帳號:guest(3.135.246.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁育嘉
作者(外文):Liang, Yu-Chia
論文名稱(中文):I. 微波電弧法製備磁性奈米碳球及其生長機制 II. 垂直奈米碳管生長機制之研究
論文名稱(外文):I. Synthesis of magnetic carbon nanoparticles using microwave arcing process and growth mechanism. II. Growth mechanism of vertically aligned carbon nanotubes.
指導教授(中文):黃國柱
指導教授(外文):Hwang, Kuo-Chu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:937419
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:187
中文關鍵詞:奈米碳球奈米碳管異原子摻雜
外文關鍵詞:in situcarbon nanotubescarbon nanoparticles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:288
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
我們可以利用固態有機金屬的前驅物,經由一個從未報導過的"
微波電漿" 法製備出良好石墨層包覆的金屬碳奈米顆粒,並且沒有碳
管副產物的出現。微波電漿的產生可藉由在聚焦式微波爐中,矽碎片
或金屬絲的吸收微波。石墨層包覆的鐵奈米顆粒的特徵性質可由不同
的光譜所測量而得。石墨層包覆的鐵奈米顆粒的順磁性可由超導量子
干涉儀所測得,並顯示有大約115 高斯的矯頑力。我們可以進一步將
這些磁性奈米顆粒進行表面官能基化,使其帶上酸根或胺根,其水中
溶解度可達每升五百毫克,並且在水中不失去其磁性。我們從電子顯
微鏡中得知,這些磁性奈米顆粒表面上寡聚合物的分佈並不均勻,而
是應力較大的區域比較平緩的區域會有較多的接枝。除了鐵以外,鎳
和鈷金屬亦可由類似的方是被包覆在石墨層中。
We have demonstrated that the well graphitized core-shell
iron/carbon nanoparticles (Fe@CNPs) were produced via an
unprecedented "microwave arcing" process from solid metallocene precursors without co-formation of carbon nanotubes. Microwave arcing was generated by microwave absorption of and subsequent discharging between small silicon pieces or short metal wires in a focused microwave oven. Fe@CNPs were well-characterized by various spectroscopic measurements. Saturation magnetization measurement shows that the as-produced core-shell Fe@CNPs are ferromagnetic in nature with a coercivity value of ~ 115 Gauss. The Fe@CNPs were surface functionalized to have either carboxylate or amine functionalities with a water solubility of ~ 500 mg/L and without losing the magnetic
properties. The distribution of surface grafted oligomers indicates that the chemical reactivity of the outmost graphene shell is not the same at different locations, with highly strained regions having higher reactivity than less curved regions. Core-shell Ni/ or Co/carbon nanoparticles can also be prepared in a similar way.
Chapter 1 Introduction and Background...1
1.1 Carbon nanotubes...1
1.2 Structure of carbon nanotubes...3
1.3 Production of the carbon nanotube...4
1.3.1 Arc discharge...4
1.3.2 Laser ablation...5
1.3.3 Chemical vapor deposition (CVD)...6
1.4 Functionalization of carbon nanotubes...9
1.5 Carbon nanoparticles...10
1.5.1 Carbon nanocapsule and carbon onion...10
1.5.2 Graphite encapsulated metal nanoparticle...10
1.6 References...13
1.8 Figure caption...17
Chapter 2 Solid State Microwave Arcing Induced Formation and Surface Functionalization of Core-Shell Metal/Carbon Nanoparticles...25
2.1 Introduction...25
2.2 Experiment...28
2.2.1 Microwave arcing process...28
2.2.2 Surface functionalization...29
2.2.3 Synthesis of Cobalt nanoparticles...30
2.2.4 Preparation of graphite encapsulated cobalt nanoparticles...30
2.2.5 In situ XRD measurement...31
2.3 Materials and characterization...31
2.3.1 Materials...31
2.3.2 Charcterization methods...32
2.4 Results and discussion...33
2.4.1 Characterization of graphite encapsulated iron nanoparticles prepared from solid state focused microwave arcing process...33
2.4.2 Surface functionalization of core-shell iron/carbon
nanoparticles...35
2.4.3 Graphite encapsulated cobalt nanoparticles...39
2.4.4 Growth mechanism...42
2.5 Conclusion...43
2.6 Reference...43
2.7 Figure caption...49
Chapter 3 In-situ observation of graphite Layers generation and boundary Retraction of metal nanoparticles during Formation of Carbon Nanocapsules...60
3.1 Introduction...60
3.2 Experiment...63
3.2.1 Synthesis of Nickel nanoparticles...63
3.2.2 Synthesis of iron nanoparticles...64
3.2.3 Fe or Ni Nanoparticles +C60/70 mixture...65
3.2.4 Synthesis of iron encapsulated carbon nanoparticles...65
3.3 Materials and characterization...66
3.3.1 Materials...66
3.3.2 Characterization methods...66
3.4 Results and discussion...67
3.4.1 Growth of graphene layers from a Fe3C nanoparticle (Fe3C NP)...67
3.4.2 Growth of graphene layers from FeNPs-C60/70system...75
3.4.3 Growth of graphene layers from NiNPs-C60/70system...77
3.4.4 Retraction of disordered surface metal atoms ...79
3.4.6 Internal catalysis & Retraction of surface boundary atoms...79
3.4.5 "Surface melting-internal graphene layer" growth model...80
35 Conclusion...84
3.6 References...85
3.7 Figure caption...89
Chapter 4 Heteroatom Effect of Solid State Microwave Arcing Process...99
4.1 Introduction...99
4.2 Experiment...102
4.2.1 Synthesis of heteroatom doped carbon nanotubes...102
4.3 Materials and characterization...103
4.3.1 Materials...103
4.3.2 Characterization methods...103
4.4 Results and discussion...105
4.4.1 Characterization of boron doped MWCNTs produced from
triphenylborine...105
4.4.2 Characterization of boron doped MWCNTs produced from
boron oxide (B2O3)...109
4.4.3 Characterization of phosphorus doped MWCNTs produced
from triphenylphosphine...111
4.4.4 Electrical resistance measurement of boron and
phosphorus-doped MWCNTs...116
4.4.5 The morphology of the product was incorporated by
Sulfur...117
4.5 Conclusion...119
4.6 References...121
4.8 Figure caption...126
Chapter 5 Growth Mechanism of vertically aligned carbon nanotube arrays...149
5.1 Introduction...149
5.2 Experiment...153
5.3 Materials and characterization...154
5.3.1 Materials...154
5.3.2 Characterization methods...154
5.4 Results and discussion...155
5.4.1 Growth of Vertically Aligned Carbon Nanofiber Array :
Temperature Effect & Residual Gas Effect...155
5.4.2 Growth of Vertically Aligned Carbon Nanofiber Array :
Substrate Effect...160
5.4.3 Growth Mechanism of Vertically Aligned Carbon Nanofiber
Array...164
5.5 Conclusion...167
5.6 References...168
5.7 Figure caption...174
[1] S. Iijima, Nature 1991, 354, 56-58.
[2] S. Iijima, T. Ichihashi, Nature 1993, 363, 603-605.
[3] S. Iijima, T. Ichihashi, Nature 1993, 364, 737-737.
[4] N. Sano, T. Kikuchi, H. L. Wang, M. Chhowalla, G. A. J.
Amaratunga, Carbon 2004, 42, 95-99.
[5] H. Wang, M. Chhowalla, N. Sano, S. Jia, G. A. J. Amaratunga, Nanotechnology 2004, 15, 546-550.
[6] S. I. Lee, S. H. Yoon, C.W. Park, Y. Korai, I. Mochida, Carbon 2003, 41, 1652-1654.
[7] J. Y. Miao, D.W. Hwang, K. V. Narasimhulu, P. I. Lin, Y. T. Chen, S. H. Lin, L. P. Hwang, Carbon 2004, 42, 813-822.
[8] W. M. Qiao, Y. Song, S. Y. Lim, S. H. Hong, S. H. Yoon, I. Mochida, T. Imaoka, Carbon 2006, 44, 187-190.
[9] K. H. An, K. K. Jeon, J. M. Moon, S. J. Eum, C.W. Yang, G. S. Park, C. Y. Park, Y. H. Lee, Synth. Met. 2004, 140, 1-8.
[10] Z. J. Qiao, J. J. Li, N. Q. Zhao, C. S. Shi, P. Nash, Scrip 2006, 54, 225-229.
[11] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science 1993, 259, 346-348.
[12] Y. L. Hsin, K. C. Hwang, F. R. Chen, J. J. Kai, Adv. Mater. 2001, 13, 830-833.
[13] V. P. Dravid, J. J. Host, M. H. Teng, B. Elliott, J. Hwang, D. L. Johnson, T. O. Mason, J. R. Weertman, Nature 1995, 374, 602.
[14] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science 1993, 259, 346-348.
[15] T. Hayashi, S. Hirono, M. Tomita, S. Umemura, Nature 1996, 381, 772-774.
[16] J. J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, S. Umemura, Appl. Phys. Lett. 1997, 71, 3427-3429.
[17] Z. Y. Zhong, H. Y. Chen, S. B. Tang, J. Ding, J. Y. Lin, K. L. Tan, Chem. Phys. Lett. 2000, 330, 41-47.
[18] Y. P. Wu, Z. P. Zhu, Z. Y. Liu,Y. N. Xie, J. Zhang, T. D. Hu, Carbon 2003, 41, 309-315.
[19] P. A. Dresco, V. S. Zaitsev, R. J. Gambino, B. Chu, Langmuir 1999, 15, 1945-1951.
[20] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D.-Appl. Phys. 2003, 36, R167-R181.
[21] (a) X. W. Teng, H. Yang, J. Am. Chem. Soc. 2003, 125,
14559-14563. (b) S. H. Sun, Adv. Mater. 2006, 18, 393-403.
[22] H. W. Gu, P. L. Ho, K. W. T. Tsang, L. Wang, B. Xu, J. Am. Chem. Soc. 2003, 125, 15702-15703.
[23] W. A. Deheer, D. Ugarte, Chem. Phys. Lett. 1993, 207, 480-486.
[24] Y. Lu, Z. Zhu, Z. Liu, Carbon 2005, 43, 369-374.
[25] D. Jain, A. Winkel, R. Wilhelm, Small 2006, 2, 752-755.
[26] S. Tomita, M. Hikita, M. Fujii, S. Hayashi, K. Akamatsu, S. Deki, H. Yasuda, J. Appl. Phys. 2000, 88, 5452-5456.
[27] C. B. Tang, K. Qi, K. L. Wooley, K. Matyjaszewski, T. Kowalewski, Angew. Chem. Int. Ed. 2004, 43, 2783-2787.
[28] J. C. Yu, X. L. Hu, Q. Li, Z. Zheng, Y. M. Xu, Chem. Euro. J. 2006, 12, 548-552.
[29] D. S. Jacob, I. Genish, L. Klein, A. Gedanken, J. Phys. Chem. B 2006, 110, 17711-17714.
[30] A. Oberlin, J.P. Rouchy, Carbon 1971, 9, 39-42.
[31] W. Weisweiler, N. Subramamian, B. Terwiesch, Carbon 1971, 9, 755-758.
[32] M. Inagaki, K. Fujita, Y. Takeuchi, K. Oshida, H. Iwata, H. Konno, Carbon 2001, 39, 921-929.
[33] N. Sano, H. Wang, M. Chhowalla, I. Alexandron, G. A. J.
Amaratunga, Nature 2001, 414, 506-507.
[34] B. S. Xu, J. J. Guo, X. M. Wang, X. G. Liu, H. Ichinose, Carbon 2006, 44, 2631-2634.
[35] W. S. Seo, J. H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. Mcconnell, D. G. Nishimura, H. J. Dai, Nature Materials 2006, 5, 971-976.
[36] E. H. Hong, K. H. Lee, S. H. Oh, C. G. Park, Adv. Funct. Mater. 2003, 13, 961-966.
[37] A. G. Whittaker and D. M. P. Mingos, J. Chem. Soc.-Dalton Trans. 2002, 21, 3967-3970
[38] E. Jerby, V. Dikhtyar, O. Aktushev, U. Grosglick, Science 2002, 298, 587-589.
[39] Y. L. Hsin, J. Y. Lai, K. C. Hwang, S. C. Lo, F. R. Chen, J. J. Kai, Carbon 2006, 44, 3328-3335.
[40] Y. L. Hsin, K. C. Hwang, C. T. Yeh, J. Am. Chem. Soc. 2007, 129, 9999-10010.
[41] D. P. Dinega, M. G. Bawendi, Angew. Chem. Int. Ed. 1999, 38, 1788-1791.
[42] V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115-2117.
[41] A. G. Whittaker, D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 1995, 12, 2073-2079.
[42] CRC Handbook of Chemistry and Physics, 72nd ed. edited by D. R. Lide (Chemical Robber, Boca Raton, FL, 1991-1992), pp. 12-95.
[45] C. B. Pong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z. L. Wang, H. Zeng, J. P. Liu, Adv. Mater. 2006, 18, 2984–2988.
[46] S. Dubinsky, G. S. Grader, G. E. Shter, M. S. Silverstein, Polymer Degrad. Stabil. 2004, 86, 171-178.
[47] P. M. Ajayan, S. Iijima, Nature 1993, 361, 333-334.
[48] K. C. Hwang, Chem. Comm. 1995, 173-174.
[49] S. Iijima, T. Ichihashi, Y. Ando, Nature 1992, 356, 776-778.
[50] J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science 1998, 282, 95-98.
[51] N. W. S. Kam, Z. A. Liu, H. J. Dai, Angew. Chem. Int. Ed. 2006, 45, 577-581.
[52] N. W. S. Kam, M. O'Connell, J. A. Wisdom, H. J. Dai, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600-11605.
[53] T. K. Leeuw, R. M. Reith, R. A. Simonette, M. E. Harden, P. Cherukuri, D. A. Tsyboulski, K. M. Beckingham, R. B. Weisman, Nano Lett. 2007, 7, 2650-2654.
[54] W. S. Seo, J. H. Lee, X. M. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. McConnell, D. G. Nishimura, H. J. Dai, Nature Materials 2006, 5, 971-976.
[55] D. P. Dinega, M. G. Bawendi, Angew. Chem. Int. Ed. 1999, 38, 1788-1791.
[56] D. Sun, F. Gingl, Y. Nakamura, H. Enoki, M. Bououdina, E. Akiba, J. Alloys Compd. 2002, 333, 103-108
[57] Y. Saito, T. Yoshikawa, M. Okada, M. Ohkobchl, Y. Ando, Y. Kasuyu, Chem. Phys. Lett. 1993, 209, 72-76.
[58] O. A. Louchev, J. R. Hester, J. Appl. Phys. 2003, 94, 2002-2010.
[59] Binary alloy phase diagram, 2nd ed. edited by Massalski, T. B. (ASM International, Materials Park, OH, 1990).
[60] E. H. Hong, K. H. Lee, S. H. Oh, C. G. Park, Adv. Funct. Mater. 2003, 13, 961-966.
[61] D. M. Yoon, B. J. Yoon, K. H. Lee, H. S. Kim, C. G. Park, Carbon 2006, 44, 1339-1343.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *