帳號:guest(3.144.22.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳立國
作者(外文):Li-Guo Wu
論文名稱(中文):矽薄膜之特性分析與異質結構薄膜太陽能電池之製作
論文名稱(外文):Analysis of silicon thin film and fabrication of heterostructure thin film solar cell
指導教授(中文):黃惠良
指導教授(外文):Huey-Liang Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:935070
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:太陽能電池矽薄膜電子迴旋共症
外文關鍵詞:solar cellsilicon thin filmECR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:189
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本篇論文主要是使用ECR-CVD系統以氫稀釋法來成長矽薄膜,並利用拉曼光譜儀、傅立葉轉換光譜儀、X光繞射儀、α-STEP測厚儀及I-V量測等儀器分別對薄膜的結晶性、氫鍵結結構變化、晶向及結晶顆粒大小、薄膜厚度、光暗電導等特性進行分析。在實驗過程中我們固定溫度為250度、壓力為20X10-3托、上中下磁場電流為170/170/30安培、微波功率為1150瓦特,改變氫稀釋比例為40%到98%進行分析。此外,我們也在矽薄膜中摻雜B2H6及PH3氣體形成P型及N型矽薄膜並對其電阻率進行比較。實驗結果顯示當氫稀釋比在92%時,我們可以的到較大的結晶顆粒約251 Ǻ及較高的結晶度約90%。
我們也利用模擬軟體AFORE-HET模擬最佳化的厚度,並利用模擬結果研製出矽薄膜太陽能電池,我們主要以P摻雜的非晶矽薄膜當 window layer,而I層及N層為則微晶矽薄膜。並由電流電壓特性得知其填充因子為21.35%、開路電壓為0.4V、短路電流為0.112mA/cm2。此元件的特性,還需要藉由改善各層材料性質來提升。
Research work, we grew the silicon thin films with different hydrogen dilution ratio by electron cyclotron resonance chemical vapor deposition (ECR-CVD). The crystalline fraction, bonding configurations, crystalline orientation and grain size, film thickness, dark and light conductivities of the silicon thin films were measured and analyzed by the Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), α-STEP and I-V measurement respectively. In the experiment, we fixed the substrate temperature at 250oC, the process pressure at 20mtorr, the microwave power at 1150W, the Top/ Middle/ Bottom magnetic current at 170/170/30A and varied the hydrogen dilution ratio from 40% to 98%. Beside, we also doped the films using phosphine (PH3) and diborance(B2H6) to form the n-type and p-type silicon thin film. The four point probe was used to analyze the resistivity. From the experimental results, we find the fact that the maximum grain size was found to be about 251Ǻ and the maximum crystalline fraction was about 91% when the hydrogen dilution ratio was 92%.
AFORE-HET was used to simulate the optimum thickness of the device structure and followd the simulated result to fabricate the silicon thin film solar cell. The P-type amorphous silicon was used as a window layer and microcrystalline silicon as I and N layer. From I-V characteristics of the device, the open circuit voltage obtained is 0.112mA/cm2, the short circuit current is 0.4V and the fill factor is 21.35%. The device characteristics can be improved by improving the quality of the material.
Contents
Chinese abstract
English abstract
Acknowledgement
Contents
Chapter 1 Introduction ………………………………………1
1.1 Development of solar energy…………………………………......2
1.2 Thin film solar cell………………………………………………..2
1.3 Introduction of amorphous, microcrystalline,
polycrystalline silicon………………………………………........3
1.3.1 Development of amorphous, microcrystalline, and
polycrystalline silicon……………..…………………….............3
1.3.2 Definition of amorphous and microcrystalline silicon...…….......5
1.3.3 Application………………………...………………….................6
Chapter 2 Mechanism and Theory…………………………...9
2.1 ECR-CVD………………………………………………………...10
2.1.1 Basic principle of ECR-CVD…………………………………..10
2.1.2 The features of ECR-CVD……………………………………..11
2.2 Growth mechanisms of silicon thin films by ECR-CVD ………..12
2.3 Basic theory of solar cell.………………………………………...14
2.3.1 Solar radiation…………………………………………….........14
2.3.2 Basic principle of solar cell………………………………….....17
2.3.3 P-I-N Solar Cell………………………………………………...18
2.3.4 The equivalent circuit analysis of a solar cell……………..........19
2.3.5 Electrical measurements of solar cell………………………......20
Chapter 3 Equipment, Methods and Measurement ………24
3.1 ECR-CVD experiment system equipment………………………..25
3.2 Measurement system……………………………………………..28
3.2.1 Raman spectroscopy……………………………………………28
3.2.2 Fourier transform infrared spectroscopy (FTIR)…………….....29
3.2.3 Four point probe……………………………………………......30
3.2.4 Scanning electron microscopy (SEM)……………………….....30
3.2.5 X-ray Diffraction (XRD)……………………………………….31
3.2.6 α-STEP…………………………………………………………32
3.3 I-V measurement system for solar cell…………………………...33
3.4 Sample preparation……………………………………………….34
3.4.1 Oxidized silicon wafer cleaning……………………………......34
3.4.2 Corning 5560 glass cleaning……………………………….......34
3.5 Process flow of device…………………………………………....35
Chapter 4 Results and discussion …………………………..37
4.1 Analysis of undoped silicon films…..……………………………38
4.1.1 Deposition rate…………………………………………………38
4.1.2 Grain orientation and grain size of uc-Si:H ……………………41
4.1.3 Hydrogen bounding configuration and hydrogen content...........43
4.1.4 Crystallization………………………………………..…....……45
4.1.5 Dark / Photo conductivity……………………..…………..……47
4.2 P-type dope………………………………...……………..………49
4.3 N-type doped……………...………………………………..…….50
4.4 Simulation……………………………….……………………….52
4.5 Device characteristics………………………………….………....55
Chapter 5 Conclusions and Future work ………………….59
5.1 Conclusions………………………………………...…………….60
5.2 Future work………………………………………………………61
Chapter 1
[1] W. Hoagland, “Solar energy”, Sci. Amer., vol. 273, pp. 170-173, Sept. (1995).
[2] Ruud E.I. Schropp, Miro Zeman, “Amorphous and microcrystalline silicon solar cell”, Kluwer Academic Publishers
[3] S. Veprek and F. A. Sarott, Phys. Rev. B36, 3344 (1987))
[4] K.C. Wang and H. L. Hwang, J. Appl. Phys. 77,(12) (1995)
[5] Jerzy Kanicki, “Amorphous and Microcrystalline Semiconductor Devices VolumeІІ”, Artech House

Chapter 2
[1] Ruud E.I. Schropp, Miro Zeman, “Amorphous and microcrystalline silicon solar cell”, Kluwer Academic Publishers
[2] V.L. Dalal, J.H. Zhu, M. Welsh and M. Noack, IEE Proc.-Circuits Devices Syst., Vol. 150, No. 4, August (2003)
[3] Pontoh, M., Dalal, V., and Gandhi, N.: ‘Characterization of ECR plasma’, Mater. Res. Soc. Symp. Proc., 715 (2002)
[4] Kaushal, S., Dalal, V.L., and Xu, J., J. Non- Cryst. Solids, 198–200, (1996)
[5] Vikram Dalal, S.Kaushal, R. Girvan, S. Hariasra and L. Sipahi, 25th PVSC; May 13-17,; Washington, D.C. (1996)
[6] M.J. McCaughey, M. Kushner, J. Appl. Phys. 65,186. (1989)
[7] C.C. Tsai, in: H. Fritzsche Ed. , Amorphous Si and Related Materials, World Scientific, Singapore, Vol. 1, (1989)

[8] Vikram L. Dalal , Tim Maxson , Kay Han , Sohail HaroonJournal of Non-Crystalline Solids 227–230,1257–1261, (1998)
[9] Antonio Lugue, Steven Hegedus, “Handbook of Photovoltaic Science and Engineering”, Wiley-Vch
[10] Green M, Solar Cells: Operating Principles, Technology, and System Applications, Chap. 1,Prentice Hall, Englewood Cliffs, NJ, 1–12 (1982).
[11] Mitsuo Fukuda,“Optical Semiconductor Devices,” John Wiley & Sons, Inc.
[12] Dieter K. Schroder, “Semiconductor material and device characterization 2th,” John Wiley & Sons, Inc.
[13] Martin A. Green, “Solar Cells: Operating Principles, Technology, and System Applications,” Prentice-Hall, Inc., Englewood Cliffs, N. J.
[14] Z. H. Shi, H. F. Hong, W. Y. Wen, The study of single and dual junction III-V solar cells.

Chapter 3
[1] K. C. Wang and H. L. Hwang, J. Appl. Phys, 77 (12): 15 June (1995)
[2] K. Chakraborty, D. Das, Solar Energy Materials & Solar Cells 90,849–863 (2006)
[3] Jinhua Gu, Meifang Zhu,a_ Liujiu Wang, Fengzhen Liu, Bingqing Zhou, and Yuqin Zhou, J. Appl. Phys 98, 093505 (2005)
[4] U. Kroll, J.Meier, and A. Shah, J. Appl. Phys. 80, 4971 (1996)
[5] Dieter K. Schroder, “Semiconductor material and device characterization”, John Wiley & Sons, Inc.,



Chapter 4
[1] C. C. Tsai, G.B. Anderson, R. Thompson and B. Wacker, J. Non-Cryst.Solids,114, 151(1989)
[2] U. Kroll, J. Meier, A.Shah, S.Mikhailov, and J. Weber, J. Appl. Phys. 80, 4971(1996)
[3] K. C. Wang and H. L. Hwang, J. Appl. Phys, 77 (12): 15 June (1995)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *