帳號:guest(18.118.16.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李呈家
作者(外文):Cheng-Chia Lee
論文名稱(中文):直接序列展頻超寬頻無線通訊系統之訊號干擾雜訊比分析
論文名稱(外文):Signal-to-Interference-Plus-Noise Ratio Analysis for Direct-Sequence Ultra Wideband Systems
指導教授(中文):趙啟超
指導教授(外文):Chi-Chao Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:935609
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:45
中文關鍵詞:超寬頻直接序列展頻訊號干擾雜訊比卜瓦松過程符號間干擾多重用戶間干擾
外文關鍵詞:Ultra-WidebandDirect-SequenceSignal-to-Interference-Plus-Noise RatioPoisson processIntersymbol InterferenceMultiple-Access Interference
相關次數:
  • 推薦推薦:0
  • 點閱點閱:625
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
隨著數位設備的普及,對於低成本與高速度的短距離無線通訊需求已是越來越強烈,而超寬頻 (Ultra-Wideband) 正是一種用於室內無線多重存取 (Multiple-Access) 通訊系統的熱門技術。受益於超寬頻訊號中豐富的頻率分集,超寬頻系統能以極低的功率頻譜密度進行高速傳輸。現今最被廣泛使用的超寬頻通道模型是由電機及電子工程師協會 (IEEE) 802.15.3a工作小組在2002年12月所發表的。由於高速資料傳輸的性質,超寬頻通道模型的統計特性和傳統的多重路徑通道模型有所不同,因此分析它並不容易。在這篇論文當中,考慮準確的超寬頻通道模型的特性,利用卜瓦松過程 (Poisson process) 的性質,我們提出了一種方法去推導出在實際直接序列展頻( Direct-Sequence) 超寬頻無線通訊系統之訊號干擾雜訊比 (Signal-to-Interference-Plus-Noise Ratio) 的理論分析表示式,其中包括了符號間干擾 (Intersymbol Interference) 和多重用戶間干擾 (Multiple-Access Interference)以及可加性白高斯雜訊 (additive white Gaussian noise)。在模擬的過程中,我們也證明了我們的訊號干擾雜訊比理論分析結果和模擬結果相當吻合。因此我們的分析結果提出了兩種應用,其中一種包括了在直接序列展頻超寬頻無線通訊系統下給定理想的訊號干擾雜訊比,我們該如何去決定耙式接收機 (Rake Receiver) 裡最少的耙指 (Finger) 個數,來達到理想的訊號干擾雜訊比值。另外一種應用是在給定的直接序列展頻超寬頻無線通訊系統下,我們要如何理論上的選擇能達到最大訊號干擾雜訊比的展頻碼 (Spreading Code)。
Ultra-wideband (UWB) is a popular technology to support
short-range high-data-rate transmissions for indoor wireless
multiple-access communication systems. Nowadays, the most widely used UWB channel model is the channel model released by IEEE 802.15 Task Group 3a. Due to its high-data-rate nature, the characteristics of the UWB channel model are different from those of other traditional multipath channel models so that it is not easy to conduct analysis. In this thesis, taking the precise multipath characteristics of the UWB channel model into consideration, we propose a method to derive exact analytical expressions of the output signal-to-interference-plus-noise ratio (SINR) in a realistic direct-sequence (DS) UWB system in presence of intersymbol interference (ISI) and multiple-access interference
(MAI). We also show that our analytical SINR results match the simulation results well. Applications of our results include determination of the least number of combining fingers in a partial Rake receiver with the corresponding desired SINR for DS-UWB systems, choice of spreading codes leading to the maximum output SINR in a given DS-UWB system theoretically, etc.
1 Introduction 1
2 Previous Works 3
2.1 Overview of IEEE 802.15.3a UWB Channel Model 3
2.2 Analysis of Average SINR for Indoor UWB Rake Receiver System
3 Direct-Sequence UWB Systems 7
3.1 System Models 7
3.2 Performance Analysis of Rake Receivers in Presence of Multipath and Multiple Access Interference 9
3.2.1 ISI Analysis 10
3.2.2 MAI Analysis 13
3.2.3 Noise Analysis 15
4 SINR Analysis for IEEE 802.15.3a UWB Channel Model 17
4.1 Useful Characteristics of Poisson Distribution 17
4.2 Evaluation of Exact SINR for DS-UWB Systems 18
4.2.1 Average Path Energy 18
4.2.2 Average Cross Path Energy 23
5 Numerical and Simulation Results 33
6 Conclusion 42
[1] M. Z. Win and R. A. Scholtz, "Impulse radio: How it works," IEEE Commun. Lett.,
vol. 2, pp. 36-38, Feb. 1998.
[2] M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in
Communication Engineering. New York: Wiley, 2004.
[3] M. Z. Win and R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum
impulse radio for wireless multiple access communications," IEEE Trans. Commun.,
vol. 48, pp. 679-689, Apr. 2000.
[4] J. A. Gubner and K. Hao, "Analysis of the IEEE 802.15.3a UWB channel model,"
submitted to IEEE J.Select. Areas Commun., Feb. 2005.
[5] Q. Li and L. A. Rusch, "Multiuser detection for DS-CDMA UWB in the home environment," IEEE J. Select. Areas Commun., vol. 20, pp. 1701-1711, Dec. 2002.
[6] E. Baccarelli and M. Biagi, "A novel self-pilot-based transmit-receive architecture for
multipath-impaired UWB systems," IEEE Trans. Commun., vol. 52, pp. 891-895, June
2004.
[7] X. Chu and R. D. Murch, "The effect of NBI on UWB time-hopping systems," IEEE
Trans. Wireless Commun., vol. 3, pp. 1431-1436, Sept. 2004.
[8] W. T. Tung and J. Wang, "MMSE receiver for multicarrier CDMA overlay in ultra-
wide-band communications," IEEE Trans. Veh. Technol., vol. 54, pp. 603-614, Mar. 2005.
[9] B. M. Sadler and A. Swami, "On the performance of episodic UWB and direct-sequence
communication systems," IEEE Trans. Wireless Commun., vol. 3, pp. 2246-2255, Nov. 2004.
[10] J. Foerster, et. al., "Channel modeling sub-committe report final," IEEE doc.: IEEE
P802.15-02/490r1-SG3a, Feb. 2003.
[11] D. Cassioli, M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel:
From statistical model to simulations," IEEE J. Select. Areas Commun., vol. 20, pp.
1247-1257, Aug. 2002.
[12] F. Ramirez-Mireles, "On the performance of ultra-wide-band signals in Gaussian noise
and dense multipath," IEEE Trans. Veh. Technol., vol. 50, pp. 244-249, Jan. 2001.
[13] L. Yang and G. B. Giannakis, "Analog space-time coding for multiantenna ultra-
wideband transmissions," IEEE Trans. Commun., vol. 52, pp. 507-517, Mar. 2004.
[14] J. D. Choi and W. E. Stark, "Performance of ultra-wideband communications with
suboptimal receivers in multipath channels," IEEE J. Select. Areas Commun., vol. 20,
pp. 1754-1766, Dec. 2002.
[15] L. Yang and G. B. Giannakis, "Optimal pilot waveform assisted modulation for ultrawideband communications," IEEE Trans. Wireless Commun., vol. 3, pp. 1236-1249, July
2004.
[16] M. Z. Win, G. Chrisikos, and N. R. Sollenberger, "Performance of Rake reception in
dense multipath channels: Implications of spreadinf bandwidth and selection diversity
order," IEEE J. Select. Areas Commun., vol. 18, pp. 1516-1525, Aug. 2000.
[17] W.-C. Liu and L.-C. Wang, "Performance analysis of pulse based ultra-wideband systems in the highly frequency selective fading channel with cluster property," in Proc.
IEEE Veh. Tech. Conf., Melbourne, Australia, May 2006.
[18] T. Jia and D. I. Kim, "Analysis of average signal-to-interference-noise ratio for indoor
UWB Rake receiving system," in Proc. IEEE Veh. Tech. Conf., Stockholm, Sweden,
May 2005, pp. 1396-1400.
[19] A. Saleh and R. Valenzuela, "A statistical model for indoor multipath propagation,"
IEEE J. Select. Areas Commun., vol. SAC-5, pp. 128-137, Feb. 1987.
[20] S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2001.
[21] C. Unger and G. P. Fettweis, "Analysis of the Rake receiver performance in low spread-
ing gain DS/SS systems," in Proc. IEEE Global Telecommun. Conf., Taipei, Taiwan,
Nov. 2002, pp. 830-834.
[22] S. M. Ross, Stochastic Processes. New York: Wiley, 1996.
[23] R. Fisher, R. Kohno, M. M. Laughlin, and M. Welborn, "DS-UWB physical layer sub-
mission to 802.15 task group 3a," IEEE doc.: IEEE P802.15-04/0137r3, July 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *