帳號:guest(18.118.165.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭弘彬
作者(外文):Hung-Pin Cheng
論文名稱(中文):有機無機混合太陽電池製程之研究
論文名稱(外文):The Study and Fabrication on Organic-Inorganic Hybrid Solar Cells
指導教授(中文):洪勝富
指導教授(外文):Sheng-Fu Horng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:935009
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:有機無機混合太陽電池共軛高分子奈米晶體塊材異質接面
外文關鍵詞:Organic-Inorganic Hybrid Solar CellsConjugated PolymersNanocrystalsBulk Heterojunction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:358
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
以共軛高分子製作的有機太陽電池具有質輕、製程簡單且易於大面積製作的特點,由於共軛高分子材料具有較低的電子遷移率,尋找可用以傳輸電子的材料,可大幅提高共軛高分子太陽電池的效率。
本論文以硒化鎘(CdSe)膠體奈米晶體為電子傳輸材料,與共軛高分子P3HT(poly(3-hexylthiophene))混摻形成太陽電池元件的主動層。無機膠體奈米晶體具有可溶解於有機溶劑的特性,且可合成具有方向性的形狀,利於形成直接傳輸電子的路徑。利用旋轉塗佈的主動層具有塊材異質接面的特性,克服了共軛高分子中激子擴散長度過短的問題,且硒化鎘奈米晶體與P3HT界面所形成的異質接面,可有效分離光激發激子,與P3HT單層相比,P3HT混摻硒化鎘奈米晶體的光電流可提升100倍以上,。
本論文主要著重在有機無機混合太陽電池元件製程的建立與理解,探討可能影響元件表現的製程變數。在奈米晶體材料處理方面,多次表面改質可改良奈米晶體與共軛高分子的界面特性,以利電荷分離;使用不同比例的混合溶劑,可改善主動層中奈米晶體的分散性。在元件製程方面,利用不同溫度對主動層加熱退火,改善主動層結晶情況,可加強載子傳輸的效益;利用高沸點溶劑,在超低轉速下形成主動層,溶劑慢速的揮發可改善共軛高分子材料的排列,有利於載子傳輸。
Organic Solar Cells fabricated by conjugated polymer using solution-based processes are light-weighted, cost-effective in manufacturing and scalable to large-area devices. Due to the low electron mobility of conjugated polymer, it is believed that using materials which can efficiently transport electron may enhance the performance of the solar cells.
We fabricate the active layer of solar cells by using blends of P3HT and colloidal CdSe nanorods. Colloidal nanorods are soluble in organic solvent and are able to provide a direct route for electron transport due to their anisotropic shape. Active layer spin coated by blend forms bulk heterojunction, which provide a large area of interface between P3HT and CdSe for charge separation. Efficient charge separation occurs at the interface of polymer and inorganic nanocrystals due to the heterojuntion structure, the short-circuit current of blend is 100 times larger than P3HT single layer.
We successfully fabricate basic solar cell devices, and study the effects of processing steps. We find that surfactant exchange of CdSe nanorods is critical for charge separation and using mixed solvent will prevent nanorods from aggregation. The use of heat treatment and high-boiling-point solvent for blend enhances the performance of solar cells, which is tentatively attributed to more orderly arrangement of the polymer under these processing steps.
摘要 i
Abstract ii
致謝 iv
目錄 v
第一章 緒論 1
1.1、研究背景 1
1.1.1、太陽電池產業現況, 1
1.1.2、有機太陽電池發展歷史與現況 1
1.2、研究動機 3
1.2.1、共軛高分子太陽電池的機會與困難 3
1.2.2、有機無機混合太陽電池的研究 3
1.3、論文架構 4
第二章 實驗理論 10
2.1、太陽電池基本原理 10
2.1.1、光伏效應 10
2.1.2、太陽電池工作原理 10
2.1.3、太陽電池等效電路及操作 11
2.1.4、太陽電池基本參數 12
2.2、共軛高分子材料的光、電特性 13
2.2.1、共軛高分子的發展 13
2.3.3、共軛高分子的載子傳輸特性,, 15
2.3、膠體奈米粒子 17
2.3.1 膠體奈米晶體 17
2.3.2 奈米材料合成 17
2.4、有機無機混合太陽電池元件設計 18
2.4.1、Donor/Acceptor異質接面與其能帶結構 18
2.4.2、塊材異質接面 19
2.4.3、有機太陽電池的能量轉換 20
第三章 實驗流程 35
3.1、本論文系統 35
3.1.1、材料選擇 35
3.1.2、元件結構 36
3.1.3、決定能量轉換效率的因素 36
3.2、材料準備 37
3.2.1、CdSe奈米晶體 37
3.2.2、P3HT 38
3.2.3、溶液配置 39
3.3、元件製作 39
3.3.1、ITO基板蝕刻 40
3.3.2、ITO清洗 41
3.3.3、PEDOT:PSS成膜 41
3.2.4、主動區成膜 42
3.2.4、負電極蒸鍍 42
3.2.5、封裝與量測 42
第四章 實驗結果討論 48
4.1、CdSe表面改質 48
4.2、CdSe分散性的處理 50
4.3、以1,2-二氯苯取代氯仿配置溶液 52
4.4、以不同溫度加熱主動層 54
第五章 結論 70
參考文獻 71
張品全, 科學發展, 349期, 22~29 (2002)
陳婉如, 光連雙月刊, 54期, 10~15 (2004)
R. McConnell, S. Kurtz, M. Symko-Davies, “Concentrator Photovoltaic Technologies”, Refocus. July/August (2005).
C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183 (1986).
P. Peuman, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys. 93, 3693 (2003).
J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances”, Appl. Phys. Lett. 84, 3013 (2004).
B. O’Regan, M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737 (1991).
H. Spanggaard, F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics”, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
G. Li, V. Shrotriya, J. Huang, Y. Yao, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Mater. 4, 864, (2005).
W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “ Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Func. Mater.. 15, 1617 (2005).
N. C. Greenham, X. G. Peng, A. P. Alivisatos, “Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity”, Phys. Rev. B 54, 17628 (1996).
W. U. Huynh, X. G. Peng, A. P. Alivisatos, “CdSe Nanocrystal Rods /Poly(3-hexylthiophene) Composite Photovoltaic Devices”, Adv. Mater. 1999, 11, 11, 923 (1999)
W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”, Science 295, 2425 (2002)
W. U. Huynh, J. J. Dittmer, G. Whiting, W. Libby, A. P. Alivisatos, “Controlling the Morphology of Nanocrystal-polymer Composites for Solar Cells”, Adv. Funct. Mater. 13, 73 (2003).
B. Sun, E. Marx, N. C. Greenham, “Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers”, Nano Lett.3, 961 (2003).
B. Sun, H. J. Snaith, A. S. Dhoot, S.Westenhoff, and N. C. Greenham, “Vertically segregated hybrid blends for photovoltaic devices with improved efficiency,” J. Appl. Phys. 97, 014914 (2005).
S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edition.
太陽能工程 – 太陽電池篇 莊嘉琛 金華科技圖書股份有限公司 民86
L. B. Smilowitz, “Conjugated polymers: modern electronic materials”, Circuits and Devices Magazine, IEEE, 10, 19 (1994).
H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x”, J. Chem. Soc., Chem. Commun. 578 (1977).
S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic”, Nature 428, 911 (2004).
L. B. Smilomitz, “Conjugated Polymers: Modern Electronic Materials”, IEEE Circuit Devices, 19 (1994).
W.D. Gill, in: J. Mort, D.M. Pai (Eds.), Photoconductivity and Related Phenomena, Elsevier, 1976, p. 63.
J. M. Nunzi, “Organic photovoltaic materials and devices”, C. R. Physique 3, 523 (2002)
S. Karg, M. Meier, W. Riess, “Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport”, J. App. Phys. 82, 1951 (1997)
R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
New York, 1940.
Y. Yin, A. P. Alivisatos, “Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface”, Nature 437, 664 (2005).
X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307, 538 (2005).
Z. A. Peng, X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor”, J. Am. Chem. Soc., 123, 183 (2001).
L. S. Li, N. Pradhan, Y. Wang, X. Peng, “High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors”, Nano Lett. 4, 2261 (2004).
Jing Tang, F. F. Redl, Yimei Zhu, Theo Siegrist, L. E. Brus, M. L. Steigerwald, “A Low-Temperature Synthesis of TiO2 Nanoparticles”, Nano Letters 5, 543 (2005).
A. J. Hallock, P. L. Redmond, L. E. Brus, “Electrochemical Ostwald Ripening of Colloidal Ag particles on Conductive Substrates”, Nano Lett. 5, 131 (2005).
X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos “Shape control of CdSe nanocrystals” Nature 404, 59 (2000).
Liberato Manna, Erik C. Scher, and A. Paul Alivisatos “Synthesis of Soluble and Processable Rod-,Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals” J. the Am. Chem. Soc. 122, 12700 (2000).
N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes”, Science 295, 1506 (2002).
M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity”, Adv. Mater. 14, 317 (2002).
C. B. Murray, D. J. Norris, M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE(E = S, Se, Te) Semiconductor Nanocrystallites”, J. Am. Chem. Soc. 115, 8706 (1993).
Z. A. Peng, “Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes-Nucleation and Growth “, J. Am. Chem. Soc. 124, 3343 (2002)
C. B. Murray, Shouheng Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, “Colloidal synthesis of nanocrstals and nanocrystal superlattices“, J. Res. & Dev. 45, (2001).
B. A. Gregg,M. C. Hanna, “Comparing organic to inorganic photovoltaic cells- Theory, experiment, and simulation”, J. Appl. Phys. 93, 3605 (2003).
K. M. Coakley, M. D. McGehee, “Conjugated polymer photovoltaic cells”, Chem. Mater. 16, 4533 (2004).
J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell,” Appl. Phys. Lett 68, 3120 (1996).
H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers“, Science 280, 1741 (1998).
B. S. Kim, L. Avila, L. E. Brus, I. P. Herman, “Organic ligand and solvent kinetics during the assembly of CdSe nanocrystal arrays using infrared attenuated total reflection”, Appl. Phys. Lett. 76, 3715 (2000).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *