帳號:guest(18.223.119.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐家保
作者(外文):Hsu, Chia-Pao
論文名稱(中文):以SOI晶片實現微型三軸加速度計
論文名稱(外文):Implementation of SOI-based 3-axis acceleration detecting system
指導教授(中文):葉銘泉
方維倫
指導教授(外文):Yip, Ming-Chuen
Fang, Weileun
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:937730
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:129
中文關鍵詞:氣密閉合差分電容電極三軸加速度計
外文關鍵詞:SOIgap-closingdifferential capacitive electrodes and 3-axis accelerometer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:219
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本研究以SOI晶片為基礎,透過一般型態之電容式平面加速度計為例,探討加速度計元件之設計考量參數,並透過元件設計模擬、製程開發,研製出平面加速度計。並透過量測系統的建置,量測平面加速度計之基本元件特性。從此基礎進而發展新型態透過SOI晶片為基礎,研製以差分電容感測電極之出平面加速度計,其中感測電極以氣密閉合架構提高元件靈敏度,並初步驗證出平面加速度計之可行性。此出平面具有:(1)質量塊包含SOI晶片之元件層以及處理層;(2)量測之靈敏度因為氣密閉合的差分電極感測而增加;(3)透過金屬連接SOI晶片元件層以及處理層的電性;(4)感測電極間距由SOI晶片中的氧化層決定。並透過出平面加速度計之設計概念,進一步設計出單一質量塊三軸加速度計,其中三軸感測方向之電極,皆以氣密閉合差分電容感測電極架構來達成。三軸加速度計除了前述出平面加速度計之特向外,具有:(1)透過多晶矽回填技術連接SOI晶片元件層以及處理層的電性;(2)三軸感測方向皆是以氣密閉合之差分電容電極為架構,且透過單一質量塊感測三軸方向之設計。最後,製程設計具有批量製造之能力,並初步驗證三軸加速度計之可行性。
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3 研究目標 8
第二章 加速度計基本原理及元件特性 28
2-1 基本原理 28
2-1-1 加速度計元件運動行為 28
2-1-2 加速度計元件電容感測表示 31
2-1-3 電容感測放大器 33
2-1-4 加速度計元件增益流程圖 35
2-2 加速度計元件特性介紹 35
2-3 平面加速度之設計 37
2-3-1 平面加速度元件設計概念 37
2-3-2 製程設計與結果 38
2-3-3 元件封裝與量測 39
2-4 結論 39
第三章 出平面差分電極之加速度計設計 48
3-1 設計概念 48
3-2 製程設計與結果 50
3-3 元件封裝與量測 52
3-4結論 53
第四章 差分感測電極之單質量塊三軸加速度計 67
4-1 設計概念 67
4-2 製程設計與結果 74
4-3 元件封裝與量測 76
4-4 結論 79
第五章 總結 96
5-1 研究成果 96
5-2 未來工作 97
參考文獻 100
論文發表 108
附錄A 微機電加速度計之衝擊試驗可靠度分析 109
A-1 衝擊試驗 109
A-2 結論 110
附錄B 業界加速度計元件發展 120
[1] http://www.yole.com/
[2] http://www.analog.com/en/index.html
[3] http://www.eettaiwan.com/
[4] http://www.apple.com/tw/iphone/
[5] http://wii.com/
[6] http://asia.playstation.com/tw/cht
[7] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response,” J. Micromech. Microeng., Vol. 2, pp.104-112, 1992.
[8] L. Ristic, R. Gutteridge, J. Kung, D. Koury, B. Dunn, and H. Zunino, “A capacitive type accelerometer with self-test feature based on a double-pinned polysilicon structure,” Transducer’93, Yokohama, Japan, June 1993, pp. 810-812.
[9] F. Rudolf, A. Jornod, and P. Benze, “Silicon microaccelerometers,” Transducer’87, Tokyo, Japan, June 1987, pp. 376-379.
[10] F. Rudolf, A. Jornod, J. Berqovist, and H. Leuthold, “Precision accelerometers with □g resolution,” Sensors Actuators, Vol. A21/A23, 1990, pp. 297-302.
[11] W. Henrion, L. DiSanza, M. Ip, S. Terry, and H. Jerman, “Wide-dynamic range direct digital accelerometer,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1990, pp. 153-156.
[12] Y. de Coulon, T. Smith, J. Hermann, M. Chevroulet, and F. Rudolf, “Design and test of a precision servoaccelerometer with digital output,” Transducer’93, Yokohama, Japan, June 1993, pp. 832-835.
[13] K. Warren, “Navigation grade silicon accelerometer with sacrificially etched SIMOX and BESOI structure,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 69-72.
[14] N. Yazdi and K. Najafi, “An all-silicon single-wafer fabrication technology for precision microaccelerometer,” Transducer’97, Chicago, IL, June 1977, pp. 1181-1184.
[15] K. J. Ma, N. Yazdi, and K. Najafi, “A bulk-silicon capacitive microaccelerometer with built-in overrange and force feedback electrodes,” in Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 160-163.
[16] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings of IEEE, Vol. 86, No. 8, August 1998, pp. 1640-1659.
[17] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. Chau, J. A. Farash, and S. K. Baum, “A low-cost monolithic accelerometer: Product/technology update,” in Tech. Dig. IEEE Electron Devices Meeting (IEDM’92), Dec. 1992, pp. 160-161.
[18] B. Boser and R. T. Howe, “Surface micromachined accelerometers,” IEEE J. Solid-State Circuits, Vol. 31, pp. 366-375, Mar. 1996.
[19] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications,” Transducer’95, Stockholm, Sweden, June 1995, pp. 593-596.
[20] B. P. van Drieenhuizen, N. Maluf, I. E. Opris, and G. Kovacs, “Force-balanced accelerometer with mG resolution fabricated using silicon fusion bonding and deep reactive ion etching,” Transducer’97, Chicago, IL, June 1997, pp. 1229-1230.
[21] J. C. Cole, “A new sense element technology for accelerometer subsystems,” Transducer’91, San Francisco, CA, June 1997, pp. 93-96.
[22] L. Spangler, and C. J. Kemp, “ISAAC-Integrated silicon automotive accelerometer,” Transducer’95, Stockholm, Sweden, June 1995, pp. 585-588.
[23] A. Selvakumar, F. Ayazi, and K. Najafi, “A high sensitivity z-axis torsional silicon accelerometer” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 1996, pp. 765-768.
[24] A. C. McNeil, G. Li, and D. N. Koury, U.S. Pat. 6845670 B1, Jan. 25, 2005.
[25] T. Hauck, G. Li, A. McNeil, H. Knoll, M. Ebert, and J. Bagdahn, “Drop Simulation and Stress Analysis of MEMS Devices,” 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006, pp. 1-5.
[26] http://www.st.com/stonline/
[27] http://www.freescale.com/
[28] J. E. Vandemeer, B. P. Gogoi, and J. H. Hammond, U.S. Pat. 7000473 B2, Feb. 21, 2006
[29] G. G. Li, B. Gogoi, H. D. Desai, J. H. Hammond, and B. Diem, U.S. Pat. 2007/0090474 A1, Apr. 26, 2007.
[30] B. P. Gogoi, U.S. Pat. 7159459 B2, Jan. 9, 2007.
[31] A. C. McNeil, U.S. Pat. 7121141 B2, Oct. 17, 2006.
[32] http://www.bosch-sensortec.com/content/language1/html/index.htm
[33] http://www.vti.fi/en/
[34] G. L. Mahon, U.S. Pat. 6829937 B2, Dec. 14, 2004.
[35] H. Kuisma, J. Lahdenpera, and R. Mutikainen, U.S. Pat. 6938485 B2, Sep. 6, 2005.
[36] H. Kuisma, U.S. Pat. 7426863 B2, Spe. 23, 2008.
[37] H. Manninen, U.S. Pat. 7340955 B2, Mar. 11, 2008.
[38] http://www.globaldenso.com/en/
[39] T. Fujii, U.S. Pat. 6227049 B1, May 8, 2001.
[40] T. Fujii, and M. Imai, U.S. Pat. 6550331 B2, Apr. 22, 2003.
[41] http://www.memsic.com/
[42] http://www.wacoh.co.jp/
[43] K. Okada, Pat. 5856620, Jan. 5, 1999.
[44] K. Okada, H. Itano, and N. Taniguchi, U.S. Pat. 6378381 B1, Apr. 30, 2002.
[45] K. Okada, U.S. Pat. 6772632 B2, Aug. 10, 2004.
[46] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response,” Journal of Micromechanics and Microengineering, Vol. 2, April 1992, pp. 104-112.
[47] F. Xiao, L. Che, B. Xiong, Y. Wang, X. Zhou, Y. Li, and Y. Lin, “A novel capacitive accelerometer with an eight” Journal of Micromechanics and Microengineering, Vol. 18, April 2008.
[48] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Int. Elect. Manu. Tech. Symposium, 2007, pp. 290-293.
[49] W. Yun, R. T. Howe, and P. R. Gray, “Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry,” in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1992, pp. 126-131.
[50] C. Lu, M. Lemkin, and B. Boser, “A monolithic surface micromachined accelerometer with digital output,” IEEE J. Solid-State Circuit, Vol. 30, pp. 1367-1373, Dec. 1995.
[51] M. Lemkin, B. Boser, and J. Smith, “A 3-axis surface micromachined ΣΔ accelerometer,” in Tech. Digest Int. Solid-State Circuits Conf. (ISSCC’97), San Francisco, CA, Feb. 1997, pp. 202-203.
[52] “ADXL05-monolithic accelerometer with signal conditioning,” Analog Devices, Norwood, MA, data sheet, 1995.
[53] M. A. Lemkin, M. A. Ortiz, N. Wonglomet, B. E. Boser, and J. H. Smith, “A 3-axis force balanced accelerometer using a single proof-mass,” Transducer’97, Chicago, IL, June 1997, pp. 1185-1188.
[54] http://www.mems.sandia.gov/tech-info/mems-overview.html
[55] A. Selvakumar, and K. Najafi, “A high-sensitivity z-axis capacitive silicon microaccelerometer with a torsional suspension,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, June 1998, pp. 192-200.
[56] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, December 2000.
[57] J. Chae, H. Kulah, and K. Najafi, “A monolithic three-axis micro-g micromachined silicon capacitive accelerometer,” Journal of Microelectromechanical Systems, Vol. 14, No. 2, April 2005.
[58] H. Xie, and G. K. Fedder, “A CMOS Z-axis capacitive accelerometer with comb-finger sensing,” MEMS’00, Miyazaki, Japan, Jan. 2000, pp. 496-501.
[59] H. Luo, G. K. Fedder, and L. R. Carley, “A 1mG lateral CMOS-MEMS accelerometer,” MEMS’00, Miyazaki, Japan, Jan. 2000, 502-507.
[60] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers,” in Tech. Dig. IEEE Int. Solid-State Circuits Conf. (ISSCC’02), San Francisco, CA, Feb. 2002, pp. 428-430.
[61] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” Journal of Microelectromechanical systems, Vol. 11, No. 2, April 2002, pp. 93-101.
[62] H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, Vol. 14, Jan. 2004, pp. 559-566.
[63] H. Qu, D. Fang, H. Xie, “A Monolithic CMOS-MEMS 3-axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensor Journal, Vol. 8, 2009, pp. 1511-1518.
[64] M. H. Tsai, C. Wang, and W. Fang, “A novel out-of-plane accelerometer with fully-differential sensing circuit and sub-micron gap,” Transducer’07, Lyon, France, June 2007, pp. 1487-1490.
[65] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and implementation of high performance CMOS-MEMS capacitive sensors,” Transducer’09, Denver, US, June 2009, pp. 672-675.
[66] C. M. Sun, M. H. Tsai, C. Wang, Y. C. Liu, and W. Fang, “Implementation of a monolithic TPMS using CMOS-MEMS technique,” Transducer’09, Denver, US, June 2009, pp. 1730-1733.
[67] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” Journal of Micromechanics and Microengineering, Vol. 17, June 2007, pp. 1275-1280.
[68] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, Vol. 19, Sep. 2009, pp 1-7.
[69] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter,” Sensor and Actuator A, Vol. 75, 1999, pp. 77-85.
[70] B. V. Amini, S, Pourkamali, and F. Ayazi, “A high resolution, stictionless, CMOS compatible SOI accelerometer with low noise, low power, 0.25□m CMOS interface,” MEMS 2004, Maastricht, Netherlands, Jan. 2004.
[71] T. Tsuchiya, and H. Funabashi, “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensor and Actuator A, Vol. 116, 2004, pp. 378-383.
[72] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer,” IEEE Journal of Solid-State Circuit, Vol. 41, No. 12, Dec. 2006, pp. 2983-2991.
[73] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-micro-gravity in-plane accelerometer with reduced capacitive gaps and extra seismic mass,” Journal of Microelectromechanical systems, Vol. 16, No. 5, Oct. 2007, pp. 1036-1043.
[74] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” Transducer’07, Lyon, France, June 2007, pp. 147-150.
[75] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and fabrication of a differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 4, Apr. 2009, pp. 345-351.
[76] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Suganuma, and E. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, Vol. 6, July 1996, pp. 431-435.
[77] K. Yoshida, Y. Matsumoto, M. Ishida, and K. Okada, “High-sensitive three axis SOI capacitive accelerometer using dicing method,” Technical Digest of The 16th Sensor Symposium, 1998, pp. 25-28.
[78] Y. Watanabe, T. Mitsui, T. Mineta, S. Kobayashi, N. Taniguchi, and K. Okada, “Five-axis motion sensor with electrostatic drive and capacitive detection fabricated by silicon bulk micromachining,” Sensors and Actuators A, A97/A98, 2002, pp. 109-115.
[79] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensor and Actuators A, A130/A131, 2006, pp.116-123.
[80] http://www.irvine-sensors.com/pdf/MS3110%20Datasheet%20USE.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *