帳號:guest(3.131.100.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋宇書
作者(外文):Yu-Shu Sung
論文名稱(中文):矽奈米線在生物感測上的應用研究
論文名稱(外文):Study of silicon nanowire nanosensors in biological detection
指導教授(中文):梁耕三
許鉦宗
指導教授(外文):K. S. Liang
J. T. Sheu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:934604
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:43
中文關鍵詞:矽奈米線酸鹼感測器生物感測器
外文關鍵詞:Silicon nanowirepH-sensorBiosensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:417
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文應用矽奈米線場效電晶體製造出兼備高選擇性和高靈敏度之奈米感測元件。矽奈米線具有很高的表面積/體積比,故能靈敏地感測出其表面電位的改變。藉由此特性,我們將一具有氨基之化學分子(AEAPTMS)固定於矽奈米線上,並利用此一分子在不同酸鹼度的溶液中所帶的淨電荷不同,而影響矽奈米線的電性改變。由此我們可以了解溶液之酸鹼度對矽奈米線之導電度的關係。同理,將具有特殊專一性之生物分子固定於此一檢測平臺上,從而了解生物分子對此元件上的電性影響為何。此外,為了使此電子感測元件能有效的在溶液中檢測,並減少分析物的需求量,我們將微流道整合到此量測平臺。而我們也分別製造開放式和封閉式的微流道,使我們的元件有更廣泛的應用。
研究發現使用AEAPTMS表面修飾後的矽奈米線,其導電度對酸鹼度呈現一線性的關係。而其靈敏度約為95 nS/pH。另外,在使用抗體感測器檢測時,也可發現其對二級抗體(anti-rabbit IgG)的有效感測濃度約為10-12g/ml。從上述之結果說明矽奈米線場效電晶體具有很高的靈敏度可供我們來應用。
This study demonstrated that the pH-sensors and biosensors based on boron-doped silicon nanowire field effect transistors (SiNW-FETs) are highly sensitive and selective for detections. N-(2-aminoethyl)-3-aminopropyltri-methoxysilane (AEAPTMS) functionalized SiNWs were adopted to detect the change of surface states in different pH level solutions. Furthermore, the change in conductance will be monitored, when the binding event of anti-rabbit IgG and steroid occurs on the rabbit IgG and ketosteroid isomerase modified surface, respectively. In order to reduce the consumption of the sample volume, we delivered the molecule and buffer solutions through the SiNW by means of the microfluidic channel. Two types of microfluidic channel (SU8, PDMS) were adopted through this study.
The study also found that the conductance of amino-functionalized SiNW-FET nanosensors was linearly changed with the change of pH value. The sensitivity of SiNW-FET pH-sensor is about 95 nS/pH for the pH values from 5 to 9. Detection of the anti-rabbit IgG in a concentration of 10-12 g/ml was also achieved. Also, steroid detection was demonstrated on the silicon microwire sensors.
Contents--------------------------------------------------------------------------------------------i
Contents of Figures------------------------------------------------------------------------------ii
Abstract in Chinese-----------------------------------------------------------------------------iii
Abstract-------------------------------------------------------------------------------------------iv
Abbreviation--------------------------------------------------------------------------------------v
Chapter 1. Introduction--------------------------------------------------------------------------1
1.1 Motivation------------------------------------------------------------------------------5
1.2 Overview of thesis---------------------------------------------------------------------6
Chapter 2. Fabrication of nanosensors platform---------------------------------------------9
2.1 Fabrication of SiNW-FETs-----------------------------------------------------------9
2.1.1 Comparison SiNW with CNT for applications in sensor---------------9
2.1.2 Comparison top-down techniques with bottom-up techniques for
Nano-devices---------------------------------------------------------------10
2.1.3 Materials--------------------------------------------------------------------11
2.1.4 Scaning probe lithography (SPL)----------------------------------------11
2.1.5 Electron-beam lithography (EBL)---------------------------------------13
2.2 Fabrication of microfluidic channels----------------------------------------------14
2.2.1 Materials--------------------------------------------------------------------16
2.2.2 SU-8 photoresist-based open channels----------------------------------16
2.2.3 PDMS polymer-based closed channels---------------------------------16
Chapter 3. Application of SiNW-FETs based sensors-------------------------------------20
3.1 AEAPTMS-modified SiNW-FETs as pH sensors-------------------------------20
3.1.1 Modification of SiNWs with AEAPTMS-------------------------------20
3.1.2 Detection and measurement of different pH buffer solutions--------21
3.1.3 Results and Discussion----------------------------------------------------21
3.2 Rabbit IgG immobilized SiNW-FETs as antibody sensors---------------------29
3.2.1 Surface modification-------------------------------------------------------30
3.2.2 Detection and measurement of the surface modification and the
sensing of anti-rabbit IgG-------------------------------------------------31
3.2.3 Results and Discussion----------------------------------------------------31
3.3 KSI-immobilized SiNW-FETs as steroid sensors-------------------------------34
3.3.1 Surface modification-------------------------------------------------------34
3.3.2 Detection and measurement of different pH buffer solutions--------35
3.3.3 Results and Discussion----------------------------------------------------35
Chapter 4. Conclusion-------------------------------------------------------------------------41
References---------------------------------------------------------------------------------------42
[1] F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, 2000, Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing, Chem. Rev., Vol. 100, PP.2505-2536.
[2] A. B. Ellis, R. J. Brainard, K. D. Depler, D. E. Moore, E. J. Winder, T. F. Kuech, and G. C. Lisensky, 1997, Modulation of the photoluminescence of semiconductors by surface adduct formation: an application of inorganic photochemistry to chemical sensing, J. Chem. Educ., Vol. 74, PP.680-684.
[3] D. A. Neamen, Semiconductor physics and devices basic principles, Third edition, PP.450-455.
[4] P. Bergveld, 1970, Development of an ion sensitive solid-state device for neurophysiological measurement, IEEE Trans. on Biomedical Engineering, Vol. 17, PP.70-71.
[5] S. Caras, J. Janata, 1980, Field effect transistor sensitive to penicillin, Analytical Chemistry, Vol. 52, PP.1935-1937.
[6] F. Patolsky, and C. M. Lieber, 2005, Nanowire nanosensors, Materialstoday, PP.20-28.
[7] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, 2000, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science,Vol. 293, PP.1289-1292.
[8] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, 2003, High performance silicon nanowire field effect transistors, Nano Letters, Vol. 3, PP.149-152.
[9] M. J. Madou, 2001, Fundamentals of microfabrication, second edition, PP.385-419.
[10] J. T. Sheu, C. C. Chen, P. C. Huang, Y. K. Lee, and M. L. Hsu, 2005, Selective deposition of gold nanoparticles on SiO2/Si nanowires for molecule detection, Japanese Journal of Applied Physics, Vol. 44, PP.2864-2867.
[11] B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, 2000, Three-dimensional micro-channel fabrication in polyimethylsiloxane (PDMS) elastomer, Journal of Microelectromechanical Systems, Vol. 9, PP.76-81.
[12] A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, 2005, Characterization of interconnects used in PDMS microfluidic systems, Journal of Micromechanics and Microengineering, Vol. 15, PP.928-934.
[13] M. N. Niu, X. F. Ding, and Q. Y. Tong, 1996, Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs, Sensors and Actuators B, Vol. 37, PP.13-17.
[14] W. Cheng, S. Dong, and E. Wang, 2002, Colloid Chemical Approach to Nanoelectrode Ensembles with Highly Controllable Active Area Fraction, Anal. Chem., Vol. 74, PP.3599-3604.
[15] B. Xia, S. J. Xiao, D. J. Guo, J. Wang, J. Chao, H. B. Liu, J. Pei, Y. Q. Chen, Y. C. Tang and J. N. Liu, 2006, Biofunctionalisation of porous silicon (PS) surfaces by using homobifunctional cross-linkers, Journal of Materials Cheristry, Vol. 16, PP.570-578.
[16] D. L. Nelson, and M. M. Cox, 2000, Lehninger principles of biochemistry, third edition, PP.376-379.
(此全文未開放授權)
封面
謝致
目錄
摘要
縮寫表
第一章
第二章
第三章
第四章
參考文獻
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *