帳號:guest(18.220.179.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐德誠
作者(外文):De-Cheng Hsu
論文名稱(中文):使用氧化鋯及氧化鑭薄膜之電容器與場效電晶體的電性與可靠度分析
論文名稱(外文):The Electrical and Reliability Properties of Metal-Insulator-Silicon Capacitors and Field-effect Transistors with ZrO2 and La2O3 Gate Dielectrics
指導教授(中文):李雅明
指導教授(外文):Joseph Ya-Min Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:935039
出版年(民國):95
畢業學年度:95
語文別:中文
論文頁數:116
中文關鍵詞:高介電材料, 依時性介電崩潰, 氧化鋯, 氧化鑭
外文關鍵詞:high-k, time-dependent-dielectric breakdown(TDDB), bias temperature instability, PBTI, ZrO2, La2O3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:47
  • 收藏收藏:0
本實驗中,我們使用射頻磁控濺鍍法沈積ZrO2及La2O3薄膜,這兩種薄膜有高介電常數(□r= 25□30)、低的漏電流密度、高崩潰電場(3□6 MV/cm)及高熱穩定度等優點。在電容器方面,我們對ZrO2薄膜做了依時性介電崩潰的分析,探討了偉伯斜率、面積比例等因素。對應於厚度分別為20 和7.5 nm的ZrO2薄膜,萃取出的偉伯斜率分別為1.4和1.1,得到的偉伯斜率跟文獻上發現的結果相近,同樣偉伯斜率跟厚度沒有關係。低偉伯斜率可以解釋為ZrO2材料的依時性介電崩潰是由異質崩潰所主導,即由於薄膜製程不完美,過程中留下弱點(weak defect)的原故,造成崩潰時間分布較分散,偉伯斜率數值較小。考慮十年生命期的預測,我們的數據顯示E-model 能描述較好。對於ZrO2厚度20 nm,面積大小3.14x10-4 cm2的電容器,由E-model 預測十年最大可操作電壓在溫度25到150 ℃的範圍內,為-2.3 V到-0.8 V。活化能(Ea)跟氧化層電場(Eox)可以線性關係表示為Ea = -1.04 Eox+0.773,而場加速因子(γ)跟溫度不相關。
我們成功地製作了N通道的金屬(Al)/氧化層(ZrO2或La2O3)/半導體(p-Si)場效電晶體,元件顯示正常的電晶體特性。為了探討電壓與溫度造成場效電晶體臨界電壓的漂移現象,我們針對電晶體的可靠度課題,作了PBTI(Positive bias temperature instability)量測及探討。結果發現元件在PBTI 的偏壓下,不管是使用ZrO2或La2O3薄膜,臨界電壓隨時間都往負的方向移動,且臨界電壓偏移量對時間的關係遵守冪次關係(power law)。相同的薄膜在兩種溫度條件(25 ℃ and 75 ℃)的實驗數據,顯示有相同的趨勢,即用ZrO2電晶體的臨界電壓退化現象主要是由介面缺陷所主導,而用La2O3電晶體的臨界電壓退化現象主要是由氧化層內部捕獲電荷所主導。
Metal-insulator-semiconductor (MIS) capacitors and n-channel field effect transistors with ZrO2 and La2O3 gate dielectrics were successfully fabricated. The reliability issues such as time dependent dielectric breakdown (TDDB) and static positive bias temperature instability (PBTI) have been discussed. In the TDDB section, the Weibull slope and area scaling factors of ZrO2 gate dielectric have been investigated. The extracted Weibull slope (β) for different thickness of 20 nm and 7.5 nm is found to be 1.4 and 1.1, respectively. The TDDB data are better described by the E-model. The maximum operation voltage range for ten-year lifetime of capacitors with an area of 3.14x10-4cm2 and thickness of 20 nm was projected to be about -2.3V to -0.8V in the temperature range from 25 to 150 ℃. The relation of activation energy (Ea) and oxide field (Eox) is given by Ea = -1.04 Eox+0.773. The field acceleration factor (γ) is shown to be independent with temperature in our study.
The PBTI characteristics of NMOSFETs with ZrO2 and La2O3 gate dielectrics have been examined. Both oxide-trapped and interface-trapped charges can contribute to threshold voltage (Vt) shift. The Vt degradation of ZrO2-gated MOSFETs is mainly caused by interface-trap charges, but that for La2O3-gated MOSFETs is mainly caused by oxide-trapped charges. This trend is found to be true at temperatures 25 and 75℃. The Vt shifts negatively and Vt degradation versus time follows a power law relation.
目 錄
第一章 緒論………………………...............................................................1
1.1高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展…......…....1
1.2 High-κ薄膜在DRAM上的應用…………………………………...……..2
1.3 High-κ薄膜於MOSFET閘極氧化層(Gate Oxide)的發展.......................3
1.4 High-κ薄膜的製備方法………………………………………......………4
1.5 本論文的研究方向…………………………………………..……………4
第二章 氧化鋯(ZrO2)及氧化鑭(La2O3)薄膜元件的製備…...…6
2.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介.................................6
2.2 歐姆接面(Ohmic contact)的製備……………………….....…………….7
2.3 ZrO2及La2O3薄膜的成長………...………………………..……………..7
2.4 ZrO2及La2O3薄膜電容器的製備……………………………….………..8
2.5 ZrO2及La2O3薄膜電晶體的製備………………………….……………..9
2.6 量測儀器以及實驗儀器介紹……………………………………………11
第三章 熱穩定性(Thermodynamic Stability)之探討……....…...12
3.1 「熱穩定性」理論簡介…………………………………………....………12
3.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生…………........……………13
3.3 其他相關文獻……………………………………………………………14
第四章 ZrO2 及La2O3薄膜基本介紹及物性量測分析….......…. 15
4.1 ZrO2及La2O3薄膜的基本介紹………………………………..…….…..15
4.2 二次離子質譜儀(SIMS)縱深分佈之分析……………….....…………..16
4.3 X-Ray 繞射分析………………………………………………………...17
4.4 X-Ray光電子能譜儀(X-Ray photoelectron spectroscopy, XPS)之分析.18

第五章 Al/ZrO2/Si 與Al/ La2O3/Si電容器基本電性及漏電流機
制分析…………………………………………...……………...20
5.1電容-電壓(C-V) 特性曲線量測……………………………..…………20
5.2電流-電壓(I-V)特性曲線量測…………………………....….…………20
5.3 漏電流傳導機制之簡介…………………………………………………21
5.3.1 蕭基發射(Schottky emission)………………………....………….22
5.3.2 普爾-法蘭克發射(Poole-Frenkel Emission)…………....………...23
5.3.3傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling)…………………24
5.3.4 歐姆傳導(Ohmic Conduction)…………………………………24
5.3.5空間電荷限制電流(space charge limited current, SCLC)………..25
5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析………………...27
5.5 本章結論…………………………………………………………………29
第六章 Al/ZrO2/Si電容器可靠度分析……………………………...30
6.1閘極氧化層之崩潰電壓…………………………………………………30
6.2韋伯分布及韋伯斜率( Weibull slope )的探討…………………………31
6.3韋布斜率(β)與氧化層面積的關係………………………..…...……….32
6.4韋布斜率(β)與氧化層厚度的關係………….………………..………...33
6.5依時性介電崩潰(TDDB)的分析……………….………………….…...34
6.6本章結論……………….………………………………………………...37第七章Al/ZrO2/Si與Al/ La2O3/Si場效電晶體基本電性及電壓及
溫度引致元件參數不穩定性(PBTI)之研究………………………38
7.1 IDS-VDS Curve的特性探討………………………………………………38
7.2 IDS-VGS Curve的特性探討………………………………………………39
7.3 次臨界斜率(Sub-threshold Swing)…………………………………..39
7.4 臨界電壓(VT)的粹取…………………………………………………40
7.5遷移率(Mobility)的探討……………………………………………..41
7.6 電壓與溫度引致場效電晶體元件參數不穩定性之探討……………………………………………………………..………………44
7.7 本章結論…………………………………………………………………49
第八章 結論……………………………………………………………….50
參考文獻……………………………………………………………………52
實驗圖表……………………………………………………………………57
附錄…………………………………………………………………………114
References
[1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, 1996.
[2] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447-449, 1997.
[3] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, 1998.
[4] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, 1998.
[5] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, 1998.
[6] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, 1999.
[7] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, 2000.
[8] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, 2001.
[9] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium oxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanisms,” J. Appl. Phys., vol. 93, no. 8, pp. 4788-4793, 2003
[10] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated Gate Dielectric Prepared by Low Temperature Oxidation of ZrN,” in IEDM Tech. Dig., pp. 459-462, 2001
[11] R. E. Nieh, C. S. Kang, H. J. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y. H. Kim, M. S. Akbar, and J. C. Lee, “Electrical Characterization and Material Evaluation of Zirconium Oxynitride Gate Dielectric in TaN-gated NMOSFETs With High-Temperature Forming Gas Annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333-340, 2003
[12] Y. H. Wu, and A. Chin, “Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Ả,” IEEE Electron Device Lett., vol. 21, no. 7, pp.341-343, 2000.
[13] M. J. Kelly, and D. B. Terry, “Properties of La-silicate high-K dielectric films formed by oxidation of La on silicon,” J. Appl. Phys., vol. 93, pp. 1691-1696, 2003.
[14] Iwai, H. Ohmi, S. Akama, S. Ohshima, C. Kikuchi, A. Kashiwagi, I. Taguchi, J. Yamamoto, H. Tonotani, J. Kim, Y. Ueda, I. Kuriyama, and A. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig., pp.625-628, 2002.
[15] Y. Kim, A. Kuriyama, Isao Ueda, S. Ohmi, K. Tsutsui, and H. Iwai, “Analysis of Electrical Characteristics of La2O3 Thin Films Annealed in Vacuum and Others,” in Proc. European Solid-State Device Research Conf., vol. 16, pp. 569-572, 2003.
[16] F. C. Chiu, H. W. Chou, and Joseph Ya-min Lee, “Electrical conduction mechanism of metal/La2O3/Si structure,” J. Appl. Phys., vol. 97, pp. 103503-1~5, 2005.
[17] K. J. Hubbar, and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mat. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
[18] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, P. J. Tobin, “Thermaodynamic stability of high-k dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, 2002
[19]R. M. Wallace, G. Wilk, Guest Editors, “Alternative Gate Dielectrics for Microelectronics,” MRS BULLETIN, vol. 27, no. 3, pp. 186-229, 2002.
[20] T. Ma, S. A. Campbell, R. Smith, N. Hoilien, B. He, W. L. Gladfelter, C. Hobbs, D. Buchanan, C. Taylor, M. Gribelyuk, M. Tiner, Matthew Coppel, and Jang Jung Lee, “Group IVB Metal Oxide High Permittivity Gate Insulators Deposited From Anhydrous Metal Nitrates,” IEEE Trans. Electron Devices, vol. 48, no. 10, p. 2348-2356, 2001.
[21] J. Y. Lee and B. C. Lai, The Electrical Properties of High Dielectric Constant and Ferroelectric Thin Films for Very Large Scale Integration (VLSI) Circuit, 2001
[22] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee ”Electrical and Reliability Characteristics of ZrO2 Deposited Directly on Si for Gate Dielectric Application,” Appl. Phys. Lett., vol. 77, no. 20, pp. 3269-3271, 2000.
[23] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Cracteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” in IEDM Tech. Dig., p. 27-30, 2000.
[24] S. M. Sze, Physics of Semiconductor Device, 2nd edition, New York: Wiley press, 1981.
[25] D. K. Schroder, Semiconductor Material and Device Characteristics, Arizona: Wiley press, 1998.
[26] P. Mark, and W. Helfrich, “Space-Charge-Limited Currents in Organic Crystals,” J. Appl. Phys., vol. 33, p.205-215, 1962.
[27] M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps,” Phys. Rev., vol. 103, pp.1648-1654, 1956.
[28] M. Depas, T. Nigam, and M. M. Heyns, “Soft breakdown of ultra thin gate oxide layers,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1499-1503, 1996.
[29] E. Rosenbaum, J. C. King, and C-M Hu, “Accelerated testing of SiO2 reliability,” IEEE Trans. Electron Devices, vol. 43, no. 1, pp. 70-80, 1996.
[30] Y. H. Kim, K. Onishi, C. S. Kang, H. J. Cho, R. Choi, S. Krishnan, M. S. Akbar, and J. C. Lee,” Thickness dependence of Weibull slopes of HfO2 gate dielectrics,” IEEE Electron Device Lett., vol 24, no. 1, pp. 40-42, 2003.
[31] Y. H. Kim, K. Onishi, C. S. Kang, H. J. Cho, R. Nieh, S. Gopalan, R. Choi, J. Han, S.Krishnan, and J. C. Lee, ”Area dependence of TDDB characteristics for HfO2 gate dielectrics,” IEEE Electron Device Lett., vol. 23, no. 10, pp. 594-569, 2002.
[32] T. Nigam, R. Degraeve, G. Groeseneken, M. M. Heyns, and H. E. Maes, “Constant current charge-to-breakdown: Still a valid tool to study the reliability of MOS structures?,” in Proc. IRPS, pp. 62-69, 1998.
[33] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices, vol. 45, pp. 904-911, 1998.
[34]R. J. Carter, E. Cartier, M. Caymax, S. De Gendt, R. Degraeve, G. Groeseneken, M. Henyns, T. Kauerauf, A. Kerber, S. Kubicek, G. Lujan, L. Pantisano, W. Tsai, E. Yong, “Electrical characterization of high-k materials prepared by atomic layer CVD,” IEEE Int. Workshop on Gate Insulator, pp. 94-99, 2001.
[35] D. Crook, “Method of determining reliability screens for time dependent dielectric breakdown,” in Proc. IRPS, vol. 17, pp. 1-4, 1979.
[36] E. S. Anolick, G. Nelson, “Low field time dependent dielectric integrity,” in Proc. IRPS, vol. 7, pp. 8-12, 1979.
[37] J. W. Mcpherson and D. A. Baglee, “Acceleration parameters for thin gate oxide stressing,” in Proc. IRPS, vol. 23, pp. 1-4, 1985.
[38] M. A.Yassine, H. E. Nariman, M. McBride, M. Uzer,and K. R. Olasupo,“Time dependent breakdown of Ultrthin gate oxide,” IEEE Trans. Electron Devices, vol. 47, pp. 1416-1420, 2000.
[39] J. McPherson, V. Reddy, K. Banerjee, and H. Le, “Comparison of E and 1/E TDDB Models for SiO2 under long-term/low field test conditions,” in IEDM Tech. Dig, pp. 171-174, 1998.
[40] I. C. Chen, S. Holland, and C. Hu, “A quantitative model for time-dependent breakdown in SiO2,” in Proc. IRPS, vol. 23, pp. 24-27, 1985.
[41] J. Lee, I. C, Chen, and C. Hu, “Statistical modeling of silicon dioxide reliability,” in Proc. IRPS, vol. 26, pp. 131-138, 1988.
[42] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998.
[43] C. H. Huang, S. B. Chen, and Albert Chin, “La2O3 and Si0.3Ge0.7 p-MOSFETs with high hole mobility and good device characteristics,” IEEE Electron Device Lett., vol. 23, no. 12, pp. 710-712, 2002.
[44] C. C.Chen, C. Y.Chang,C. H. Chien, and T. Y. Huang, “Temperature accelerated dielectric breakdown in ultrathin gate oxides,” Appl. Phys. Lett., vol. 74, pp. 3708-3712, 1999.
[45] K. Eriguch and M. Niwa, “Temperature and stress polarity-dependent dielectric breakdown in ultrathin gate oxides,” Appl. Phys. Lett., vol. 73, pp. 1985-1989, 1998.
[46] M. A.Yassine, H. E. Nariman, M. McBride, M. Uzer,and K. R. Olasupo,“Time dependent breakdown of Ultrthin gate oxide,” IEEE Trans. Electron Devices, vol. 47, pp. 1416-1420, 2000.
[47] J. S. Suehle, P. Chaparala, C. Bessick, W. M. Miller, and K. C. Boyko, “Field and Temeprature Acceleration of Time-Dependent Dielectric Breakdown in Intrinsic Thin SiO2,” in Proc. IRPS, vol. 32, pp. 120-124, 1994.
[48]M. Kimura, “Field and temeperature acceleration model for time dependent dielectric breakdown,” IEEE Trans. Electron Devices, vol. 46, pp. 220-224, 1999.
[49] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, pp. 2357-2360, 1994.
[50] C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielctric MOS transistors,” Solid State Electron., vol. 25, pp. 833-836, 1982.
[51]S. Mahapatra, P. B. Kumar, M. A. Alam, “Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1371-1379, 2004.
[52]K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S. Akbar, J. C. Lee, “Bias-Temperature instabilities of polysilicon gate HfO2 MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1517-1524, 2003.
[53]S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, p. 9298-9303, 2003.
[54]A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, M. J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, L. Colombo, “Evaluation of the positive biased temperature stress stability in HfSiON gate dielectrics,” in Proc. IRPS, pp. 208-213, 2003.
[55]N. Sa, J. F. Kang, H. Yang, X. Y. Liu, Y. D. He, R. Q. Han, C. Ren, H. Y. Yu, D. S. H. Chan, D. L. Kwong, “Mechanism of positive bias temperature instability in sub-1nm TaN/HfN/HfO2 gate stack with low preexisting traps,” IEEE Electron Device Lett., vol. 26, no. 9, pp.610-612, 2005.
[56]K. Torii, K. Shiraishi, S. Miyazaki, K. Yamabe, M. Boero, T. Chikyow, K. Yamada, T. Arikado, “Physical model of BTI, TDDB and SILC in HfO2-based high-k gate dielectrics,” in IEDM Tech. Dig., pp. 129-132, 2004
[57]S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H. J. Cho, R. Choi, C. H. Choi, M. S. Akbar, J. C. Lee, “Dynamic positive bias temperatue instability characteristics of ultra-thin HfO2 NMOSFET,” in Proc. IRPS, pp. 269-272, 2004.
[58]P. Srinivasan, N. A. Chowdhury, D. Misra, “Charge trapping in ultrathin hafnium silicate/metal gate stacks,” IEEE Electron Device Lett., vol. 26, no. 9, pp.610-612, 2005.
[59]E. P. Gusev, V. Narayanan, S. Zafar, C. Cabral, E. Cartier, V. Paruchuri, M. Streen,”Charge trapping in aggressively scaled metal gate/high-k stacks,” in IEDM Tech. Dig., pp. 729-732, 2004
[60]S. Chakravarthi, A. T. Krishnan, V. Reddy, C. F. Machala, S. Krishnan, “A comprehensive framework for predictive modeling of negative bias temperature instability,” in Proc. IRPS, pp. 273-282, 2004.
[61] http://experts.about.com/e/w/wa/Waloddi_Weibull.htm
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *