帳號:guest(18.222.4.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林淑娟
作者(外文):Lin, Shu-Chuan
論文名稱(中文):Characterization of protein-glycan interaction and function - linker and ligand binding domain of glucoamylase
論文名稱(外文):蛋白質-醣類交互作用及其功能探討 - 葡糖澱粉酵素之連接片段及基質吸附區
指導教授(中文):張大慈
指導教授(外文):Chang, Margaret Dah-Tsyr
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:938213
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:154
中文關鍵詞:葡糖澱粉酵素連接片段澱粉吸附區域蛋白質-醣類交互作用
外文關鍵詞:glucoamylaselinkerstarch binding domainprotein-glycan interaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:150
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
米根黴菌 (Rhizopus oryzae) 的葡糖澱粉酵素 (glucoamylase, GA) 為含579個胺基酸之醣類水解酶,其結構包括澱粉吸附區 (starch-binding domain, RoSBD) 、酵素催化區、及一段高度醣基化的連接片段。其中催化區之功能及結構的研究成果眾多,本研究旨在探討連接片段及澱粉吸附區的功能,以瞭解此酵素之基本結構、生物功能及應用的潛力。
許多葡糖澱粉酵素皆有連接片段聯結不同的功能區域,但對於連接區域的分子功能則較少著墨。本研究以不同長度、不同醣基化修飾之連接片段為材料,觀察其功能及穩定性的變化,以釐清該片段對於不同功能區域的影響。實驗結果顯示連接片段的確會影響該酵素的表現及功能,並與蛋白質結構的穩定性關係密切。
醣類吸附模組 (carbohydrate-binding module, CBM) 對於不溶性多醣的水解具重要的調節功能。本研究以隸屬醣類吸附模組家族二十一的RoSBD為材料,進行生物化學與生物物理特性分析、及功能性應用之研究,並剖析RoSBD與其他類似功能CBM家族間的關聯性。位於胺基端之RoSBD為含106個胺基酸的獨立結構,能與顆粒狀生澱粉進行親合性的結合。SBD的主要功能為促使配體與GA結合、增加催化區活化位置的糖基質濃度、及提高酵素水解效率。研究蛋白質-醣類交互作用,不僅可由分子層面揭示蛋白質的功能,深入了解醣類基質的結合機制,更能進一步運用於重組蛋白質工程,使基礎研發成果與產業需求結合,具體貢獻於生技領域的發展。
Fungal glucoamylase (GA; 1,4-□-D-glucan glucohydrolase, EC. 3.2.1.3) from Rhizopus oryzae consists of 579 amino acids with starch binding domain (SBD) and a catalytic domain connected by a highly glycosylated linker region. The function and structure of the catalytic domain have been thoroughly investigated; here this study focuses on the characterization and application of linker and ligand binding domain.
Many GAs have linker regions separating the SBD from the catalytic domain. The extent of interaction between the catalytic modules in GAs with carbohydrate binding module family 21 (CBM21) remains an open question. Our data provide direct evidence that although the length, composition, and glycosylation of the interdomain linker vary in structural organization and in flexibility of the functional domains in GAs, presence of the linker indeed promotes the hydrolytic action towards the natural substrates.
Insoluble polysaccharides can be degraded by hydrolytic enzymes appended to one or more non-catalytic CBMs. The CBM21 of RoGA (RoSBD) containing 106 amino acid residues is situated N-terminally and retained functionality in its isolated form. The properties and applications of recombinant RoSBD are described here and compared with other SBD-containing CBM families, including 20, 25, 26, 34, 41, 45, 48 and 53. Understanding of the CBMs properties and mechanisms in ligand binding may provide the basis for new strategies in functional predictions and industry applications.
論文封面………………1
中文摘要………………2
Abstract………………3
Acknowledgements………………4
Table of Contents………………5
List of Tables………………8
List of Figures………………9
List of Appendix………………11
Abbreviations………………12

Chapter 1
Glucoamylase – overview and the linker domain…13
The glycans in the linker domain play an essential role in protein function
Background and Introduction
Results and Discussion
The linker region of RoGA is required for protein expression in Saccharomyces cerevisiae
The linker region of RoGA is modified by both N- and O-linked glycosylation
The N-linked carbohydrates in the linker play important roles in RoGA function
The linker region of RoGA is response of the structure stability
The linker region of RoGA is related to starch-degrading activity
Conclusion

Chapter 2
Glucoamylase – the starch binding domain…33
Diversity, structure, and function of the starch binding domain
Background and Introduction
Results and Discussion
Structural properties of RoSBD
Characteristic properties of RoSBD
Determination of residues important in ligand binding
SBD and starch recognition
Adsorption and hydrolysis of various starches
Conclusion

Chapter 3
Application and innovation of the starch binding domain…56
Background and Introduction
Results and Discussion
Purification of RoSBD by amylose affinity chromatography
RoSBD as a purification handle in E. coli expression system
RoSBD as a purification tag in P. pastoris expression system
The role of the glycosylated linker in SBD engineering
Structural correlation between SBD and 2G12
Specificity between RoSBD and HIV-1 glycoprotein
Specific mannan binding activity of RoSBD
Mapping Man4 binding sites on RoSBD
Conclusion

Chapter 4
Protein-carbohydrate interactions…81
Background and Introduction
Results and Discussion
Feature-incorporated alignment (FIA) illustration
Prediction of ligand-binding residues in CBM45 and CBM53Carbohydrate labeling with europium
Lanthanide-based time-resolved fluorescence
Synthesis of fluorescence-labeled carbohydrates
Fluorescence spectrometry in studies of protein-carbohydrate interactions
Isothermal titration calorimetry (ITC) in studies of protein-carbohydrate interactions
Conclusion

Chapter 5
Materials and Methods…119
Strains, media, and plasmids
Construction of the recombinant plasmids
Construction of deletion mutants of RoGA
Site-directed mutagenesis of amino acid residues in the linker
Halo assay for GA activity
Expression of recombinant protein in E. coli
Expression of recombinant protein in S. cerevisiae
Expression of recombinant protein in P. pastoris
Purification of recombinant RoGA
Purification of SBD and SBD-fusion proteins
Electrophoresis and Western blot analysis
RoGA activity toward soluble starch
Deglycosylation assays
Circular dichroism (CD) spectroscopy and thermal stability
Association rate assay of SBD
Adsorption assay
Saturation binding assay
Effects of pH on SBD binding ability
Effects of starch on SBD adsorption
Sandwich ELISA
Glycan array screening of RoSBD
Magnetic reduction binding assay
Molecular modeling of the putative Man4 binding site
Phenol-sulfuric acid method
Carbohydrate determination by High pH Anion Exchange Chromatography-Pulsed Amperometric Detection (HPAE-PAD)
Labeling of carbohydrates with europium
Determination of DTPA derivatives
Determination of DAP-DTPA derivatives
Determination of europium content
Preparation of fluorescent carbohydrate derivatives
Fluorescence measurements
Fluorescence Polarization (FP) measurement
Isothermal titration calorimetry (ITC)

Publication list………………140
References………………143
1. Hiromi K, Hamauzu ZI, Takahashi K, Ono S: Kinetic studies on gluc-amylase. II. Competition between two types of substrate having alpha-1,4 and alpha-1,6 glucosidic linkage. J Biochem (Tokyo) 1966, 59(4):411-418.
2. Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B: Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 2000, 1543(2):275-293.
3. Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M: Fungal glucoamylases. Biotechnol Adv 2006, 24(1):80-85.
4. Sakai Y, Akiyama M, Kondoh H, Shibano Y, Kato N: High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system. Biochim Biophys Acta 1996, 1308(1):81-87.
5. Manjunath P, Shenoy BC, Raghavendra Rao MR: Fungal glucoamylases. J Appl Biochem 1983, 5(4-5):235-260.
6. Coutinho PM, Reilly PJ: Glucoamylase structural, functional, and evolutionary relationships. Proteins 1997, 29(3):334-347.
7. Mertens JA, Skory CD: Isolation and Characterization of Two Genes That Encode Active Glucoamylase Without a Starch Binding Domain from Rhizopus oryzae. Curr Microbiol 2007, 54(6):426-426.
8. Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H: Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem 1986, 50:965-969.
9. Cornett CA, Fang TY, Reilly PJ, Ford C: Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng 2003, 16(7):521-529.
10. Rodriguez-Sanoja R, Oviedo N, Sanchez S: Microbial starch-binding domain. Curr Opin Microbiol 2005, 8(3):260-267.
11. Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD: The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 2006, 396(3):469-477.
12. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 2007, 403(1):21-30.
13. Goto M, Shinoda N, Oka T, Sameshima Y, Ekino K, Furukawa K: Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion. Biosci Biotechnol Biochem 2004, 68(4):961-963.
14. Goto M, Tsukamoto M, Kwon I, Ekino K, Furukawa K: Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast. Eur J Biochem 1999, 260(3):596-602.
15. Janecek S, Svensson B, MacGregor EA: Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem 2003, 270(4):635-645.
16. Denman S, Xue GP, Patel B: Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol 1996, 62(6):1889-1896.
17. Howard MB, Ekborg NA, Taylor LE, Hutcheson SW, Weiner RM: Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans. Protein Sci 2004, 13(5):1422-1425.
18. Semimaru T, Goto M, Furukawa K, Hayashida S: Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl Environ Microbiol 1995, 61(8):2885-2890.
19. Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H: Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 2008, 47(21):5746-5754.
20. Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC, Dah-Tsyr Chang M: Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem 2007, 8:9.
21. Dell A, Morris HR: Glycoprotein structure determination by mass spectrometry. Science 2001, 291(5512):2351-2356.
22. NetNGlyc: [http://www.cbs.dtu.dk/services/NetNGlyc/].
23. Ash J, Dominguez M, Bergeron JJ, Thomas DY, Bourbonnais Y: The yeast proprotein convertase encoded by YAP3 is a glycophosphatidylinositol-anchored protein that localizes to the plasma membrane. J Biol Chem 1995, 270(35):20847-20854.
24. O'Leary JM, Radcliffe CM, Willis AC, Dwek RA, Rudd PM, Downing AK: Identification and removal of O-linked and non-covalently linked sugars from recombinant protein produced using Pichia pastoris. Protein Expr Purif 2004, 38(2):217-227.
25. Jentoft N: Why are proteins O-glycosylated? Trends Biochem Sci 1990, 15(8):291-294.
26. NetOGlyc: [http://www.cbs.dtu.dk/services/NetOGlyc/].
27. Maley F, Trimble RB, Tarentino AL, Plummer TH, Jr.: Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 1989, 180(2):195-204.
28. Zhang H, Li XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21(6):660-666.
29. De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, De Paepe AM et al: A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 2000, 66(6):1744-1756.
30. Panda A, Elankumaran S, Krishnamurthy S, Huang Z, Samal SK: Loss of N-linked glycosylation from the hemagglutinin-neuraminidase protein alters virulence of Newcastle disease virus. J Virol 2004, 78(10):4965-4975.
31. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 2007, 403:21-30.
32. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of starch binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide binding path. Biochem J 2008.
33. Liu WT, Lin SC, Chou WI, Liu TH, Pan RL, Tzou DL, Hua TE, Chang MD: Identification and characterization of a novel fibril forming peptide in fungal starch binding domain. Biochem Biophys Res Commun 2008, 377(3):966-970.
34. Liu SH, Chou WI, Sheu CC, Chang MD: Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochem Biophys Res Commun 2005, 326(4):817-824.
35. Stoffer B, Frandsen TP, Busk PK, Schneider P, Svendsen I, Svensson B: Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 1993, 292 ( Pt 1):197-202.
36. Belshaw NJ, Williamson G: Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger. FEBS Lett 1990, 269(2):350-353.
37. Iefuji H, Chino M, Kato M, Iimura Y: Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 1996, 318(Pt 3):989-996.
38. Imperiali B, Rickert KW: Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 1995, 92(1):97-101.
39. Haraguchi M, Yamashiro S, Furukawa K, Takamiya K, Shiku H, Furukawa K: The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J 1995, 312(Pt 1):273-280.
40. Yanez E, Carmona TA, Tiemblo M, Jimenez A, Fernandez-Lobato M: Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Biochem J 1998, 329(Pt 1):65-71.
41. Ashikari T, Nakamura, N., Tanaka, Y., Kiuchi, N., Shibano, Y., Tanaka, T., Amachi, T. andYoshizumi, H.: Rhizopus raw-starch-degrading glucoamylase: its cloning andexpression in yeast. Agric Biol Chem 1986, 50:957-964.
42. Bui DM, Kunze, I., F¨orster, S., Wartmann, T., Horstmann, C., Manteuffel, R. and, Kunze G: Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1996, 44:610-619.
43. Houghton-Larsen J, Pedersen PA: Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol 2003, 62(2-3):210-217.
44. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 2008, 416(1):27-36.
45. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382(Pt 3):769-781.
46. Christiansen C, Hachem MA, Glaring MA, Vikso-Nielsen A, Sigurskjold BW, Svensson B, Blennow A: A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett 2009, 583(7):1159-1163.
47. Guan L, Hu Y, Kaback HR: Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry 2003, 42(6):1377-1382.
48. Ponyi T, Szabo L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ: Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 2000, 39(5):985-991.
49. Rodriguez-Sanoja R, Oviedo N, Sanchez S: Microbial starch-binding domain. Curr Opin Microbiol 2005, 8(3):260-267.
50. Buckow R, Jankowiak L, Knorr D, Versteeg C: Pressure-temperature phase diagrams of maize starches with different amylose contents. J Agric Food Chem 2009, 57(24):11510-11516.
51. Cho KH, Auh JH, Kim JH, Ryu JH, Park KH, Park CS, Yoo SH: Effect of Amylose Content in Corn Starch Modification by Thermus aquatiqus 4-alpha-Glucanotransferase. J Microbiol Biotechnol 2009, 19(10):1201-1205.
52. Kataria A, Chauhan BM, Punia D: Digestibility of proteins and starch (in vitro) of amphidiploids (black gram x mung bean) as affected by domestic processing and cooking. Plant Foods Hum Nutr 1992, 42(2):117-125.
53. Halsall TG, Hirst EL, Jones JK, Sansome FW: The amylose content of the starch present in the growing potato tuber. Biochem J 1948, 43(1):70-72.
54. Zhong F, Yokoyama W, Wang Q, Shoemaker CF: Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem 2006, 54(6):2320-2326.
55. Huber SC, Israel DW: Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves. Plant Physiol 1982, 69(3):691-696.
56. Osundahunsi OF, Fagbemi TN, Kesselman E, Shimoni E: Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars. J Agric Food Chem 2003, 51(8):2232-2236.
57. Viswanathan PN, Krishnan PS: Metabolic Activity of Starch Granules from the Tapioca Plant. I. Udpg-Starch-Glucosyl Transferase. Indian J Biochem 1965, 2:16-21.
58. Shi YC, Seib PA, Lu SP: Leaching of amylose from wheat and corn starch. Adv Exp Med Biol 1991, 302:667-686.
59. Lineback DR: The Starch Granule: Organisation and Properties. In: Baker's Digest. 1984: 16-21.
60. Hedhammar M, Hober S: Z(basic)--a novel purification tag for efficient protein recovery. J Chromatogr A 2007, 1161(1-2):22-28.
61. Smith DB, Johnson KS: Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 1988, 67(1):31-40.
62. Terpe K: Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2003, 60(5):523-533.
63. Murphy MB, Doyle SA: High-throughput purification of hexahistidine-tagged proteins expressed in E. coli. Methods Mol Biol 2005, 310:123-130.
64. Chen LJ, Ford C, Kusnadi A, Nikolov ZL: Improved adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase. Biotechnol Prog 1991, 7(3):225-229.
65. Chen LJ, Ford C, Nikolov Z: Adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Gene 1991, 99(1):121-126.
66. Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N, Tremblay JP: Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther 2001, 3(3):310-318.
67. Chen CC, Wu PH, Huang CT, Cheng KJ: A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme and Microbial Technology 2004, 35:315-320.
68. Luo H, Huang H, Yang P, Wang Y, Yuan T, Wu N, Yao B, Fan Y: A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr Microbiol 2007, 55(3):185-192.
69. Liu N, Liu GH, Li FD, Sands JS, Zhang S, Zheng AJ, Ru YJ: Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poult Sci 2007, 86(11):2337-2342.
70. Pirgozliev V, Oduguwa O, Acamovic T, Bedford MR: Effects of dietary phytase on performance and nutrient metabolism in chickens. Br Poult Sci 2008, 49(2):144-154.
71. Walls EA, Berkson, J. and Smith, S. A.: The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Reviews in Fisheries Science 2002, 10:39-73.
72. Kawabata S, Tsuda R: Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim Biophys Acta 2002, 1572(2-3):414-421.
73. Iwanaga S: The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 2002, 14(1):87-95.
74. Chiou ST, Chen YW, Chen SC, Chao CF, Liu TY: Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. J Biol Chem 2000, 275(3):1630-1634.
75. Kuo TH, Chuang SC, Chang SY, Liang PH: Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. Biochem J 2006, 393(Pt 3):757-766.
76. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H: Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996, 70(2):1100-1108.
77. Holm L, Kaariainen S, Rosenstrom P, Schenkel A: Searching protein structure databases with DaliLite v.3. Bioinformatics 2008, 24(23):2780-2781.
78. Korchagina EY, Pochechueva TV, Obukhova PS, Formanovsky AA, Imberty A, Rieben R, Bovin NV: Design of the blood group AB glycotope. Glycoconj J 2005, 22(3):127-133.
79. Wang J, Li H, Zou G, Wang LX: Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org Biomol Chem 2007, 5(10):1529-1540.
80. Mandal DK, Nieves E, Bhattacharyya L, Orr GA, Roboz J, Yu QT, Brewer CF: Purification and characterization of three isolectins of soybean agglutinin. Evidence for C-terminal truncation by electrospray ionization mass spectrometry. Eur J Biochem 1994, 221(1):547-553.
81. Ji X, Gewurz H, Spear GT: Mannose binding lectin (MBL) and HIV. Mol Immunol 2005, 42(2):145-152.
82. Hong C. Y WCC, Chiu Y. C, Yang S.Y, Horng H.E, and Yang H.C.: Magnetic susceptibility reduction method for magnetically labeled immunoassay. Applied Physics Letters 2006, 88:21252.
83. Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, Katinger H, Burton DR, Wong CH, Wilson IA: Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A 2005, 102(38):13372-13377.
84. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 2008, 416(1):27-36.
85. Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD: The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 2006, 396(3):469-477.
86. Terpe K: Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2003, 60(5):523-533.
87. Jungbauer A: About the cover: The Z basic protein tag. Biotechnol J 2006, 1(2):113.
88. Srinivasan U, Bell JA: A convenient method for affinity purification of maltose binding protein fusions. J Biotechnol 1998, 62(3):163-167.
89. Sachdev D, Chirgwin JM: Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 2000, 326:312-321.
90. Szweda P, Pladzyk R, Kotlowski R, Kur J: Cloning, expression, and purification of the Staphylococcus simulans lysostaphin using the intein-chitin-binding domain (CBD) system. Protein Expr Purif 2001, 22(3):467-471.
91. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 2007, 403(1):21-30.
92. Lin SC, Lin IP, Chou WI, Hsieh CA, Liu SH, Huang RY, Sheu CC, Chang MD: CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein Expr Purif 2009.
93. Chang LC, Bewley CA: Potent inhibition of HIV-1 fusion by cyanovirin-N requires only a single high affinity carbohydrate binding site: characterization of low affinity carbohydrate binding site knockout mutants. J Mol Biol 2002, 318(1):1-8.
94. Emau P, Tian B, O'Keefe B R, Mori T, McMahon JB, Palmer KE, Jiang Y, Bekele G, Tsai CC: Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide. J Med Primatol 2007, 36(4-5):244-253.
95. Berger EA: HIV entry and tropism: the chemokine receptor connection. AIDS 1997, 11 Suppl A:S3-16.
96. Doranz BJ, Berson JF, Rucker J, Doms RW: Chemokine receptors as fusion cofactors for human immunodeficiency virus type 1 (HIV-1). Immunol Res 1997, 16(1):15-28.
97. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM et al: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381(6584):661-666.
98. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP et al: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996, 381(6584):667-673.
99. Machovic M, Janecek S: The evolution of putative starch-binding domains. FEBS Lett 2006, 580(27):6349-6356.
100. Machovic M, Janecek S: Starch-binding domains in the post-genome era. Cell Mol Life Sci 2006, 63(23):2710-2724.
101. Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts van Bueren A, Law V: A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 2006, 281(1):587-598.
102. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B: Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta 2000, 1478(2):165-185.
103. Kamitori S, Abe A, Ohtaki A, Kaji A, Tonozuka T, Sakano Y: Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 A resolution and alpha-amylase 2 (TVAII) at 2.3 A resolution. J Mol Biol 2002, 318(2):443-453.
104. van Bueren AL, Higgins M, Wang D, Burke RD, Boraston AB: Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol 2007, 14(1):76-84.
105. Mikkelsen R, Suszkiewicz K, Blennow A: A novel type carbohydrate-binding module identified in alpha-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 2006, 45(14):4674-4682.
106. Parker GJ, Koay A, Gilbert-Wilson R, Waddington LJ, Stapleton D: AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. Biochem Biophys Res Commun 2007, 362(4):811-815.
107. Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B: The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J 2009, 276(18):5006-5029.
108. Guillen D, Sanchez S, Rodriguez-Sanoja R: Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 2010, 85(5):1241-1249.
109. Schmidt LD, Dauenhauer PJ: Chemical engineering: hybrid routes to biofuels. Nature 2007, 447(7147):914-915.
110. Guzman-Maldonado H, Paredes-Lopez O: Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 1995, 35(5):373-403.
111. Chen XW, Jeong JC: Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 2009, 25(5):585-591.
112. Fischer JD, Mayer CE, Soding J: Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics 2008, 24(5):613-620.
113. Capra JA, Singh M: Predicting functionally important residues from sequence conservation. Bioinformatics 2007, 23(15):1875-1882.
114. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382(Pt 3):769-781.
115. Pell G, Williamson MP, Walters C, Du H, Gilbert HJ, Bolam DN: Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 2003, 42(31):9316-9323.
116. Xie H, Bolam DN, Nagy T, Szabo L, Cooper A, Simpson PJ, Lakey JH, Williamson MP, Gilbert HJ: Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry 2001, 40(19):5700-5707.
117. Chou WY, Chou WI, Pai TW, Lin SC, Jiang TY, Tang CY, Chang MD: Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate binding modules. Bioinformatics 2010.
118. Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF: The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. Febs J 2010, 277(2):428-440.
119. Lee YC, Kawasaki N, Lee RT, Suzuki N: Quantum-dye labeled proteins for glycobiology: a viable nonradioactive alternative tracer. Glycobiology 1998, 8(9):849-856.
120. Shabanpoor F, Hughes RA, Bathgate RA, Zhang S, Scanlon DB, Lin F, Hossain MA, Separovic F, Wade JD: Solid-phase synthesis of europium-labeled human INSL3 as a novel probe for the study of ligand-receptor interactions. Bioconjug Chem 2008, 19(7):1456-1463.
121. Lee YC: Fluorescence spectrometry in studies of carbohydrate-protein interactions. J Biochem 1997, 121(5):818-825.
122. Lee YC: Fluorometry in glycobiology. Anal Biochem 2001, 297(2):109-110.
123. Chen DC, Yang BC, Kuo TT: One-step transformation of yeast in stationary phase. Curr Genet 1992, 21(1):83-84.
124. Fang TY, Lin LL, Hsu WH: Recovery of isoamylase from Pseudomonas amyloderamosa by adsorption-elution on raw starch. Enzyme and Microbial Technology 1994, 16:247-252.
125. Lin LL, Fang TY, Chu WS, Hsu WH: Improved elution of isoamylase adsorbed on raw starch and the preservation of purified enzyme. Letters in Applied Microbiology 1994, 19:383-385.
126. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
127. Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R: Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 2006, 16(5):82R-90R.
128. McKelvy JF, Lee YC: Microheterogeneity of the carbohydrate group of aspergillus oryzae alpha-amylase. Arch Biochem Biophys 1969, 132(1):99-110.
129. Lee YC: High-performance anion-exchange chromatography for carbohydrate analysis. Anal Biochem 1990, 189(2):151-162.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *