帳號:guest(18.117.183.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇紋正
作者(外文):Su, Wen-Cheng
論文名稱(中文):深共熔離子液體在二氧化碳捕獲的應用
論文名稱(外文):Application of the Deep Eutectic Solvent in CO2 Capture
指導教授(中文):汪上曉
指導教授(外文):Wong, David Shan-Hill
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:937614
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:89
中文關鍵詞:二氧化碳捕獲深共熔離子液體離子交換
外文關鍵詞:CO2 CaptureDeep Eutectic SolventIon Exchange
相關次數:
  • 推薦推薦:0
  • 點閱點閱:270
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二氧化碳捕獲之重要性在於降低人為所產生的二氧化碳排放與溫室效應。利用醇胺水溶液作吸收與汽提之操作為從燃燒後煙道氣回收二氧化碳的重要技術之一。然而此一製程的能源消耗仍然很高,本研究為探索利用新型溶劑與製程的改善來降低二氧化碳捕獲的能耗之可行性。
首先我們量測了二氧化碳於不同水含量下之深共熔離子液體 “ Reline ” 的溶解度,證明水可以扮演著反溶劑的角色去除Reline 中的二氧化碳。然而由於二氧化碳於Reline中的溶解量過低,造成反溶劑脫除法顯得不具競爭力。
接著我們也量測了二氧化碳於不同水含量下之氨基酸鹽 “ [Choline][Pro] ” 溶液中的負載。 高水含量會促使碳酸氫根離子的產生,增加二氧化碳的負載。此時水扮演共溶劑的角色而並非反溶劑;因此我們提出一個不需熱能再生的二氧化碳汽提步驟:使用含氯離子交換樹脂將 [Choline][Pro]轉換成其之前驅物氯化膽鹼與脯氨酸,進而將已溶解的二氧化碳汽提出來;然後用含氫氧離子交換樹脂將氯化膽鹼與脯氨酸混合物再生成[Choline][Pro]。
最後我們發展了對不同二氧化碳吸收劑之能源消耗簡易估算法。藉由此方法可以發現,因為[Choline][Pro]之聚乙烯溶液具備高二氧化碳吸收量及溶劑揮發損失可忽略,故有機會成為低能耗的替代二氧化碳溶劑。然而其高黏度導致實際應用有困難。
基於上述研究結果,未來發展新型二氧化碳溶劑與與創新吸收製程可能有兩個方向。其中之一為將新型吸收劑如氨基酸鹽溶於低黏度不具揮發性之溶劑中進行二氧化碳捕獲;此外也可將以離子交換輔助,不須耗費熱能的溶劑再生法應用於其他氨基酸鹽水溶液。
Carbon dioxide capture and sequestration is becoming an important means for reducing anthropogenic carbon dioxide emission and global warming. One of the most developed technologies for carbon dioxide capture from post-combustion flue gas is the absorption/stripping process utilizing aqueous alkanolamine solutions. However, this process is still energy intensive. This work explores the feasibility of reducing energy consumption using alternative solvents and process configurations.
Firstly, we measured the solubilities of carbon dioxide in the deep eutectic solvent, Reline with different water contents. Water can act as an anti-solvent to strip carbon dioxide from Reline. However, a concentration swing process based on anti-solvent effect is non-competitive due to the low carbon dioxide capacity in Reline.
The carbon dioxide loadings in the amino acid salt, [Choline][Pro], with different water contents were measured. High water content results in the formation of bicarbonate ion and increase carbon dioxide loadings. Water acts as a co-solvent rather than anti-solvent. A thermal energy free stripping process was proposed by using ion exchange resin. Chloride form resin was used to convert saturated [Choline][Pro] solution to choline chloride and L-proline, driving out dissolved carbon dioxide. Hydroxide form resin was used to regenerate [Choline][Pro] from the mixture of choline chloride and L-proline.
Finally, a simplified method to evaluate the energy consumption of different carbon dioxide absorbents was developed. It was found that [Choline][Pro] in PEG200 solution is the energy-efficient alternative absorbent because of its high capacity and negligible solvent vaporization loss. However, high viscosity of the solution becomes the bottleneck of its application.
Based on results of this study, two directions for developing new solvent systems and processes are proposed. One way is to dissolve innovative amino acid salts in non-viscous solvent of low volatility. Alternatively, the thermal energy free stripping process can be applied to aqueous solutions of amino acid salts.
摘要 I
ABSTRACT III
TABLE OF CONTENTS V
FIGURES VIII
TABLES XI
NOMENCLATURE XIII
CHAPTER 1 1
Introduction 1
1.1 Carbon Dioxide Capture and Squestration (CCS) 1
1.2 Ionic Liquids 4
1.3 Deep Eutectic Solvents 10
1.4 Motivation, Objectives, and Scope 13
CHAPTER 2 17
The Effect of Water on Solubility of Carbon Dioxide in Reline 17
2.1 Introduction 17
2.2 Experiment 19
2.2.1 Chemicals 19
2.2.2 Measurement of CO2 Solubility 19
2.3 Results and Discussion 22
2.4 Summary 27
CHAPTER 3 29
A Carbon Dioxide Capture Process in Aqueous [Choline][Pro] Solution 29
3.1 Introduction 29
3.2 Experiment 31
3.2.1 Chemicals 31
3.2.2 Density and Viscosity Measurements 32
3.2.3 Measurement of CO2 Solubility 32
3.2.4 CO2 Stripping 33
3.3 Results and Discussion 34
3.3.1 Density and Viscosity Measurements 34
3.3.2 Solubility of CO2 in Aqueous [Choline][Pro] 37
3.3.3 CO2 Stripping 41
3.4 Summary 44
CHAPTER 4 45
Benchmark Calculation of Energy Requirement in Carbon Dioxide Absorption/Stripping Process 45
4.1 Introduction 45
4.1.1 The basic absorption and stripping process 45
4.1.2 The minimum work required for CO2 capture 47
4.1.3 Actual energy expenditure in CO2 capture 49
4.1.4 Motivation and objective 51
4.2 Benchmark for Chemical Solvents and Applications to Aqueous Alkanolamine Solutions 54
4.3 Benchmark of Physical Solvents and Application to Imidazolium-based Ionic Liquids 61
4.4 Benchmark of Amino Acid Salts 65
4.5 The effect of stripper pressure 69
4.6 Summary 71
CHAPTER 5 72
Conclusions and Future Works 72
References 75
1. Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, C., Chidthaisong, A., Friedlingstein, P., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Qin, D., Raga, G., Ramaswamy, V., Ren,J., Rusticucci, M., Solomon, S., Somerville, R., Stocker, T. F., Stott, P. A., Stouffer, R. J., Whetton, P., Wood, R. A., Wratt, D. Summary for Policymakers. http://ipcc-wg1.ucar.edu/wg1/Report/AR4W G1_Print_SPM.pdf
2. Cox, P.; Jones, C., Climate Change - Illuminating the Modern Dance of Climate and CO2. Science 2008, 321, (5896), 1642-1644.
3. Keith, D. W., Why Capture CO2 from the Atmosphere? Science 2009, 325, (5948), 1654-1655.
4. Astarita, G.; Savage, D. W.; Bisio, A., Gas Treating with Chemical Solvents. John Wiley: New York, 1983.
5. SelexolTM Process. http://www.uop.com/objects/97%20Selexol.pdf
6. Rectisol□Process. http://www.lurgi.com/website/fileadmin/user_upload/1_PD F/1_Broshures_Flyer/englisch/0308e_Rectisol.pdf
7. Cryogenic Gas Plants. http://www.gas-plants.com/cryogenic-gas-plants.html
8. Mcgalliard, R. L.; Larrabee, G. W., Method for Cryogenic Separation of Carbon Dioxide from Hydrocarbons. US Patent 4185978 1980.
9. Schell, W. J., Membrane Use Technology Growing. Hydrocarb. Process. 1983, 62, (8), 43-46.
10. Reddy, S.; Johnson, D. Econamine FG PlusSM Technology for CO2 Capture at Coal-fired Power Plants. http://secure.awma.org/presentations/Mega08/present ations/1-Reddy.pdf
11. Reddy, S.; Scherffius, J.; Freguia, S.; Roberts, C., Fluor's Econamine FG PlusSM Technology An Enhanced Amine-Based CO2 Capture Process. In Second National Conference on Carbon Sequestration, National Energy Technology Laboratory/Department of Energy: Alexandria, VA, 2003.
12. Kohl, A. L.; Nielsen, R., Gas Purification. 5th ed.; Gulf Pub.: Houston, Tex., 1997; p viii, 1395 p.
13. Rochelle, G. T., Amine Scrubbing for CO2 Capture. Science 2009, 325, (5948), 1652-1654.
14. Veawab, A.; Tontiwachwuthikul, P.; Bhole, S. D., Studies of Corrosion and Corrosion Control in a CO2-2-amino-2-methyl-1-propanol (AMP) Environment. Ind. Eng. Chem. Res. 1997, 36, (1), 264-269.
15. Eustaquio-Rincon, R.; Rebolledo-Libreros, M. E.; Trejo, A.; Molnar, R., Corrosion in Aqueous Solution of Two Alkanolamines with CO2 and H2S: N-methyldiethanolamine plus Diethanolamine at 393 K. Ind. Eng. Chem. Res. 2008, 47, (14), 4726-4735.
16. Knaak, J. B.; Leung, H. W.; Scott, W. T.; Busch, J.; Bilsky, J., Toxicology of Mono-, Di-, and Triethanolamine Triethanolamine. In Reviews of Environmental Contamination and Toxicology, Volume 149,, Springer-Verlag: New York, N.Y., 1997.
17. Sheldon, R. A., The Role of Catalysis in Waste Minimization. In Precision process technology: perspectives for pollution prevention, Weijnen, M. P. C.; Drinkenburg, A. A. H., Eds. Kluwer Academic: Dordrecht ; Boston, 1993; pp 125 - 138.
18. Seddon, K. R., Ionic Liquids for Clean Technology. J. Chem. Technol. Biotechnol. 1997, 68, 351-356.
19. Walden, P., Bull. Acad. Imper. Sci. (St. Petersburg) 1914, 1800-1808.
20. Plechkova, N. V.; Seddon, K. R., Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, (1), 123-150.
21. Seddon, K. R. In Ionic Liquids for Clean Technology: An Update, Molten Salt Forum: Proceedings of the 5th International Conference on Molten Salt Chemistry and Technology, 1998; H., W., Ed. 1998; pp 53-62.
22. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F., Green Processing Using Ionic Liquids and CO2. Nature 1999, 399, (6731), 28-29.
23. Blanchard, L. A.; Gu, Z. Y.; Brennecke, J. F., High-pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B 2001, 105, (12), 2437-2444.
24. Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-N-butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B 2002, 106, (29), 7315-7320.
25. Kamps, A. P. S.; Tuma, D.; Xia, J. Z.; Maurer, G., Solubility of CO2 in the Ionic Liquid [Bmim][PF6]. J. Chem. Eng. Data 2003, 48, (3), 746-749.
26. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J., Why is CO2 So Soluble in Imidazolium-based Ionic Liquids? J. Am. Chem. Soc. 2004, 126, (16), 5300-5308.
27. Shiflett, M. B.; Yokozeki, A., Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [Bmim][PF6] and [Bmim][BF4]. Ind. Eng. Chem. Res. 2005, 44, (12), 4453-4464.
28. Jacquemin, J.; Gomes, M. F. C.; Husson, P.; Majer, V., Solubility of Carbon Dioxide, Ethane, Methane, Oxygen, Nitrogen, Hydrogen, Argon, and Carbon Monoxide in 1-Butyl-3-methylimidazolium Tetrafluoroborate between Temperatures 283 K and 343 K and at Pressures close to Atmospheric. J. Chem. Thermodyn. 2006, 38, (4), 490-502.
29. Jacquemin, J.; Husson, P.; Majer, V.; Gomes, M. F. C., Low-pressure Solubilities and Thermodynamics of Solvation of Eight Gases in 1-Butyl-3-methylimidazolium Hexafluorophosphate. Fluid Phase Equilib. 2006, 240, (1), 87-95.
30. Kumelan, J.; Kamps, A. P. S.; Tuma, D.; Maurer, G., Solubility of CO2 in the Ionic Liquids [Bmim][CH3SO4] and [Bmim][PF6]. J. Chem. Eng. Data 2006, 51, (5), 1802-1807.
31. Anderson, J. L.; Dixon, J. K.; Brennecke, J. F., Solubility of CO2,CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl) -imide: Comparison to Other Ionic Liquids. Accounts Chem. Res. 2007, 40, (11), 1208-1216.
32. West, A., Promising A Greener Future. Chem. World 2005, 2, (3), 32-36.
33. Ranke, J.; Jastorff, B., Multidimensional Risk Analysis of Antifouling Biocides. Environ. Sci. Pollut. Res. 2000, 7, (2), 105-114.
34. Jastorff, B.; Stormann, R.; Ranke, J.; Molter, K.; Stock, F.; Oberheitmann, B.; Hoffmann, W.; Hoffmann, J.; Nuchter, M.; Ondruschka, B.; Filser, J., How Hazardous Are Ionic Liquids? Structure-activity Relationships and Biological Testing as Important Elements for Sustainability Evaluation. Green Chem. 2003, 5, 136-142.
35. Earle, M. J.; Esperanca, J.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A., The Distillation and Volatility of Ionic Liquids. Nature 2006, 439, (7078), 831-834.
36. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D., Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, (4), 156-164.
37. Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solution Thermodynamics of Imidazolium-based Ionic Liquids and Water. J. Phys. Chem. B 2001, 105, (44), 10942-10949.
38. Wong, D. S. H.; Chen, J. P.; Chang, J. M.; Chou, C. H., Phase Equilibria of Water and Ionic Liquids [Emim][PF6] and [Bmim][PF6]. 2002, 194, 1089-1095.
39. Freire, M. G.; Neves, C.; Carvalho, P. J.; Gardas, R. L.; Fernandes, A. M.; Marrucho, I. M.; Santos, L.; Coutinho, J. A. P., Mutual Solubilities of Water and Hydrophobic Ionic Liquids. J. Phys. Chem. B 2007, 111, (45), 13082-13089.
40. Chou, C. H.; Perng, F. S.; Wong, D. S. H.; Su, W. C., 1-Octanol/Water Partition Coefficient of Ionic Liquids. In 15th Symposium on Thermophysical Properties, Boulder, CO, USA, 2003.
41. Wong, D. S. H.; Su, W. C.; Chou, C. H., 1-Octanol/Water Partition Coefficient of Several Ionic Liquids. In 16th International Congress of Chemical And Process Engineering, Prague, Czech Republic, 2004.
42. Ropel, L.; Belveze, L. S.; Aki, S.; Stadtherr, M. A.; Brennecke, J. F., Octanol-water Partition Coefficients of Imidazolium-based Ionic Liquids. Green Chem. 2005, 7, (2), 83-90.
43. Sangster, J., Octanol-water Partition Coefficients : Fundamentals and Physical Chemistry New York : Wiley, c1997: Chichester, 1997.
44. Su, W. C.; Chou, C. H.; Wong, D. S. H.; Li, M. H., Diffusion Coefficients and Conductivities of Alkylimidazolium Tetrafluoroborates and Hexafluoro- phosphates. Fluid Phase Equilib. 2007, 252, (1-2), 74-78.
45. Wilke, C. R.; Chang, P., Correlation of Diffusion Coefficients in Dilute Solutions. Aiche J. 1955, 1, (2), 264-270.
46. Robinson, R. A.; Stokes, R. H., Electrolyte Solutions. Butterworths Scientific Publications: London, 1965.
47. Merck Chemicals. http://www.merck-chemicals.com/
48. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of Novel, Moisture-stable, Lewis-acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun. 2001, (19), 2010-2011.
49. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, (1), 70-71.
50. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K., Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, (29), 9142-9147.
51. Scionix. http://www.scionix.co.uk
52. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. H.; Tambyrajah, V., Quaternary Ammonium Zinc- or Tin-containing Ionic Liquids: Water Insensitive, Recyclable Catalysts for Diels-Alder Reactions. Green Chem. 2002, 4, (1), 24-26.
53. Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, (7003), 1012-1016.
54. Abbott, A. P.; Bell, T. J.; Handa, S.; Stoddart, B., Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem. 2006, 8, (9), 784-786.
55. Abbott, A. P.; Capper, G.; Davies, D. L.; McKenzie, K. J.; Obi, S. U., Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 2006, 51, (4), 1280-1282.
56. Jhong, H. R.; Wong, D. S. H.; Wan, C. C.; Wang, Y. Y.; Wei, T. C., A Novel Deep Eutectic Solvent-based Ionic Liquid Used as Electrolyte for Dye-sensitized Solar Cells. Electrochem. Commun. 2009, 11, (1), 209-211.
57. Su, W. C.; Wong, D. S. H., The Water Effect on ITO Solubility in the DES Maline. In 8th World Congress of Chemical Engineering, Montreal, Canada, 2009.
58. Li, X. Y.; Hou, M. Q.; Han, B. X.; Wang, X. L.; Zou, L. Z., Solubility of CO2 in a choline chloride plus urea eutectic mixture. J. Chem. Eng. Data 2008, 53, (2), 548-550.
59. Hu, S. Q.; Jiang, T.; Zhang, Z. F.; Zhu, A. L.; Han, B. X.; Song, J. L.; Xie, Y.; Li, W. J., Functional Ionic Liquid from Biorenewable Materials: Synthesis and Application as a Catalyst in Direct Aldol Reactions. Tetrahedron Lett. 2007, 48, (32), 5613-5617.
60. Li, X. Y.; Hou, M. Q.; Zhang, Z. F.; Han, B. X.; Yang, G. Y.; Wang, X. L.; Zou, L. Z., Absorption of CO2 by Ionic Liquid/Polyethylene Glycol Mixture and the Thermodynamic Parameters. Green Chem. 2008, 10, (8), 879-884.
61. Shen, K. P.; Li, M. H., Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine. J. Chem. Eng. Data 1992, 37, (1), 96-100.
62. Li, M. H.; Chang, B. C., Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 1994, 39, (3), 448-452.
63. Murrieta-Guevara, F.; Rebolledo-Libreros, M. E.; Romero-Martinez, A.; Trejo, A., Solubility of CO2 in Aqueous Mixtures of Diethanolamine with Methyldiethanolamine and 2-Amino-2-methyl-1-propanol. 1998, 150, 721-729.
64. Sidi-Boumedine, R.; Horstmann, S.; Fischer, K.; Provost, E.; Furst, W.; Gmehling, J., Experimental Determination of Carbon Dioxide Solubility Data in Aqueous Alkanolamine Solutions. Fluid Phase Equilib. 2004, 218, (1), 85-94.
65. Kundu, M.; Bandyopadhyay, S. S., Solubility of CO2 in Water plus Diethanolamine plus 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 2006, 51, (2), 398-405.
66. Vrachnos, A.; Kontogeorgis, G.; Voutsas, E., Thermodynamic Modeling of Acidic Gas Solubility in Aqueous Solutions of MEA, MDEA and MEA-MDEA Blends. Ind. Eng. Chem. Res. 2006, 45, (14), 5148-5154.
67. Kundu, M.; Bandyopadhyay, S. S., Solubility of CO2 in Water plus Diethanolamine plus N-methyldiethanolamine. Fluid Phase Equilib. 2006, 248, (2), 158-167.
68. Arcis, H.; Rodier, L.; Coxam, J. Y., Enthalpy of Solution of CO2 in Aqueous Solutions of 2-Amino-2-methyl-1-propanol. J. Chem. Thermodyn. 2007, 39, (6), 878-887.
69. Rochelle, G. T.; Goff, G. S.; Cullinane, J. T.; Freguia, S., Research Results for CO2 Capture from Flue Gas by Aqueous Absorption/Stripping. In The Laurance Reid Gas Conditioning Conference, Norman, USA, 2002; pp 131-151.
70. Song, H. J.; Lee, S.; Park, K.; Lee, J.; Spah, D. C.; Park, J. W.; Filburn, T. P., Simplified Estimation of Regeneration Energy of 30 wt % Sodium Glycinate Solution for Carbon Dioxide Absorption. Ind. Eng. Chem. Res. 2008, 47, (24), 9925-9930.
71. Danckwerts, P. V., Gas-liquid Reactions. McGraw-Hill Book Co.: New York,, 1970; p xiii, 276 p.
72. Rebolledo-Libreros, M. E.; Trejo, A., Gas Solubility of CO2 in Aqueous Solutions of N-methyldiethanolamine and Diethanolamine with 2-Amino-2-methyl-1-propanol. Fluid Phase Equilib. 2004, 218, (2), 261-267.
73. Versteeg, G. F.; Vanswaaij, W. P. M., Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988, 33, (1), 29-34.
74. Littel, R. J.; Versteeg, G. F.; Vanswaaij, W. P. M., Solubility and Diffusivity Data for the Absorption of COS, CO2, and N2O in Amine Solutions. J. Chem. Eng. Data 1992, 37, (1), 49-55.
75. Mandal, B. P.; Kundu, M.; Padhiyar, N. U.; Bandyopadhyay, S. S., Physical Solubility and Diffusivity of N2O and CO2 into Aqueous Solutions of (2-Amino-2-methyl-1-propanol plus Diethanolamine) and (N-methyl- diethanolamine plus Diethanolamine). J. Chem. Eng. Data 2004, 49, (2), 264-270.
76. Digullio, R. M.; Lee, R. J.; Schaeffer, S. T.; Brasher, L. L.; Teja, A. S., Solubility and Diffusivity Data for the Absorption of COS, CO2, and N2O in Amine Solutions. J. Chem. Eng. Data 1992, 37, (2), 239-242.
77. Hsu, C. H.; Li, M. H., Densities of Aqueous Blended Amines. J. Chem. Eng. Data 1997, 42, (3), 502-507.
78. Hsu, C. H.; Li, M. H., Viscosities of Aqueous Blended Amines. J. Chem. Eng. Data 1997, 42, (4), 714-720.
79. Mandal, B. P.; Kundu, M.; Bandyopadhyay, S. S., Density and Viscosity of Aqueous Solutions of (N-methyldiethanolamine plus Monoethanolamine), (N-methyldiethanolamine plus Diethanolamine), (2-Amino-2-methyl-1- propanol plus Monoethanolamine), and (2-Amino-2-methyl-1-propanol plus Diethanolamine). J. Chem. Eng. Data 2003, 48, (3), 703-707.
80. Chiu, L. F.; Li, M. H., Heat capacity of alkanolamine aqueous solutions. J. Chem. Eng. Data 1999, 44, (6), 1396-1401.
81. Mundhwa, M.; Henni, A., Molar Heat capacity of Various Aqueous Alkanolamine Solutions from 303.15 K to 353.15 K. J. Chem. Eng. Data 2007, 52, (2), 491-498.
82. Rogers, R. D.; Seddon, K. R., Ionic liquids : Industrial Applications for Green Chemistry. American Chemical Society: Washington, D.C., 2002.
83. Rogers, R. D.; Seddon, K. R., Ionic Liquids as Green Solvents : Progress and Prospects. American Chemical Society: Washington, DC, 2003.
84. Rogers, R. D.; Seddon, K. R., Ionic Liquids III : Fundamentals, Progress, Challenges, and Opportunities. American Chemical Society: Washington, DC, 2005.
85. Jastorff, B.; Molter, K.; Behrend, P.; Bottin-Weber, U.; Filser, J.; Heimers, A.; Ondruschka, B.; Ranke, J.; Schaefer, M.; Schroder, H.; Stark, A.; Stepnowski, P.; Stock, F.; Stormann, R.; Stolte, S.; Welz-Biermann, U.; Ziegert, S.; Thoming, J., Progress in Evaluation of Risk Potential of Ionic Liquids-basis for An Eco-design of Sustainable Products. Green Chem. 2005, 7, 362-372.
86. Abbott, A. P.; Capper, G.; McKenzie, K. J.; Ryder, K. S., Voltammetric and Impedance Studies of the Electropolishing of Type 316 Stainless Steel in a Choline Chloride Based Ionic Liquid. Electrochim. Acta 2006, 51, (21), 4420-4425.
87. Li, M. H.; Lai, M. D., Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol + Water). J. Chem. Eng. Data 1995, 40, (2), 486-492.
88. Haimour, N.; Sandall, O. C., Absorption of carbon dioxide into aqueous methyldiethanolamine Chem. Eng. Sci. 1984, 39, (12), 1791-1796.
89. Lide, D. R., Properties of Water in the Range 0 -100°C. In CRC Handbook of Chemistry and Physics, 88th ed. (Internet Version), Lide, D. R., Ed. CRC Press/Taylor and Francis: Boca Raton, FL, 2008.
90. Gibbs, R. E.; Vanness, H. C., Solubilty of Gases in Liquids in Relation to Partial Molar Volumes of Solute - Carbon Dioxide-Water. Industrial & Engineering Chemistry Fundamentals 1971, 10, (2), 312-315.
91. Schulze, G.; Prausnitz, J. M., Solubilities of Gases in Water at High Temperatures. Industrial & Engineering Chemistry Fundamentals 1981, 20, (2), 175-177.
92. Zawisza, A.; Malesinska, B., Solubility of Carbon Dioxide in Liquid Water and of Water in Gaseous Carbon Dioxide in the Range 0.2-5 MPa and at Temperatures up to 473 K. J. Chem. Eng. Data 1981, 26, (4), 388-391.
93. Zheng, D. Q.; Guo, T. M.; Knapp, H., Experimental and Modeling Studies on the Solubility of CO2, CHClF2, CHF3, C2H2F4 and C2H4F2 in Water and Aqueous NaCl Solutions under Low Pressures. Fluid Phase Equilib. 1997, 129, (1-2), 197-209.
94. Dalmolin, I.; Skovroinski, E.; Biasi, A.; Corazza, M. L.; Dariva, C.; Oliveira, J. V., Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water. Fluid Phase Equilib. 2006, 245, (2), 193-200.
95. O'connell, J. P.; Prausnitz, J. M., Thermodynamics of Gas Solubility in Mixed Solvents. Ind. & Eng. Chem. Fundam. 1964, 3, (4), 347-351.
96. Versteeg, G. F.; Vanswaaij, W. P. M., Solubility and Diffusivity of Acid Gases (COP, N20) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988, 33, (1), 29-34.
97. Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G., Molecular Thermodynamics of Fluid-phase Equilibria. Prentice-Hall: Englewood Cliffs, N.J., 1986.
98. Danckwerts, P. V.; McNeil, K. M., Absorption of Carbon Dioxide into Aqueous Amine Solutions and Effects of Catalysis. Trans. Instn. Chem. Engr. 1967, 45, (1), T32-T49.
99. Portugal, A. F.; Sousa, J. M.; Magalhaes, F. D.; Mendes, A., Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci. 2009, 64, (9), 1993-2002.
100. Ma'mun, S.; Jakobsen, J. P.; Svendsen, H. F.; Juliussen, O., Experimental and Modeling Study of the Solubility of Carbon Dioxide in Aqueous 30 Mass % 2-((2-Aminoethyl)amino)ethanol Solution. Ind. Eng. Chem. Res. 2006, 45, (8), 2505-2512.
101. Portugal, A. F.; Derks, P. W. J.; Versteeg, G. E.; Magalhaes, F. D.; Mendes, A., Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem. Eng. Sci. 2007, 62, (23), 6534-6547.
102. Harris, F.; Kurnia, K. A.; Ibrahim, M.; Mutalib, A.; Thanapalan, M., Solubilities of Carbon Dioxide and Densities off Aqueous Sodium Glycinate Solutions before and after CO2 Absorption. J. Chem. Eng. Data 2009, 54, (1), 144-147.
103. Bottoms, R. R. Process for Separating Acidic Gases. US Patent 1783901, 1930.
104. Oyenekan, B. A.; Rochelle, G. T., Energy Performance of Stripper Configurations for CO2 Capture by Aqueous Amines. Ind. Eng. Chem. Res. 2006, 45, (8), 2457-2464.
105. Feron, P. H. M., Progress in Post-combustion CO2 Capture. In European CO2 Capture and Storage Conference Towards Zero Emission Power Plants, Brussels, Belgium, 2005.
106. Jassim, M. S.; Rochelle, G. T., Innovative Absorber/stripper Configurations for CO2 Capture by Aqueous Monoethanolamine. Ind. Eng. Chem. Res. 2006, 45, (8), 2465-2472.
107. Sakwattanapong, R.; Aroonwilas, A.; Veawab, A., Behavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines. Ind. Eng. Chem. Res. 2005, 44, (12), 4465-4473.
108. Jou, F. Y.; Mather, A. E.; Otto, F. D., The Solubility of CO2 in a 30 Mass Percent Monoethanolamine Solution. Can. J. Chem. Eng. 1995, 73, (1), 140-147.
109. Jou, F. Y.; Mather, A. E.; Otto, F. D., Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions. Ind. & Eng. Chem. Proc. Des. & Dev. 1982, 21, (4), 539-544.
110. Kim, I.; Svendsen, H. F., Heat of Absorption of Carbon Dioxide (CO2) in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions. Ind. Eng. Chem. Res. 2007, 46, (17), 5803-5809.
111. Jou, F. Y.; Otto, F. D.; Mather, A. E., Vapor-Liquid Equilibrium of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methyl- diethanolamine. Ind. Eng. Chem. Res. 1994, 33, (8), 2002-2005.
112. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion Effects on Gas Solubility in Ionic Liquids. J. Phys. Chem. B 2005, 109, (13), 6366-6374.
113. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F., Thermophysical Properties of Imidazolium-based Ionic Liquids. J. Chem. Eng. Data 2004, 49, (4), 954-964.
114. Francesconi, R.; Bigi, A.; Rubini, K.; Comelli, F., Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols)+2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2007, 52, (5), 2020-2025.
115. Oyenekan, B. A.; Rochelle, G. T., Alternative Stripper Configurations for CO2 Capture by Aqueous Amines. Aiche J. 2007, 53, (12), 3144-3154.
116. SPI-Chem□ Polyethylene Glycol 200. http://www.2spi.com/catalog/ chem/labels/poly.shtml
117. Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan, W.; Zhang, X. P., Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chem.-Eur. J. 2009, 15, (12), 3003-3011.
118. Esteve, X.; Olive, F.; Patil, K. R.; Chaudhari, S. K.; Coronas, A. In Densities and Viscosities of the Binary Mixtures of Interest for Absorption Refrigeration Systems and Heat Pumps, Sep, Elsevier Science Bv: pp 369-382.
119. Henni, A.; Tontiwachwuthikul, P.; Chakma, A., Solubility Study of Methane and Ethane in Promising Physical Solvents for Natural Gas Sweetening Operations. J. Chem. Eng. Data 2006, 51, (1), 64-67.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *