帳號:guest(18.223.20.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):熊昌鉑
作者(外文):Hsiung, Chang-Po
論文名稱(中文):垂直與水平架構之導電絲電阻記憶元件的製作與導電絲成長暨記憶穩定性機制的探討
論文名稱(外文):Fabrication of Vertical- and Planar-Constructed Programmable Metallization Cells (PMCs) and Mechanism of Filament Formation and Structural Instability
指導教授(中文):甘炯耀
指導教授(外文):Gan, Jon-Yiew
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:937524
出版年(民國):99
畢業學年度:99
語文別:中文
論文頁數:160
中文關鍵詞:電阻記憶體固態電解電池元件氧化鈦萊里不穩定性奈米銀導電絲電致步驟
外文關鍵詞:Resistance switching memoryProgrammable metallization cellsTitanium oxideRayleigh instabilityAg nanofilamentForming process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本論文探討下一代非揮發性記憶體的候選之一-可程控金屬化記憶體元件 (Programmable Metallization Cell, PMC) 的製作與導電絲成長與記憶穩定性機制的探討。可程控金屬化記憶體具有可低電壓操作、操作快速、低耗能與高微縮率的優點,非常適合開發為高密度記憶體。然而,有一些重要議題仍不甚瞭解且較無文獻上的探討,但對元件發展卻很關鍵,它們包含:第一,導電絲的形貌或分布為何、導電絲的尺寸可能多小及主導導電絲的成長機制或影響其生長形貌的因素為何等;第二,造成元件記憶態保持性不穩定的機制為何等。基於此,適合上述議題的探討,本研究中我們設計一種「水平式元件」使導電絲在檢測的過程能被觀察與檢測到。我們使用水平式Ag/TiO2/Pt元件作為探討的模型並藉由電致過程的驅動,使銀導電絲以電解電化學的方式形成於TiO2薄膜的表面上,便於觀察。
首先,我們先製作垂直式Ag/TiO2/Pt元件,探討Ag/TiO2/Pt元件的基本電阻轉換特性。此元件為雙極性變阻,電阻轉換的原理是利用電解電化學的反應機制。經多次的電阻轉換後仍能維持穩定的操作特性,其中,SET與RESET的平均電阻轉換電壓分別為0.91 V與-0.47 V,高、低電阻平均分別為4.07×105 Ω與7079 Ω,比例約為57倍左右。此外,低阻態記憶保持性同樣發現具有不穩定的特性而傾向恢復成高阻態,我們發現在較低電流限操作及較厚電解質薄膜厚度下低阻態較為不穩定。
再來,我們製作水平式Ag/TiO2/Pt元件,利用外加電壓或電流輸入進行元件電致步驟的過程,並探討此過程之主要活化限制因子。實驗結果顯示,元件電致步驟速率隨外加電場或溫度的變化呈指數遞增的關係,顯示電致步驟為一種電場輔助熱活化的過程,我們驗證此元件主要的活化過程來自銀離子的遷移。另外,以變溫量測的方式檢測出其遷移活化能約為0.81 eV左右,而其活化能大小與外加電場呈線性遞減的關係,此線性遞減的關係解釋了電致步驟速率隨外加電場呈指數遞增的關係了。
接下來,我們進行經由電致步驟之後所產生的銀結構的形貌與微結構觀察。實驗中發現銀結構物以許多尺寸均勻的奈米銀球體並且彼此以一特定距離成串排列,我們驗證此奈米銀球體是因萊里不穩定性 (Rayleigh instability) 由銀導電絲演變而來。萊里不穩定性是因表面能的存在而使結構體產生不穩定性,理論顯示尺寸愈小、長寬比例較大的物體愈不穩定,而傾向分化為多個球體。實驗結果中,我們得到的銀導電絲尺寸極小 (約直徑7 nm),經由實際觀察與理論計算證實銀導電絲在室溫下即能迅速造成演化。此外,我們亦觀察元件操作電場與操作電流限值對銀導電絲形成的影響。愈大的電場易形成長柱型的導電絲形貌,而較小電場易形成形狀較為寬廣且分佈鬆散的導電絲結構;另外,較小的電流限則形成尺寸較細小的銀導電絲結構。
最後,我們探討水平式元件經長久的電壓驅動下對銀結構物形貌變化的影響。實驗結果顯示,銀奈米球體在經過適當的電壓驅動 (未達電流限) 將造成球體尺寸的些微增大;相對地,達到電流限後的電壓或電流驅動將造成球體尺寸上的明顯增大,這些形貌演化的過程仍是以電解電化學反應的機制進行。會造成銀結構物的形體變化,都是因元件在後續的電場作用下,電場易集中於銀結構物體週圍,因此後續的電場或電流的作用都只會在銀結構物體周圍造成影響,例如銀離子的遷移或球體結構的變化。
摘要 I
誌謝 III
目次 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1.1 快閃記憶體尺度的微縮極限 1
1.2 新概念的非揮發性記憶體 3
1.2.1 鐵電記憶體 (FRAM) 3
1.2.2 磁性記憶體 (MRAM) 4
1.2.3 相變化記憶體 (PCM) 5
1.2.4 電阻記憶體 (RRAM) 6
1.3 研究動機與論文主旨 7
第二章 文獻探討 16
2.1 電阻轉換現象 17
2.1.1 電致步驟 (forming process) 18
2.1.2 電阻轉換操作的種類 18
2.2 記憶阻 (memristor) 19
2.3 電化學金屬化機制 (electrochemical metallization) 21
2.3.1 電阻轉換運作原理 22
2.3.1 材料系統 23
2.4 價數變化電阻轉換機制 (valence change) 24
2.4.1 氧空缺 (oxygen vacancy) 的作用 24
2.4.2 電致過程與電阻轉換效應 25
2.5 熱化學機制 (thermo-chemical) 27
2.6 離子躍遷理論 29
第三章 實驗方法與步驟 53
3.1 元件製作流程 53
3.1.1 平面式元件製作 53
3.1.2 垂直式元件製作 53
3.2 材料分析 54
3.2.1 X-ray繞射分析 (X-ray diffraction) 54
3.2.2 掃描式電子顯微鏡 (SEM) 54
3.2.3 穿透式電子顯微鏡 (TEM) 54
3.2.4. 奈米級歐傑電子顯微鏡 (Auger electron nanoscope) 54
3.3 電性量測 55
3.3.1 電流-電壓量測 (掃伏輸入) 55
3.3.2 電流-時間量測 (定伏輸入) 56
3.3.3 電流-電壓量測 (掃流輸入) 56
3.3.4 變溫之電流-時間量測 (定伏輸入) 56
第四章 垂直式Ag/TiO2/Pt元件之電阻轉換特性探討 69
4.1 前言 70
4.2 實驗方法 71
4.3 結果與討論 71
4.3.1 元件結構與電阻轉換特性 71
4.3.2 電流限的效應與元件多階記憶 73
4.3.3 低阻態的不穩定性 74
4.4 結論 75
第五章 平面式Ag/TiO2/Pt元件之電致步驟及其活化限制過程 83
5.1 前言 84
5.2 實驗方法 84
5.3 結果與討論 85
5.3.1 元件特性檢測 85
5.3.2 電致步驟速率之限制過程-銀離子遷移 88
5.4 結論 90
第六章 銀導電絲的微結構分析 99
6.1 銀導電絲的結構觀察 100
6.1.1 電子顯微鏡分析 100
6.1.2 銀導電絲的結構演化-熱力學條件 101
6.1.3 銀導電絲的結構演化-動力學過程 (萊里不穩定性) 102
6.2 影響導電絲形貌的外在條件 104
6.2.1 電場大小對銀導電絲生長形貌的影響 104
6.2.2 電流限大小對銀導電絲生長形貌的影響 105
6.3 結論 106
第七章 長時間電壓/電流作用下之銀奈米球體結構演變 116
7.1 前言 117
7.2 實驗方法 117
7.3 結果與討論 118
7.4 結論 121
第八章 論文總結與未來研究建議 128
8.1 總結 128
8.2 未來研究建議 130
附錄 133
參考文獻 137
論文著作 159
1 International Technology Roadmap for Semiconductors, 2007 Edition. www.itrs.net/Links/2007ITRS/ExecSum2007.pdf
2 D. Ielmini, "Reliability issues and modeling of Flash and post-Flash memory (Invited Paper)" Microelectronic Engineering 86, 1870 (2009).
3 R. Zambrano, "Applications and issues for ferroelectric NVMs" Materials Science in Semiconductor Processing 5, 305 (2002).
4 R. Ramesh, S. Aggarwal, and O. Auciello, "Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories" Materials Science & Engineering R-Reports 32, 191 (2001).
5 J. G. Zhu, "Magnetoresistive random access memory: The path to competitiveness and scalability" Proceedings of the Ieee 96, 1786 (2008).
6 W. Welnic and M. Wuttig, "Reversible switching in phase-change materials" Materials Today 11, 20 (2008).
7 M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage" Nature Materials 6, 824 (2007).
8 S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, "Phase-change random access memory: A scalable technology" Ibm Journal of Research and Development 52, 465 (2008).
9 R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges" Advanced Materials 21, 2632 (2009).
10 A. Sawa, "Resistive switching in transition metal oxides" Materials Today 11, 28 (2008).
11 G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, "Overview of candidate device technologies for storage-class memory" Ibm Journal of Research and Development 52, 449 (2008).
12 Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, in Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, p. 1.
13 S. H. Jo, K. H. Kim, and W. Lu, "Programmable resistance switching in nanoscale two-terminal devices" Nano Letters 9, 496 (2009).
14 S. H. Jo, K. H. Kim, and W. Lu, "High-density crossbar arrays based on a Si memristive system" Nano Letters 9, 870 (2009).
15 S. H. Jo and W. Lu, "CMOS compatible nanoscale nonvolatile resistance, switching memory" Nano Letters 8, 392 (2008).
16 Y. J. Dong, G. H. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, "Si/a-Si core/shell nanowires as nonvolatile crossbar switches" Nano Letters 8, 386 (2008).
17 H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, in Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, p. 1.
18 G. I. Meijer, "Who wins the nonvolatile memory race?" Science 319, 1625 (2008).
19 M. N. Kozicki, M. Park, and M. Mitkova, "Nanoscale memory elements based on solid-state electrolytes" IEEE Transactions on Nanotechnology 4, 331 (2005).
20 L. Rayleigh, "On the Instability of Jets" Proceedings of the London Mathematical Society 10, 4 (1878).
21 R. Waser and M. Aono, "Nanoionics-based resistive switching memories" Nature Materials 6, 833 (2007).
22 T. W. Hickmott, "Low-frequency negative resistance in thin anodic oxide films" Journal of Applied Physics 33, 2669 (1962).
23 F. Argall, "Switching phenomena in titanium oxide thin films" Solid-State Electronics 11, 535 (1968).
24 J. G. Simmons and Verderbe.Rr, "New conduction and reversible memory phenomena in thin insulating films" Proceedings of the Royal Society of London 301, 77 (1967).
25 E. Y. Tsymbal and H. Kohlstedt, "Applied physics - Tunneling across a ferroelectric" Science 313, 181 (2006).
26 A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, "Current switching of resistive states in magnetoresistive manganites" Nature 388, 50 (1997).
27 R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition" Physical Review B 71 (2005).
28 G. I. Meijer, U. Staub, M. Janousch, S. L. Johnson, B. Delley, and T. Neisius, "Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3" Physical Review B 72, 155102 (2005).
29 M. Z. Q. Chen, C. Papageorgiou, F. Scheibe, F. C. Wang, and M. C. Smith, "The missing mechanical circuit element" Ieee Circuits and Systems Magazine 9, 10 (2009).
30 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found" Nature 453, 80 (2008).
31 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, "A [2]catenane-based solid state electronically reconfigurable switch" Science 289, 1172 (2000).
32 J. H. A. Smits, S. C. J. Meskers, R. A. J. Janssen, A. W. Marsman, and D. M. de Leeuw, "Electrically rewritable memory cells from poly(3-hexylthiophene) Schottky diodes" Advanced Materials 17, 1169 (2005).
33 Q. X. Lai, Z. H. Zhu, Y. Chen, S. Patil, and F. Wudl, "Organic nonvolatile memory by dopant-configurable polymer" Applied Physics Letters 88, 133515 (2006).
34 J. C. Scott and L. D. Bozano, "Nonvolatile memory elements based on organic materials" Advanced Materials 19, 1452 (2007).
35 N. B. Zhitenev, A. Sidorenko, D. M. Tennant, and R. A. Cirelli, "Chemical modification of the electronic conducting states in polymer nanodevices" Nature Nanotechnology 2, 237 (2007).
36 A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications" Applied Physics Letters 77, 139 (2000).
37 M. Hamaguchi, K. Aoyama, S. Asanuma, Y. Uesu, and T. Katsufuji, "Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films" Applied Physics Letters 88 (2006).
38 A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Interface resistance switching at a few nanometer thick perovskite manganite active layers" Applied Physics Letters 88, 232112 (2006).
39 K. Szot, W. Speier, G. Bihlmayer, and R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3" Nature Materials 5, 312 (2006).
40 R. Oligschlaeger, R. Waser, R. Meyer, S. Karthauser, and R. Dittmann, "Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films" Applied Physics Letters 88, 042901 (2006).
41 D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, "Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere" Journal of Applied Physics 104, 123716 (2008).
42 J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices" Nature Nanotechnology 3, 429 (2008).
43 D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack" Electrochemical and Solid State Letters 10, G51 (2007).
44 J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G. I. Meijer, and Y. Nishi, "Field-programmable rectification in rutile TiO2 crystals" Applied Physics Letters 91, 112101 (2007).
45 D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, "Molecule-independent electrical switching in Pt/organic monolayer/Ti devices" Nano Letters 4, 133 (2004).
46 J. J. Blackstock, W. F. Stickle, C. L. Donley, D. R. Stewart, and R. S. Williams, "Internal structure of a molecular junction device: Chemical reduction of PtO2 by Ti evaporation onto an interceding organic monolayer" Journal of Physical Chemistry C 111, 16 (2007).
47 J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. StanleyWilliams, "The mechanism of electroforming of metal oxide memristive switches" Nanotechnology 20, 215201 (2009).
48 X. Guo and C. Schindler, "Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems" Applied Physics Letters 91, 133513 (2007).
49 C. H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, and M. Aono, "Ionic-electronic conductor nanostructures: Template-confined growth and nonlinear electrical transport" Small 1, 971 (2005).
50 T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, "Nanometer-scale switches using copper sulfide" Applied Physics Letters 82, 3032 (2003).
51 B. Yang, H. X. Guo, K. B. Yin, Y. D. Xia, L. Chen, J. Yin, and Z. G. Liu, "The < 00l >-oriented growth of Cu2S films and its switching properties" Journal of Electroceramics 22, 87 (2009).
52 U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, "Study of multilevel programming in programmable metallization cell (PMC) memory" IEEE Trans. Electron Devices 56, 1040 (2009).
53 Z. C. Wang, T. K. Gu, T. Tada, and S. Watanabe, "Excess-silver-induced bridge formation in a silver sulfide atomic switch" Applied Physics Letters 93, 152106 (2008).
54 H. L. Wang and L. M. Qi, "Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers using a general sacrificial template and their application in electronic device fabrication" Advanced Functional Materials 18, 1249 (2008).
55 C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono, "Resistance switching of an individual Ag2S/Ag nanowire heterostructure" Nanotechnology 18, 485202 (2007).
56 Z. Wang, T. Kadohira, T. Tada, and S. Watanabe, "Nonequilibrium quantum transport properties of a silver atomic switch" Nano Letters 7, 2688 (2007).
57 Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, "Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices" Ieee Electron Device Letters 28, 14 (2007).
58 T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka, and M. Aono, "Switching property of atomic switch controlled by solid electrochemical reaction" Japanese Journal of Applied Physics Part 2-Letters & Express Letters 45, L364 (2006).
59 N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono, "Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch" Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45, 3666 (2006).
60 M. Kundu, K. Terabe, T. Hasegawa, and M. Aono, "Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films" Journal of Applied Physics 99, 103501 (2006).
61 K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, "Quantized conductance atomic switch" Nature 433, 47 (2005).
62 S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, "A nonvolatile programmable solid-electrolyte nanometer switch" Ieee Journal of Solid-State Circuits 40, 168 (2005).
63 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, "Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction" Journal of Applied Physics 91, 10110 (2002).
64 K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, "Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring" Applied Physics Letters 80, 4009 (2002).
65 M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, in Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes, Non-Volatile Memory Technology Symposium, 2005, p. 83.
66 H. X. Guo, L. G. Gao, Y. D. Xia, K. Jiang, B. Xu, Z. G. Liu, and J. Yin, "The growth of metallic nanofilaments in resistive switching memory devices based on solid electrolytes" Applied Physics Letters 94, 153504 (2009).
67 C. Schindler, K. Szot, S. Karthauser, and R. Waser, "Controlled local filament growth and dissolution in Ag-Ge-Se" Physica Status Solidi-Rapid Research Letters 2, 129 (2008).
68 R. Soni, P. Meuffels, H. Kohlstedt, C. Kugeler, and R. Waser, "Reliability analysis of the low resistance state stability of Ge0.3Se0.7 based solid electrolyte nonvolatile memory cells" Applied Physics Letters 94, 123503 (2009).
69 S. Dietrich, M. Angerbauer, M. Ivanov, D. Gogl, H. Hoenigschmid, M. Kund, C. Liaw, M. Markert, R. Symanczyk, L. Altimime, S. Bournat, and G. Mueller, "A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control" Ieee Journal of Solid-State Circuits 42, 839 (2007).
70 M. N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, and C. Gopalan, "Information storage using nanoscale electrodeposition of metal in solid electrolytes" Superlattices and Microstructures 34, 459 (2003).
71 J. Janek, "MIXED CONDUCTORS The bridge to redox switches" Nature Materials 8, 88 (2009).
72 S. J. Choi, J. H. Lee, H. J. Bae, W. Y. Yang, T. W. Kim, and K. H. Kim, "Improvement of CBRAM resistance window by scaling down electrode size in Pure-GeTe film" Ieee Electron Device Letters 30, 120 (2009).
73 Y. S. Park, S. Y. Lee, S. M. Yoon, S. W. Jung, B. G. Yu, S. J. Lee, and S. G. Yoon, "Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte" Applied Physics Letters 91, 162107 (2007).
74 S. J. Lee, S. G. Yoon, K. J. Choi, S. O. Ryq, S. M. Yoon, N. Y. Lee, and B. G. Yu, "Characterization of in situ diffusion of silver in Ge-Te amorphous films for programmable metallization cell memory applications" Journal of Vacuum Science & Technology B 24, 2312 (2006).
75 C. J. Kim, S. G. Yoon, K. J. Choi, S. O. Ryu, S. M. Yoon, N. Y. Lee, and B. G. Yu, "Characterization of silver-saturated Ge-Te chalcogenide thin films for nonvolatile random access memory" Journal of Vacuum Science & Technology B 24, 721 (2006).
76 X. F. Liang, Y. Chen, L. Shi, J. Lin, J. Yin, and Z. G. Liu, "Resistive switching and memory effects of AgI thin film" Journal of Physics D-Applied Physics 40, 4767 (2007).
77 C. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, and M. Aono, "AgI/Ag heterojunction nanowires: Facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity" Advanced Functional Materials 17, 1466 (2007).
78 H. X. Guo, B. Yang, L. Chen, Y. D. Xia, K. B. Yin, Z. G. Liu, and J. Yin, "Resistive switching devices based on nanocrystalline solid electrolyte (AgI)0.5(AgPO3)0.5" Applied Physics Letters 91, 243513 (2007).
79 X. F. Liang, Y. Chen, L. Chen, J. Yin, and Z. G. Liu, "Electric switching and memory devices made from RbAg4I5 films" Applied Physics Letters 90, 022508 (2007).
80 M. H. Zhai, K. B. Yin, L. Shi, J. Yin, and Z. G. Liu, "Conductance switching effect in the Cu/CuI0.76S0.14/Pt structure" Journal of Physics D-Applied Physics 40, 3702 (2007).
81 T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, "Electronic transport in Ta2O5 resistive switch" Applied Physics Letters 91, 092110 (2007).
82 M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, "A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte" IEEE Transactions on Nanotechnology 5, 535 (2006).
83 W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt" Applied Physics Letters 93, 223506 (2008).
84 L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, "The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy" Applied Physics Letters 95, 013109 (2009).
85 Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application" Nano Letters 9, 1636 (2009).
86 Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, "Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device" Applied Physics Letters 95, 023501 (2009).
87 C. Schindler, G. Staikov, and R. Waser, "Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories" Applied Physics Letters 94, 072109 (2009).
88 W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, "Nonpolar nonvolatile resistive switching in Cu doped ZrO2" Ieee Electron Device Letters 29, 434 (2008).
89 C. Schindler, M. Weides, M. N. Kozicki, and R. Waser, "Low current resistive switching in Cu-SiO2 cells" Applied Physics Letters 92, 122910 (2008).
90 C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, "Bipolar and unipolar resistive switching in Cu-doped SiO2" Ieee Transactions on Electron Devices 54, 2762 (2007).
91 D. Lee, D. J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, "Resistance switching of copper doped MoOx films for nonvolatile memory applications" Applied Physics Letters 90, 122104 (2007).
92 K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, "Bipolar resistive switching in polycrystalline TiO2 films" Applied Physics Letters 90, 113501 (2007).
93 C. Hyejung, P. Myeongbum, K. Tae-Wook, M. Hasan, D. Rui, L. Joonmyoung, P. Ju-Bong, Y. Jaesik, S. Dong-jun, L. Takhee, and H. Hyunsang, "Nanoscale resistive switching of a copper-carbon-mixed layer for nonvolatile memory applications" Electron Device Letters, IEEE 30, 302 (2009).
94 M. Pyun, H. Choi, J. B. Park, D. Lee, M. Hasan, R. Dong, S. J. Jung, J. Lee, D. J. Seong, J. Yoon, and H. Hwang, "Electrical and reliability characteristics of copper-doped carbon (CuC) based resistive switching devices for nonvolatile memory applications" Applied Physics Letters 93, 212907 (2008).
95 B. P. Andreasson, M. Janousch, U. Staub, and G. I. Meijer, "Spatial distribution of oxygen vacancies in Cr-doped SrTiO3 during an electric-field-driven insulator-to-metal transition" Applied Physics Letters 94, 013513 (2009).
96 M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, "Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory" Advanced Materials 19, 2232 (2007).
97 K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, "Localized metallic conductivity and self-healing during thermal reduction of SrTiO3" Physical Review Letters 88, 075508 (2002).
98 R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima, and H. Takagi, "Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure" Applied Physics Letters 95, 012110 (2009).
99 X. Sun, B. Sun, L. F. Liu, N. Xu, X. Y. Liu, R. Q. Han, J. F. Kang, G. C. Xiong, and T. P. Ma, "Resistive switching in CeOx films for nonvolatile memory application" Ieee Electron Device Letters 30, 334 (2009).
100 U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices" Ieee Transactions on Electron Devices 56, 193 (2009).
101 U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices" Ieee Transactions on Electron Devices 56, 186 (2009).
102 U. Russo, C. Cagli, S. Spiga, E. Cianci, and D. Ielmini, "Impact of electrode materials on resistive-switching memory programming" Ieee Electron Device Letters 30, 817 (2009).
103 S. Lee, H. Kim, D. J. Yun, S. W. Rhee, and K. Yong, "Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices" Applied Physics Letters 95, 262113 (2009).
104 M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, and Y. Park, "Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory" Nano Letters 9, 1476 (2009).
105 S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, "Resistive, switching characteristics of sol-gel zinc oxide films for flexible memory applications" Ieee Transactions on Electron Devices 56, 696 (2009).
106 K. M. Kim and C. S. Hwang, "The conical shape filament growth model in unipolar resistance switching of TiO2 thin film" Applied Physics Letters 94, 122109 (2009).
107 K. M. Kim, B. J. Choi, S. J. Song, G. H. Kim, and C. S. Hwang, "Filamentary resistive switching localized at cathode interface in NiO thin films" Journal of the Electrochemical Society 156, G213 (2009).
108 C. H. Kim, Y. H. Jang, H. J. Hwang, Z. H. Sun, H. B. Moon, and J. H. Cho, "Observation of bistable resistance memory switching in CuO thin films" Applied Physics Letters 94, 102107 (2009).
109 D. Ielmini, C. Cagli, and F. Nardi, "Resistance transition in metal oxides induced by electronic threshold switching" Applied Physics Letters 94, 063511 (2009).
110 J. S. Choi, J. S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S. O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, "Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes" Applied Physics Letters 95, 022109 (2009).
111 S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D. W. Kim, and T. W. Noh, "Occurrence of both unipolar memory and threshold resistance switching in a NiO film" Physical Review Letters 102, 026801 (2009).
112 S. C. Chae, J. S. Lee, W. S. Choi, S. B. Lee, S. H. Chang, H. Shin, B. Kahng, and T. W. Noh, "Multilevel unipolar resistance switching in TiO2 thin films" Applied Physics Letters 95, 093508 (2009).
113 P. Zhou, H. B. Lv, M. Yin, L. Tang, Y. L. Song, T. A. Tang, Y. Y. Lin, A. Bao, A. Wu, S. Cai, H. Wu, C. Liang, and M. H. Chi, "Performance improvement of CuOx with gradual oxygen concentration for nonvolatile memory application" Journal of Vacuum Science & Technology B 26, 1030 (2008).
114 I. K. Yoo, B. S. Kang, Y. D. Park, M. J. Lee, and Y. Park, "Interpretation of nanoscale conducting paths and their control in nickel oxide (NiO) thin films" Applied Physics Letters 92, 202112 (2008).
115 M. Yin, P. Zhou, H. B. Lv, J. Xu, Y. L. Song, X. F. Fu, T. A. Tang, B. A. Chen, and Y. Y. Lin, "Improvement of resistive switching in CuxO using new RESET mode" Ieee Electron Device Letters 29, 681 (2008).
116 J. Y. Son and Y. H. Shin, "Direct observation of conducting filaments on resistive switching of NiO thin films" Applied Physics Letters 92, 222106 (2008).
117 H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, "Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer" Applied Physics Letters 92, 043510 (2008).
118 C. Park, S. H. Jeon, S. C. Chae, S. Han, B. H. Park, S. Seo, and D. W. Kim, "Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures" Applied Physics Letters 93, 042102 (2008).
119 L. F. Liu, J. F. Kang, N. Xu, X. Sun, C. Chen, B. Sun, Y. Wang, X. Y. Liu, X. Zhang, and R. Q. Han, "Gd doping improved resistive switching characteristics of TiO2-based resistive memory devices" Japanese Journal of Applied Physics 47, 2701 (2008).
120 S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee, S. Seo, B. Kahng, and T. W. Noh, "Scaling behaviors of reset voltages and currents in unipolar resistance switching" Applied Physics Letters 93, 212105 (2008).
121 H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. H. Lien, "Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory" Applied Physics Letters 92, 142911 (2008).
122 C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S. E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, "Effects of metal electrodes on the resistive memory switching property of NiO thin films" Applied Physics Letters 93, 042115 (2008).
123 K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, "Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance" Applied Physics Letters 93, 033506 (2008).
124 S. I. Kim, J. H. Lee, Y. W. Chang, S. S. Hwang, and K. H. Yoo, "Reversible resistive switching behaviors in NiO nanowires" Applied Physics Letters 93, 033503 (2008).
125 S. Kim and Y. K. Choi, "Resistive switching of aluminum oxide for flexible memory" Applied Physics Letters 92, 223508 (2008).
126 K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, and H. Takagi, "Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices" Japanese Journal of Applied Physics 47, 6266 (2008).
127 A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, "Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory" Applied Physics Letters 92, 013503 (2008).
128 W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications" Applied Physics Letters 92, 022110 (2008).
129 S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D. W. Kim, and C. U. Jung, "Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors" Applied Physics Letters 92, 183507 (2008).
130 S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee, and T. W. Noh, "Random circuit breaker network model for unipolar resistance switching" Advanced Materials 20, 1154 (2008).
131 S. E. Ahn, M. J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D. S. Suh, D. C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. A. Yin, I. K. Yoo, A. H. Lee, J. B. Park, I. G. Baek, and B. H. Park, "Write current reduction in transition metal oxide based resistance-change memory" Advanced Materials 20, 924 (2008).
132 J. B. Yun, S. Kim, S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, Y. Park, J. Kim, and H. Shin, "Random and localized resistive switching observation in Pt/NiO/Pt" Physica Status Solidi-Rapid Research Letters 1, 280 (2007).
133 X. Wu, P. Zhou, J. Li, L. Y. Chen, H. Lin, and T. A. Tang, "Reproducible unipolar resistance switching in stoichiometric ZrO2 films" Applied Physics Letters 90, 183507 (2007).
134 H. Shima, F. Takano, Y. Tamai, H. Akinaga, and I. H. Inoue, "Synthesis and characterization of Pt/Co-O/Pt trilayer exhibiting large reproducible resistance switching" Japanese Journal of Applied Physics Part 2-Letters & Express Letters 46, L57 (2007).
135 H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, "Resistance switching in the metal deficient-type oxides: NiO and CoO" Applied Physics Letters 91, 012901 (2007).
136 H. Schroeder and D. S. Jeong, "Resistive switching in a Pt/TiO2/Pt thin film stack - a candidate for a non-volatile ReRAM" Microelectronic Engineering 84, 1982 (2007).
137 Y. Sato, K. Kinoshita, M. Aoki, and Y. Sugiyama, "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model" Applied Physics Letters 90, 033503 (2007).
138 G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film" Applied Physics Letters 91, 222103 (2007).
139 K. C. Min, M. Kim, Y. H. You, S. S. Lee, Y. K. Lee, T. M. Chung, C. G. Kim, J. H. Hwang, K. S. An, N. S. Lee, and Y. Kim, "NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena" Surface & Coatings Technology 201, 9252 (2007).
140 S. R. Lee, K. Char, D. C. Kim, R. Jung, S. Seo, X. S. Li, G. S. Park, and I. K. Yoo, "Resistive memory switching in epitaxially grown NiO" Applied Physics Letters 91, 202115 (2007).
141 H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, "Low-power switching of nonvolatile resistive memory using hafnium oxide" Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 2175 (2007).
142 K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films" Applied Physics Letters 91, 012907 (2007).
143 K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films" Applied Physics Letters 90, 242906 (2007).
144 Y. H. You, B. S. So, J. H. Hwang, W. Cho, S. S. Lee, T. M. Chung, C. G. Kim, and K. S. An, "Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition" Applied Physics Letters 89, 222105 (2006).
145 S. H. Kim, I. S. Byun, I. R. Hwang, J. S. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, and Y. S. Joung, in Fracture and Strength of Solids Vi, Pts 1 and 2; Vol. 306-308, edited by I. S. Putra and D. Suharto (2006), p. 1301.
146 K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, "Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures" Electrochemical and Solid State Letters 9, G343 (2006).
147 D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon, and B. I. Ryu, "Electrical observations of filamentary conductions for the resistive memory switching in NiO films" Applied Physics Letters 88, 202102 (2006).
148 B. J. Choi, S. Choi, K. M. Kim, Y. C. Shin, C. S. Hwang, S. Y. Hwang, S. S. Cho, S. Park, and S. K. Hong, "Study on the resistive switching time of TiO2 thin films" Applied Physics Letters 89, 012906 (2006).
149 S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, "Conductivity switching characteristics and reset currents in NiO films" Applied Physics Letters 86, 093509 (2005).
150 S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, and S. H. Hong, "Electrode dependence of resistance switching in polycrystalline NiO films" Applied Physics Letters 87, 263507 (2005).
151 C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, "Identification of a determining parameter for resistive switching of TiO2 thin films" Applied Physics Letters 86, 262907 (2005).
152 S. H. Kim, I. S. Byun, I. R. Hwang, J. S. Kim, J. S. Choi, S. H. Jeon, S. H. Hong, J. H. Lee, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, Y. S. Joung, D. S. Suh, J. E. Lee, and I. K. Yoo, "Electrical properties of ZrO2 and YSZ films deposited by pulsed laser deposition" Journal of the Korean Physical Society 47, S247 (2005).
153 B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition" Journal of Applied Physics 98, 033715 (2005).
154 S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, "Reproducible resistance switching in polycrystalline NiO films" Applied Physics Letters 85, 5655 (2004).
155 U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, in Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, p. 775.
156 D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory" Nature Nanotechnology 5, 148 (2010).
157 D. B. Strukov and R. S. Williams, "Exponential ionic drift: fast switching and low volatility of thin-film memristors" Applied Physics a-Materials Science & Processing 94, 515 (2009).
158 M. Jafar and D. Haneman, "Switching in amorphous-silicon devices" Physical Review B 49, 13611 (1994).
159 R. Waser, T. Baiatu, and K. H. Hardtl, "DC electrical degradation of perovskite-type titanates.1. Ceramics" Journal of the American Ceramic Society 73, 1645 (1990).
160 J. O. M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry (Plenum, New York, 2000).
161 F. A. Nichols and W. W. Mullins, "Surface-(Interface-) and volume-diffusion contributions to morphological changes driven by capillarity" TMS-AIME 233, 1840 (1965).
162 H. Y. Peng, N. Wang, W. S. Shi, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires" Journal of Applied Physics 89, 727 (2001).
163 M. E. Toimil-Molares, A. G. Balogh, T. W. Cornelius, R. Neumann, and C. Trautmann, "Fragmentation of nanowires driven by Rayleigh instability" Applied Physics Letters 85, 5337 (2004).
164 K. F. Gurski, G. B. McFadden, and M. J. Miksis, "The effect of contact lines on the Rayleigh instability with anisotropic surface energy" Siam Journal on Applied Mathematics 66, 1163 (2006).
165 S. Karim, M. E. Toimil-Molares, A. G. Balogh, W. Ensinger, T. W. Cornelius, E. U. Khan, and R. Neumann, "Morphological evolution of Au nanowires controlled by Rayleigh instability" Nanotechnology 17, 5954 (2006).
166 J. Lian, L. M. Wang, X. C. Sun, Q. K. Yu, and R. C. Ewing, "Patterning metallic nanostructures by ion-beam-induced dewetting and Rayleigh instability" Nano Letters 6, 2637 (2006).
167 H. S. Shin, J. Yu, and J. Y. Song, "Size-dependent thermal instability and melting behavior of Sn nanowires" Applied Physics Letters 91, 173106 (2007).
168 Y. Qin, S. M. Lee, A. Pan, U. Gosele, and M. Knez, "Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition" Nano Letters 8, 114 (2008).
169 Y. Qin, L. F. Liu, R. B. Yang, U. Gosele, and M. Knez, "General assembly method for linear metal nanoparticle chains embedded in nanotubes" Nano Letters 8, 3221 (2008).
170 F. A. Nichols and W. W. Mullins, "Morphological changes of a surface of revolution due to capillarity-induced surface diffusion" Journal of Applied Physics 36, 1826 (1965).
171 W. W. Mullins, "Theory of thermal grooving" Journal of Applied Physics 28, 333 (1957).
172 F. A. Nichols, "Spheroidization of rod-shaped particles of finite length" Journal of Materials Science 11, 1077 (1976).
173 L. Pedemonte, R. Tatarek, M. Vladiskovic, and G. Bracco, "Anisotropic self-diffusion on Ag(110)" Surface Science 507, 129 (2002).
174 廖信煒, "電阻式記憶體轉換機制之微觀模擬" 碩士論文 (民99).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *