG, Alfthan K, Ojala K, Takkinen K, Oker-Blom C. 2000. Baculoviral display of functional scFv and synthetic IgG-binding domains. Biochem Biophys Res Commun 275(1):84-90.
Nayak DP, Hui EK, Barman S. 2004. Assembly and budding of influenza virus. Virus Res 106(2):147-65.
Nwe N, He Q, Damrongwatanapokin S, Du Q, Manopo I, Limlamthong Y, Fenner BJ, Spencer L, Kwang J. 2006. Expression of hemagglutinin protein from the avian influenza virus H5N1 in a baculovirus/insect cell system significantly enhanced by suspension culture. BMC Microbiol 6:16.
O'Reilly DR, Miller LK, Luckow VA. 1992. Baculovirus Expression Vectors : a laboratory manual. New York: W. H. Freeman and Company.
Oomens AG, Blissard GW. 1999. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254(2):297-314.
Oomens AG, Wertz GW. 2004. The baculovirus GP64 protein mediates highly stable infectivity of a human respiratory syncytial virus lacking its homologous transmembrane glycoproteins. J Virol 78(1):124-35.
Patterson SM, Swainsbury R, Routledge EG. 1999. Antigen-specific membrane fusion mediated by the haemagglutinin protein of influenza A virus: separation of attachment and fusion functions on different molecules. Gene Ther 6(4):694-702.
Perdue ML, Swayne DE. 2005. Public health risk from avian influenza viruses. Avian Dis 49(3):317-27.
Ponimaskin E, Schmidt MF. 1998. Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology 249(2):325-35.
Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G. 2005. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23(50):5751-9.
Rahman MM, Shaila MS, Gopinathan KP. 2003. Baculovirus display of fusion protein of Peste des petits ruminants virus and hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteins in mouse model. Virology 317(1):36-49.
Ramalho-Santos J, Pedroso De Lima MC. 2004. The role of target membrane sialic acid residues in the fusion activity of the influenza virus: the effect of two types of ganglioside on the kinetics of membrane merging. Cell Mol Biol Lett 9(2):337-51.
Riedel S. 2006. Crossing the species barrier: the threat of an avian influenza pandemic. Proc (Bayl Univ Med Cent) 19(1):16-20.
Scheiffele P, Rietveld A, Wilk T, Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274(4):2038-44.
Schnell MJ, Buonocore L, Boritz E, Ghosh HP, Chernish R, Rose JK. 1998. Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. Embo J 17(5):1289-96.
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. 2004. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101(12):4240-5.
Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371-6.
Stephenson I, Nicholson KG, Wood JM, Zambon MC, Katz JM. 2004a. Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet Infect Dis 4(8):499-509.
Stephenson I, Wood JM, Nicholson KG, Charlett A, Zambon MC. 2004b. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/Duck/Singapore/97 vaccine. Virus Res 103(1-2):91-5.
Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA. 2006. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355(5):1143-55.
Takada A, Kuboki N, Okazaki K, Ninomiya A, Tanaka H, Ozaki H, Itamura S, Nishimura H, Enami M, Tashiro M and others. 1999. Avirulent Avian influenza virus as a vaccine strain against a potential human pandemic. J Virol 73(10):8303-7.
Tami C, Peralta A, Barbieri R, Berinstein A, Carrillo E, Taboga O. 2004. Immunological properties of FMDV-gP64 fusion proteins expressed on SF9 cell and baculovirus surfaces. Vaccine 23(6):840-5.
Tani H, Limn CK, Yap CC, Onishi M, Nozaki M, Nishimune Y, Okahashi N, Kitagawa Y, Watanabe R, Mochizuki R and others. 2003. In vitro and in vivo gene delivery by recombinant baculoviruses. J Virol 77(18):9799-808.
Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y. 2001. Characterization of cell-surface determinants important for baculovirus infection. Virology 279(1):343-53.
Treanor J. 2004. Weathering the influenza vaccine crisis. N Engl J Med 351(20):2037-40.
WHO. 2006. Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO. World Health Organization
Yoshida S, Kondoh D, Arai E, Matsuoka H, Seki C, Tanaka T, Okada M, Ishii A. 2003. Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection. Virology 316(1):161-170.
Zambon MC. 1999. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother 44 Suppl B:3-9.
Zhang SX, Han Y, Blissard GW. 2003. Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: mapping, functional studies, and lipid rafts. J Virol 77(11):6265-73.
(此全文未開放授權)
封面
謝誌
英文摘要
中文摘要
目錄
圖表目錄
第一章
第二章
第三章
第四章
第五章
參考文獻
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *