帳號:guest(18.191.223.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李進府
作者(外文):Li, Chin-Fu
論文名稱(中文):應用於寬頻無線系統之雜訊壓制與諧波混頻抑制等技術
論文名稱(外文):Noise Suppression and Harmonic Mixing Rejection Techniques for Wideband Wireless Systems
指導教授(中文):黃柏鈞
指導教授(外文):Huang, Po-Chiun
口試委員(中文):黃柏鈞
劉深淵
陳巍仁
郭建男
徐碩鴻
朱大舜
謝秉璇
李洪松
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:937916
出版年(民國):100
畢業學年度:100
語文別:英文
論文頁數:104
中文關鍵詞:寬頻低雜訊放大器混頻器諧波混頻雜訊壓制被動放大器
外文關鍵詞:widebandLNAmixerharmonic mixingnoise suppressionpassive amplifier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:183
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文探討了幾個射頻前端的設計技術,如何以最大的功率效益來達到最佳的電路效能轉換。本論文可區分為兩大主軸,第一是在寬頻低雜訊放大器的電源效能轉換上的設計抉擇,特別是在雜訊壓制的考量上。畢竟手持式裝置有限使用時間的電池限制,低耗功的電路一直為設計者所感到有趣且挑戰的事。另一主軸為寬頻系統中,諧波抑制的干擾等問題。傳統常為了解決此一問題,所付出的大量功耗與製作成本。如何降低這樣的影響,便是此論文的重點所在。
對於高功率效益寬頻放大器的設計,分為兩個主題。第一為有電感使用的放大器,另一種為無電感放大器。在有電感使用的放大器中,我們提出了利用被動的匹配網路來形成阻抗的轉換,重新分配能量的變化,進而達到訊號電壓的放大,此類匹配網路雖然能提供的增益有限,亦大多受限於製程的條件,但其高線性度與無功耗的優點,是非常適合於寬頻系統或是近距離通訊的接收前端裝置。此論文實現並驗證的寬頻與窄頻網路設計與量測,可供於傳統電路作為參考。在無電感使用的放大器電路上,本論文提出訊號無效的雜訊抑制回授電路。此技術相較於傳統更能有效的利用功耗來達成雜訊的抑制。
在寬頻系統中,傳統切換式的降頻器為了解決諧波混頻的抑制,不僅花費了極大的功率損耗以及製作成本,更對於接收的射頻訊號造成品質的下降。本論文提出了一個新穎的電路架構將一個原本為系統性的問題,轉換成電路上的設計技巧。此方法稱之為B類線性降頻器。不僅降低了系統架構的複雜度,也因為順利的解決諧波混頻干擾,無須額外的電路功率消耗,所以使得整個寬頻接收器架構與傳統窄頻相似,達到低成本、低耗功的目標。另外延伸此一方法,亦設計了一組射頻前端接收機並搭配傳統多相位降頻法來達到更高的諧波抑制,讓整個接收機能有更加確保的諧波抑制功能,以符合現今最流行的數位電視接收機等應用。
This thesis investigates several RF front-end design techniques to maximize the power efficiency
for performance tradeoffs in wideband applications. There are two major aspects. One
is the design tradeoff between the power consumption and signal quality, especially on noise
performance in wideband low-noise amplifiers (LNA), since the challenge of limited battery
life-time in portable device makes the power-efficiency always a topic of interest. The other
is the harmonic mixing problem in frequency conversion of wideband systems. The problem
causes larger penalties of power and cost when it has to be concerned.
For the power-efficient LNA design, a series of passive techniques without power supplies
are introduced for some non-stringent wireless applications. The impedance transformation is
used to provide a voltage gain for reducing the power budget in an RF chain. Both narrowband
and wideband amplifiers are realized to demonstrate the passive performance. Moreover, a
voltage-mode passive mixer is introduced for a case study of fully passive RF front-end. A
straight-forward derivation of the conversion gain is introduced to describe the physical meaning
of the conversion.
For another case of inductor-less wideband LNAs, due to the lack of the finesse from the
matching network, the design tradeoffs are more rigid in many circuit topologies, especially
on trading for noise performance. In this thesis, a noise suppression feedback technique is
proposed to alleviate the power requirement on noise reduction. The technique has been successfully
applied to an RF LNA and a baseband variable-gain amplifier to demonstrate the feasibility
of the noise suppression. The results break the fundamental power overhead for noise
improvement. This technique is also integrated in a noise-suppressed, linearity-enhanced, and
bandwidth-extended LNA with high power efficiency.
The second part of the thesis is to resolve the harmonic mixing problem without heavy
power and cost penalties. In this thesis we develop a new mixer structure named class-B-like
linear conversion. The conversion exhibits noise performance near a switching-type one, while
its harmonic mixing rejection is comparable with the conventional rejection techniques. The
class-B-like mixer consumes 4.8 mW from a 1.8V supply voltage. The chip area is only 270m
x 190m. Measurement results indicate that the third- to ninth-order harmonic rejections are
more than 45 dB in average within 4-GHz frequency range.
To further extend the usage of the class-B-like operation, a digital TV RF front-end integrates
the technique associated with a conventional polyphase harmonic cancellation. This
prototype contains an LNA, a polyphase down-conversion with the class-B-like mixing, and a
square-to-triangle waveform generator for the compatibility to digital-output frequency synthesizers.
From measurement results, although the low frequency performance is limited by the
waveform generator, this idea can still be proven as a high power efficient solution for harmonic
mixing rejection in a wideband receiver design.
1 Introduction 1
1.1 History of Wireless Communications . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Telephone communications . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Data communications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Versatile Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Challenges in RF Front-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Trade-offs in a Transconductance Device . . . . . . . . . . . . . . . . 9
1.3.2 Harmonic Mixing Interference in Frequency Converters . . . . . . . . 12
1.3.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Power-efficient Wideband RF Front-ends 15
2.1 Background of Low Noise Amplifiers . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Band-pass RF Front-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Conventional amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Passive RF Front-ends . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Passive RF Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Inductor-less Wideband Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Conventional Open-loop and Closed-loop Amplifiers . . . . . . . . . . 39
2.3.2 Noise Cancellation Amplifier . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Noise Suppression Amplifiers . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 High Power-Efficient LNA with Hybrid Techniques . . . . . . . . . . . 52
3 Harmonic Mixing Rejection in Frequency Converters 60
3.1 Up-down Dual Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 RF Tracking Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Polyphase Down-Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Mixing-DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Class-B-like Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 RF Front-end design for DVB-T 86
4.1 Background of DVB-T System . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Receiver Front-end Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Polyphase Non-linear Class-B-like Conversion . . . . . . . . . . . . . 92
4.3.3 Divider and Triangle-wave Generator . . . . . . . . . . . . . . . . . . 94
4.4 Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5 Conclusion
[1] A. Bevilacqua and A. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz
wireless receivers,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2004, pp. 382–533.
[2] S. Zhou and M. Chang, “A CMOS passive mixer with low flicker noise for low-power
direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1084–1093,
May 2005.
[3] C. Heng, M. Gupta, S. Lee, D. Kang, and B. Song, “A CMOS TV tuner/demodulator IC
with digital image rejection,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2525–2535,
Dec. 2005.
[4] V. Fillatre, J. Tourret, S. Amiot, M. Bernard, M. Bouhamame, C. Caron, O. Crand,
A. Daubenfeld, G. Denise, T. Kervaon, et al., “A SiP tuner with integrated LC tracking
filter for both cable and terrestrial TV reception,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 208–209.
[5] S. Tadjpour, E. Cijvat, E. Hegazi, and A. Abidi, “A 900-MHz dual-conversion low-IF
GSM receiver in 0.35-m CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1992–
2002, Dec. 2001.
[6] R. Magoon, A. Molnar, J. Zachan, G. Hatcher, and W. Rhee, “A single-chip quad-band
(850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated
VCOs and fractional-N synthesizer,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp.
1710–1720, Dec. 2002.
[7] Adiseno, M. Ismail, and H. Olsson, “A wide-band RF front-end for multiband multistandard
high-linearity low-IF wireless receivers,” IEEE J. Solid-State Circuits, vol. 37, no. 9,
pp. 1162–1168, Sept. 2002.
[8] B. Bakkaloglu, P. Fontaine, A. Mohieldin, S. Peng, S. Fang, and F. Dulger, “A 1.5-V
multi-mode quad-band RF receiver for GSM/EDGE/CDMA2K in 90-nm digital CMOS
process,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1149–1159, May 2006.
[9] L. Perraud, M. Recouly, C. Pinatel, N. Sornin, J.-L. Bonnot, F. Benoist, M. Massei, and
O. Gibrat, “A direct-conversion CMOS transceiver for the 802.11a/b/g WLAN standard
utilizing a Cartesian feedback transmitter,” IEEE J. Solid-State Circuits, vol. 39, no. 12,
pp. 2226–2238, Dec. 2004.
[10] V. Giannini, P. Nuzzo, C. Soens, K. Vengattaramane, J. Ryckaert, M. Goffioul, B. Debaillie,
J. Borremans, J. Van Driessche, J. Craninckx, et al., “A 2-mm 2 0.1–5 GHz softwaredefined
radio receiver in 45-nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 44,
no. 12, pp. 3486–3498, Dec. 2009.
[11] R. Staszewski, K. Muhammad, D. Leipold, C. Hung, Y. Ho, J. Wallberg, C. Fernando,
K. Maggio, R. Staszewski, T. Jung, et al., “All-digital TX frequency synthesizer and
discrete-time receiver for bluetooth radio in 130-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 39, no. 12, pp. 2278–2291, Dec. 2004.
[12] T. Soorapanth and T. Lee, “RF linearity of short-channel MOSFETs,” in Pro. First Int.
Workshop on Design of Mixed-Mode Integrated Circuits and Applications, 1997, pp. 81–
84.
[13] H. Darabi and A. Abidi, “Noise in RF-CMOS mixers: A simple physical model,” IEEE J.
Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan. 2000.
[14] H. Darabi, “A blocker filtering technique for SAW-less wireless receivers,” IEEE J. Solid-
State Circuits, vol. 42, no. 12, pp. 2766–2773, Dec. 2007.
[15] D. Kaczman, M. Shah, M. Alam, M. Rachedine, D. Cashen, L. Han, and A. Raghavan,
“A single-chip 10-bandWCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2,” IEEE J. Solid-State Circuits, vol. 44, no. 3,
pp. 718–739, Mar. 2009.
[16] A. Mirzaie, A. Yazdi, Z. Zhou, E. Chang, P. Suri, and H. Darabi, “A 65nm CMOS quadband
SAW-less receiver for GSM/GPRS/EDGE,” in IEEE Sympo. VLSI Circuits, June
2010, pp. 179–180.
[17] F. Beffa, T. Y. Sin, A. Tanzil, D. Ivory, B. Tenbroek, J. Strange, and W. Ali-Ahmad, “A
receiver for WCDMA/EDGE mobile phones with inductorless front-end in 65nm CMOS,”
in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp.
370–371.
[18] Z. Ru, E. Klumperink, and B. Nauta, “A discrete-time mixing receiver architecture with
wideband harmonic rejection,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2008, pp. 322–323.
[19] H.-K. Cha, K. Kwon, J. Choi, H.-T. Kim, and K. Lee, “A CMOS wideband RF frontend
with mismatch calibrated harmonic rejection mixer for terrestrial digital TV tuner
applications,” in IEEE Trans. Microwave Theory and Tech., Aug. 2010, pp. 2143–2151.
[20] M. Gupta, S. Lerstaveesin, D. Kang, and B. Song, “A 48-to-860MHz CMOS directconversion
TV tuner,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2007, pp. 206–207.
[21] Z. Ru, E. Klumperink, G. Wienk, and B. Nauta, “A software-defined radio receiver architecture
robust to out-of-band interference,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 230–231.
[22] A. Maxim, R. Poorfard, M. Reid, J. Kao, C. Thompson, and R. Johnson, “A DDFS driven
mixing-DAC with image and harmonic rejection capabilities,” in Proc. IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 372–373.
[23] C. Li and P. Huang, “A 60dB harmonic mixing reduction mixer for wideband applications,”
in IEEE Int. Symp. Microwave Theory and Tech., June 2008, pp. 559–562.
[24] H. Khatri, P. Gudem, and L. Larson, “Distortion in current commutating passive CMOS
downconversion mixers,” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 11, pp.
2671–2681, Nov. 2009.
[25] N. Kim, V. Aparin, and L. Larson, “A resistively degenerated wideband passive mixer
with low noise figure and high IIP2,” IEEE Trans. Microwave Theory and Tech., vol. 58,
no. 4, pp. 820–830, Apr. 2010.
[26] A. Mirzaei, H. Darabi, J. Leete, X. Chen, K. Juan, and A. Yazdi, “Analysis and optimization
of current-driven passive mixers in narrowband direct-conversion receivers,” IEEE J.
Solid-State Circuits, vol. 44, no. 10, pp. 2678–2688, Oct. 2009.
[27] B. Cook, A. Berny, A. Molnar, S. Lanzisera, and K. Pister, “Low-power 2.4-GHz
transceiver with passive RX front-end and 400-mV supply,” IEEE J. Solid-State Circuits,
vol. 41, no. 12, pp. 2757–2766, Dec. 2006.
[28] J. Deguchi, D. Miyashita, and M. Hamada, “A 0.6 V 380W- 14dBm LO-input 2.4 GHz
double-balanced current-reusing single-gate CMOS mixer with cyclic passive combiner,”
in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp.
224–225.
[29] H. Hsieh and L. Lu, “Design of ultra-low-voltage RF frontends with complementary
current-reused architectures,” IEEE Trans. Microwave Theory and Tech., vol. 55, no. 7,
pp. 1445–1458, July 2007.
[30] H. Lee and S. Mohammadi, “A 500W 2.4 GHz CMOS subthreshold mixer for ultra low
power applications,” in IEEE Int. Symp. Radio Frequency Integrated Circuits (RFIC), June
2007, pp. 325–328.
[31] C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz
downconversion mixer with+ 5.4-dB gain and-2.8-dBm IIP3 in 0.13-m CMOS,” IEEE
Trans. Microwave Theory and Tech., vol. 53, no. 2, pp. 488–495, Feb. 2005.
[32] S. Wang, A. Niknejad, and R. Brodersen, “Design of a sub-mW 960-MHz UWB CMOS
LNA,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2449–2456, Nov. 2006.
[33] J. Borremans, P.Wambacq, and D. Linten, “An ESD-protected DC-to-6GHz 9.7mWLNA
in 90nm digital CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2007, pp. 422–423.
[34] F. Bruccoleri, E. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting
thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282,
Feb. 2004.
[35] C. Li, S. Chou, and P. Huang, “A noise-suppressed amplifier with a signal-nulled feedback
for wideband applications,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov.
2008, pp. 453–456.
[36] Y.-H. Yu, Y.-S. Yang, and Y.-J. Chen, “A compact wideband CMOS low noise amplifier
with gain flatness enhancement,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 502–509,
Mar. 2010.
[37] A. Amer, E. Hegazi, and H. Ragai, “A low-power wideband CMOS LNA for WiMAX,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 1, pp. 4–8, 2007.
[38] V. Giannini, J. Craninckx, S. D’Amico, and A. Baschirotto, “Flexible baseband analog
circuits for software-defined radio front-ends,” IEEE J. Solid-State Circuits, vol. 42, no. 7,
pp. 1501–1512, 2007.
[39] S. Tsou, C. Li, and P. Huang, “A low-power CMOS linear-in-decibel variable gain amplifier
with programmable bandwidth and stable group delay,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 53, no. 12, pp. 1436–1440, 2006.
[40] T. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET
transconductance linearization by multiple gated transistors,” IEEE J. Solid-State Circuits,
vol. 39, no. 1, pp. 223–229, Jan. 2004.
[41] C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple
inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548–
552, Feb. 2005.
[42] C. Li and P. Huang, “A 4.8-mw 4-ghz cmos class-b-like down-converter for harmonic
mixing rejection,” IEEE Trans. Microwave Theory and Tech., vol. 59, no. 10, pp. 2504–
2512, Oct. 2011.
[43] D. Manstretta, M. Brandolini, and F. Svelto, “Second-order intermodulation mechanisms
in CMOS downconverters,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 394–406, Mar.
2003.
[44] E. Klumperink, S. Louwsma, G.Wienk, and B. Nauta, “A CMOS switched transconductor
mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231–1240, Aug. 2004.
[45] V. Vidojkovic, J. Van Der Tang, A. Leeuwenburgh, and A. Van Roermund, “A low-voltage
folded-switching mixer in 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6,
pp. 1259–1264, June 2005.
[46] H. Darabi and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” IEEE
J. Solid-State Circuits, vol. 40, no. 12, pp. 2628–2632, Dec. 2005.
[47] J. Park, C. Lee, B. Kim, and J. Laskar, “Design and analysis of low flicker-noise CMOS
mixers for direct-conversion receivers,” IEEE Trans. Microwave Theory and Tech., vol. 54,
no. 12, pp. 4372–4380, Dec. 2006.
[48] K. Choi, D. Shin, and C. Yue, “A 1.2-V, 5.8-mW, ultra-wideband folded mixer in 0.13-m
CMOS,” in IEEE Int. Symp. Radio Frequency Integrated Circuits (RFIC), Jan. 2007, pp.
489–492.
[49] R. Bagheri, A. Mirzaei, S. Chehrazi, M. Heidari, M. Lee, M. Mikhemar, W. Tang, and
A. Abidi, “An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2860–2876, Dec. 2006.
[50] H. Cha, K. Kwon, J. Choi, H. Kim, and K. Lee, “A CMOS wideband RF front-end with
mismatch calibrated harmonic rejection mixer for terrestrial digital TV tuner applications,”
IEEE Trans. Microwave Theory and Tech., vol. 58, no. 8, pp. 2143–2151, Aug. 2010.
[51] J. Tourret, S. Amiot, M. Bernard, M. Bouhamame, C. Caron, O. Crand, G. Denise, V. Fillatre,
T. Kervaon, M. Kristen, et al., “Sip tuner with integrated lc tracking filter for both
cable and terrestrial tv reception,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2809–
2821, Dec. 2007.
[52] I. Vassiliou, K. Vavelidis, N. Haralabidis, A. Kyranas, Y. Kokolakis, S. Bouras,
G. Kamoulakos, C. Kapnistis, S. Kavadias, N. Kanakaris, et al., “A 65 nm cmos multistandard,
multiband tv tuner for mobile and multimedia applications,” IEEE J. Solid-State
Circuits, vol. 43, no. 7, pp. 1522–1533, July 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *