帳號:guest(3.148.112.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳□立
作者(外文):Chen, Heng-Li
論文名稱(中文):肝素及核酸適體與黃熱病毒封套蛋白結合之結構與功能研究
論文名稱(外文):Structural and Functional studies of heparin binding and DNA aptamer binding of flavivirus envelope protein
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:938233
出版年(民國):99
畢業學年度:99
語文別:英文
論文頁數:86
中文關鍵詞:黃熱病毒肝素核酸適體
外文關鍵詞:flavivirusheparinaptamer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
黃熱病毒屬包含登革熱病毒(Dengue virus)、黃熱病毒(Yellow Fever virus)、西尼羅河病毒(West Nile virus)、日本腦炎病毒(Japanese Encephalitis virus)與蜱媒腦炎病毒(Tick-borne Encephalitis virus)會引發許多人類的疾病,其中又以日本腦炎病毒及登革熱病毒常常在東亞及東南亞盛行。黃熱病毒屬的病毒外殼上覆蓋著一層封套蛋白(Envelope protein),這些封套蛋白被認為是一個主要抗原,在遭受感染的病人體內可以用來產生中和抗體,封套蛋白包含三個區塊,其中第三區塊(domain III)在病毒貼附上細胞和細胞膜融合兩階段扮演很重要的角色,因此有許多研究採用第三區塊來作為藥物開發的標的物,但是到目前為止仍然沒有有效治療的藥物可用。本研究共包含了兩個主題,第一個主題探討的是肝素(heparin)與日本腦炎病毒的交互作用,我們在日本腦炎病毒第三區塊的N端向第二區塊延伸區域發現了一個肝素的結合位置,而且以此位置序列合成的短胜肽也同樣對於肝素具有很強的親和力,說明了日本腦炎病毒與細胞表面的醣類之間的交互作用關係,也對將來藥物設計非常有幫助;第二個主題是利用SELEX技術篩選與第三區塊有高度親和力的核酸適體作為治療登革熱的藥物開發研究,我們建立了一套SELEX技術並以登革熱病毒封套蛋白的第三區塊為篩選標的,結果得到一個結構為四複合體的核酸適體可以辨識第三區塊,而且更進一步發現此核酸適體的結合位置在第三區塊28-32個胺基酸上,這幾個胺基酸在登革熱四個血清型中呈現極高的相似度,使得此核酸適體同時能抑制登革熱四種血清型病毒,本研究發現了第一個利用SELEX產生的可以作為抑制登革熱的核酸適體藥物,更重要的是因為它同時抑制登革熱四種血清型病毒,所以可以避免病毒依賴性增強感染現象(Antibody-Dependent Enhancement of infection)的發生,我們認為它非常有潛力成為治療登革熱的藥物。
Flaviviruses including dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), Japanese encephalitis virus (JEV) and tick-borne encephalitis virus (TBEV) are associated with human diseases. Particularly, infected cases of JEV and DENV are reported in south-east Asia. The flaviviruses are covered by envelope proteins, which are the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. Among three domains of envelope protein, domain III plays the most important role in viral attachment and fusion. Therefore, previous studies have used domain III as a target for drug development. However, there is still no sufficient treatment available. Our works includes two studies. In the first study, we identified a heparin binding motif located on the N-terminal of JEV E protein domain III is responsible for heparin binding. On the other hand, a synthetic peptide with sequence that is corresponding to this region also demonstrates strong affinity to heparin. Our results provide a basis for further understanding the interactions of flaviviruses and GAGs on the host cell surfaces and would be helpful for drug design. In the second study, we used SELEX technology to generate an aptamer which has the ability to target domain III with parallel G-quadruplex structure. Furthermore, we found that residues Q28, H29, G30 and I32 on a completely identical loop among all four DENV strains are involved in the aptamer binding, which leads to the antiviral activity of selected aptamer against all four DENV strains. Our results provide an aptamer as artificial antibody which solves the problem of antibody-dependent enhancement of infection and thus this aptamer may have the potential to be a therapeutic drug.
Chapter One
Introduction 1
Flavivirus 1
Flavivirus life cycle 3
Envelope protein and fusion 4
Current antiviral strategy 5
Systematic Evolution of Ligands by Exponential Enrichment 6
Specific aim 8
Chapter Two
Identification of a Heparin Binding Peptide from the Japanese Encephalitis Virus Envelope Protein 14
Abstract 14
Introduction 15
Materials and methods 17
Materials 17
Protein preparation and purification 17
Monoclonal Antibody preparation 17
NMR spectroscopy 18
Fluorescence Spectroscopy 18
Enzyme-Linked ImmunoSorbent Assay (ELISA) 19
Results and discussions 20
Identification of heparin binding sites of the JEV envelope protein 20
Mutations of critical residues important for heparin binding 22
Titration with heparin, heparin disaccharides, low molecular weight heparin, and suramin 22
Binding of heparin to a synthetic peptide corresponding to residues 279-297 23
Competitive binding between heparin and the neutralizing antibody mAb E3.3 24
Biological importance 24
Chapter Three
DNA aptamer forms a G-quadruplex can neutralize all four serotypes of dengue viruses 36
Abstract 36
Introduction 37
Materials and methods 40
Preparation and purification of protein 40
Synthesis and preparation of nucleotides 40
In vitro selection of ssDNA aptamers 41
Fluorescence quenching 41
Circular dichroism 42
ELISA 42
NMR spectroscopy 43
Plaque reduction neutralization test 43
Results 45
Preparation of DENV-2 ED3 45
Selection of DNA aptamers target DENV ED3 45
Binding affinities of selected aptamers to DENV-2 ED3 46
Formation of quadruplex structure. 46
In vitro neutralization of all four DENVs by S15 48
Stability of aptamer S15 49
Discussion 50
Chapter Four
Conclusions and prospects 69
Reference……………………………………………………………………………..73
1. Ray, D. and Shi, P.Y. (2006) Recent advances in flavivirus antiviral drug discovery and vaccine development. Recent Pat Antiinfect Drug Discov, 1, 45-55.
2. Barrett, A.D. (1997) Yellow fever vaccines. Biologicals, 25, 17-25.
3. Barrett, A.D. (1997) Japanese encephalitis and dengue vaccines. Biologicals, 25, 27-34.
4. Hombach, J., Barrett, A.D., Cardosa, M.J., Deubel, V., Guzman, M., Kurane, I., Roehrig, J.T., Sabchareon, A. and Kieny, M.P. (2005) Review on flavivirus vaccine development. Proceedings of a meeting jointly organised by the World Health Organization and the Thai Ministry of Public Health, 26-27 April 2004, Bangkok, Thailand. Vaccine, 23, 2689-2695.
5. Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G. et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108, 717-725.
6. Chambers, T.J., Hahn, C.S., Galler, R. and Rice, C.M. (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 44, 649-688.
7. Henchal, E.A. and Putnak, J.R. (1990) The dengue viruses. Clin Microbiol Rev, 3, 376-396.
8. Markoff, L. (2003) 5'- and 3'-noncoding regions in flavivirus RNA. Adv Virus Res, 59, 177-228.
9. Hoke, C.H., Nisalak, A., Sangawhipa, N., Jatanasen, S., Laorakapongse, T., Innis, B.L., Kotchasenee, S., Gingrich, J.B., Latendresse, J., Fukai, K. et al. (1988) Protection against Japanese encephalitis by inactivated vaccines. N Engl J Med, 319, 608-614.
10. Chen, H.W., Pan, C.H., Liau, M.Y., Jou, R., Tsai, C.J., Wu, H.J., Lin, Y.L. and Tao, M.H. (1999) Screening of protective antigens of Japanese encephalitis virus by DNA immunization: a comparative study with conventional viral vaccines. J Virol, 73, 10137-10145.
11. Guirakhoo, F., Zhang, Z.X., Chambers, T.J., Delagrave, S., Arroyo, J., Barrett, A.D. and Monath, T.P. (1999) Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology, 257, 363-372.
12. Gubler, D.J. (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 11, 480-496.
13. Rigau-Perez, J.G., Clark, G.G., Gubler, D.J., Reiter, P., Sanders, E.J. and Vorndam, A.V. (1998) Dengue and dengue haemorrhagic fever. Lancet, 352, 971-977.
14. Halstead, S.B. and O'Rourke, E.J. (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med, 146, 201-217.
15. Kliks, S.C., Nimmanitya, S., Nisalak, A. and Burke, D.S. (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg, 38, 411-419.
16. Kliks, S.C., Nisalak, A., Brandt, W.E., Wahl, L. and Burke, D.S. (1989) Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg, 40, 444-451.
17. Vaughn, D.W., Green, S., Kalayanarooj, S., Innis, B.L., Nimmannitya, S., Suntayakorn, S., Endy, T.P., Raengsakulrach, B., Rothman, A.L., Ennis, F.A. et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis, 181, 2-9.
18. Murgue, B., Roche, C., Chungue, E. and Deparis, X. (2000) Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996-1997 dengue-2 outbreak in French Polynesia. J Med Virol, 60, 432-438.
19. Stein, D.A. and Shi, P.Y. (2008) Nucleic acid-based inhibition of flavivirus infections. Front Biosci, 13, 1385-1395.
20. Lindenbach, B.D. and Rice, C.M. (2003) Molecular biology of flaviviruses. Adv Virus Res, 59, 23-61.
21. Modis, Y., Ogata, S., Clements, D. and Harrison, S.C. (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature, 427, 313-319.
22. Brinton, M.A. (2002) The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol, 56, 371-402.
23. Yu, I.M., Holdaway, H.A., Chipman, P.R., Kuhn, R.J., Rossmann, M.G. and Chen, J. (2009) Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J Virol, 83, 12101-12107.
24. Allison, S.L., Schalich, J., Stiasny, K., Mandl, C.W. and Heinz, F.X. (2001) Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol, 75, 4268-4275.
25. Zhang, W., Chipman, P.R., Corver, J., Johnson, P.R., Zhang, Y., Mukhopadhyay, S., Baker, T.S., Strauss, J.H., Rossmann, M.G. and Kuhn, R.J. (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol, 10, 907-912.
26. Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. and Harrison, S.C. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, 375, 291-298.
27. Modis, Y., Ogata, S., Clements, D. and Harrison, S.C. (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol, 79, 1223-1231.
28. McMinn, P.C. (1997) The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol, 78 ( Pt 11), 2711-2722.
29. Sanchez, I.J. and Ruiz, B.H. (1996) A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol, 77 ( Pt 10), 2541-2545.
30. Pokidysheva, E., Zhang, Y., Battisti, A.J., Bator-Kelly, C.M., Chipman, P.R., Xiao, C., Gregorio, G.G., Hendrickson, W.A., Kuhn, R.J. and Rossmann, M.G. (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 124, 485-493.
31. Heinz, F.X. and Allison, S.L. (2000) Structures and mechanisms in flavivirus fusion. Adv Virus Res, 55, 231-269.
32. Jahn, R., Lang, T. and Sudhof, T.C. (2003) Membrane fusion. Cell, 112, 519-533.
33. Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J.H., Baker, T.S., Kuhn, R.J. and Rossmann, M.G. (2004) Conformational changes of the flavivirus E glycoprotein. Structure, 12, 1607-1618.
34. Mukhopadhyay, S., Kuhn, R.J. and Rossmann, M.G. (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3, 13-22.
35. Mandl, C.W., Allison, S.L., Holzmann, H., Meixner, T. and Heinz, F.X. (2000) Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J Virol, 74, 9601-9609.
36. Pugachev, K.V., Guirakhoo, F., Trent, D.W. and Monath, T.P. (2003) Traditional and novel approaches to flavivirus vaccines. Int J Parasitol, 33, 567-582.
37. Crill, W.D. and Roehrig, J.T. (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol, 75, 7769-7773.
38. Chu, J.J., Rajamanonmani, R., Li, J., Bhuvanakantham, R., Lescar, J. and Ng, M.L. (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol, 86, 405-412.
39. Chin, J.F., Chu, J.J. and Ng, M.L. (2007) The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect, 9, 1-6.
40. Zhang, Z.S., Yan, Y.S., Weng, Y.W., Huang, H.L., Li, S.Q., He, S. and Zhang, J.M. (2007) High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice. J Virol Methods, 143, 125-131.
41. Alka, Bharati, K., Malik, Y.P. and Vrati, S. (2007) Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice. Med Microbiol Immunol, 196, 227-231.
42. Martina, B.E., Koraka, P., van den Doel, P., van Amerongen, G., Rimmelzwaan, G.F. and Osterhaus, A.D. (2008) Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine, 26, 153-157.
43. Sim, A.C., Lin, W., Tan, G.K., Sim, M.S., Chow, V.T. and Alonso, S. (2008) Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine, 26, 1145-1154.
44. Chang, G.J., Kuno, G., Purdy, D.E. and Davis, B.S. (2004) Recent advancement in flavivirus vaccine development. Expert Rev Vaccines, 3, 199-220.
45. Raviprakash, K., Wang, D., Ewing, D., Holman, D.H., Block, K., Woraratanadharm, J., Chen, L., Hayes, C., Dong, J.Y. and Porter, K. (2008) A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. J Virol, 82, 6927-6934.
46. Valdes, I., Bernardo, L., Gil, L., Pavon, A., Lazo, L., Lopez, C., Romero, Y., Menendez, I., Falcon, V., Betancourt, L. et al. (2009) A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice. Virology, 394, 249-258.
47. Hrobowski, Y.M., Garry, R.F. and Michael, S.F. (2005) Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J, 2, 49.
48. Bai, F., Town, T., Pradhan, D., Cox, J., Ashish, Ledizet, M., Anderson, J.F., Flavell, R.A., Krueger, J.K., Koski, R.A. et al. (2007) Antiviral peptides targeting the west nile virus envelope protein. J Virol, 81, 2047-2055.
49. Lok, S.M., Kostyuchenko, V., Nybakken, G.E., Holdaway, H.A., Battisti, A.J., Sukupolvi-Petty, S., Sedlak, D., Fremont, D.H., Chipman, P.R., Roehrig, J.T. et al. (2008) Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol, 15, 312-317.
50. Kampmann, T., Yennamalli, R., Campbell, P., Stoermer, M.J., Fairlie, D.P., Kobe, B. and Young, P.R. (2009) In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res, 84, 234-241.
51. Chen, Y., Maguire, T., Hileman, R.E., Fromm, J.R., Esko, J.D., Linhardt, R.J. and Marks, R.M. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med, 3, 866-871.
52. Mondotte, J.A., Lozach, P.Y., Amara, A. and Gamarnik, A.V. (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol, 81, 7136-7148.
53. Chen, S.T., Lin, Y.L., Huang, M.T., Wu, M.F., Cheng, S.C., Lei, H.Y., Lee, C.K., Chiou, T.W., Wong, C.H. and Hsieh, S.L. (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453, 672-676.
54. Morrey, J.D., Smee, D.F., Sidwell, R.W. and Tseng, C. (2002) Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral Res, 55, 107-116.
55. Puig-Basagoiti, F., Tilgner, M., Forshey, B.M., Philpott, S.M., Espina, N.G., Wentworth, D.E., Goebel, S.J., Masters, P.S., Falgout, B., Ren, P. et al. (2006) Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother, 50, 1320-1329.
56. Mandl, C.W., Aberle, J.H., Aberle, S.W., Holzmann, H., Allison, S.L. and Heinz, F.X. (1998) In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nat Med, 4, 1438-1440.
57. Kofler, R.M., Aberle, J.H., Aberle, S.W., Allison, S.L., Heinz, F.X. and Mandl, C.W. (2004) Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc Natl Acad Sci U S A, 101, 1951-1956.
58. Adelman, Z.N., Sanchez-Vargas, I., Travanty, E.A., Carlson, J.O., Beaty, B.J., Blair, C.D. and Olson, K.E. (2002) RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol, 76, 12925-12933.
59. McCown, M., Diamond, M.S. and Pekosz, A. (2003) The utility of siRNA transcripts produced by RNA polymerase i in down regulating viral gene expression and replication of negative- and positive-strand RNA viruses. Virology, 313, 514-524.
60. Stein, D.A., Huang, C.Y., Silengo, S., Amantana, A., Crumley, S., Blouch, R.E., Iversen, P.L. and Kinney, R.M. (2008) Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus. J Antimicrob Chemother, 62, 555-565.
61. Stoermer, M.J., Chappell, K.J., Liebscher, S., Jensen, C.M., Gan, C.H., Gupta, P.K., Xu, W.J., Young, P.R. and Fairlie, D.P. (2008) Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J Med Chem, 51, 5714-5721.
62. Guerrier-Takada, C. and Altman, S. (1984) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science, 223, 285-286.
63. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818-822.
64. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505-510.
65. James, W. (2007) Aptamers in the virologists' toolkit. J Gen Virol, 88, 351-364.
66. Murphy, M.B., Fuller, S.T., Richardson, P.M. and Doyle, S.A. (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res, 31, e110.
67. Gopinath, S.C. (2007) Methods developed for SELEX. Anal Bioanal Chem, 387, 171-182.
68. Shangguan, D., Meng, L., Cao, Z.C., Xiao, Z., Fang, X., Li, Y., Cardona, D., Witek, R.P., Liu, C. and Tan, W. (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem, 80, 721-728.
69. Pileur, F., Andreola, M.L., Dausse, E., Michel, J., Moreau, S., Yamada, H., Gaidamakov, S.A., Crouch, R.J., Toulme, J.J. and Cazenave, C. (2003) Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res, 31, 5776-5788.
70. Mann, D., Reinemann, C., Stoltenburg, R. and Strehlitz, B. (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun, 338, 1928-1934.
71. Tang, J., Yu, T., Guo, L., Xie, J., Shao, N. and He, Z. (2007) In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens Bioelectron, 22, 2456-2463.
72. Chen, F., Zhou, J., Luo, F., Mohammed, A.B. and Zhang, X.L. (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun, 357, 743-748.
73. Thiel, K. (2004) Oligo oligarchy-the surprisingly small world of aptamers. Nat Biotechnol, 22, 649-651.
74. Matsugami, A., Kobayashi, S., Ouhashi, K., Uesugi, S., Yamamoto, R., Taira, K., Nishikawa, S., Kumar, P.K. and Katahira, M. (2003) Structural basis of the highly efficient trapping of the HIV Tat protein by an RNA aptamer. Structure, 11, 533-545.
75. Mescalchin, A., Wunsche, W., Laufer, S.D., Grohmann, D., Restle, T. and Sczakiel, G. (2006) Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules. Nucleic Acids Res, 34, 5631-5637.
76. Kikuchi, K., Umehara, T., Fukuda, K., Hwang, J., Kuno, A., Hasegawa, T. and Nishikawa, S. (2003) Structure-inhibition analysis of RNA aptamers that bind to HCV IRES. Nucleic Acids Res Suppl, 291-292.
77. Dey, A.K., Khati, M., Tang, M., Wyatt, R., Lea, S.M. and James, W. (2005) An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction. J Virol, 79, 13806-13810.
78. Dey, A.K., Griffiths, C., Lea, S.M. and James, W. (2005) Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA, 11, 873-884.
79. Jing, N. and Hogan, M.E. (1998) Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem, 273, 34992-34999.
80. Phan, A.T., Kuryavyi, V., Ma, J.B., Faure, A., Andreola, M.L. and Patel, D.J. (2005) An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci U S A, 102, 634-639.
81. Chou, S.H., Chin, K.H. and Wang, A.H. (2005) DNA aptamers as potential anti-HIV agents. Trends Biochem Sci, 30, 231-234.
82. Kumar, P.K., Machida, K., Urvil, P.T., Kakiuchi, N., Vishnuvardhan, D., Shimotohno, K., Taira, K. and Nishikawa, S. (1997) Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology, 237, 270-282.
83. Nishikawa, F., Kakiuchi, N., Funaji, K., Fukuda, K., Sekiya, S. and Nishikawa, S. (2003) Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res, 31, 1935-1943.
84. Bellecave, P., Cazenave, C., Rumi, J., Staedel, C., Cosnefroy, O., Andreola, M.L., Ventura, M., Tarrago-Litvak, L. and Astier-Gin, T. (2008) Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother, 52, 2097-2110.
85. Jang, K.J., Lee, N.R., Yeo, W.S., Jeong, Y.J. and Kim, D.E. (2008) Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem Biophys Res Commun, 366, 738-744.
86. Jeon, S.H., Kayhan, B., Ben-Yedidia, T. and Arnon, R. (2004) A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem, 279, 48410-48419.
87. Gopinath, S.C., Sakamaki, Y., Kawasaki, K. and Kumar, P.K. (2006) An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem, 139, 837-846.
88. Liu, F., Wang, J. and Trang, P. (2000) In vitro selection of RNA substrates for ribonuclease P and its catalytic RNA. Methods Enzymol, 318, 238-250.
89. Nitsche, A., Kurth, A., Dunkhorst, A., Panke, O., Sielaff, H., Junge, W., Muth, D., Scheller, F., Stocklein, W., Dahmen, C. et al. (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol, 7, 48.
90. Perera, R., Khaliq, M. and Kuhn, R.J. (2008) Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res, 80, 11-22.
91. Whitehead, S.S., Blaney, J.E., Durbin, A.P. and Murphy, B.R. (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol, 5, 518-528.
92. Burke, D.S.M., T.P. (2001) Flaviviruses. In FieldsVirology, 4th, edn, 1043-1125.
93. Kanai, R., Kar, K., Anthony, K., Gould, L.H., Ledizet, M., Fikrig, E., Marasco, W.A., Koski, R.A. and Modis, Y. (2006) Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol, 80, 11000-11008.
94. Modis, Y., Ogata, S., Clements, D. and Harrison, S.C. (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100, 6986-6991.
95. Huang, K.C., Lee, M.C., Wu, C.W., Huang, K.J., Lei, H.Y. and Cheng, J.W. (2008) Solution structure and neutralizing antibody binding studies of domain III of the dengue-2 virus envelope protein. Proteins, 70, 1116-1119.
96. Mukherjee, M., Dutta, K., White, M.A., Cowburn, D. and Fox, R.O. (2006) NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. Protein Sci, 15, 1342-1355.
97. Volk, D.E., Beasley, D.W., Kallick, D.A., Holbrook, M.R., Barrett, A.D. and Gorenstein, D.G. (2004) Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J Biol Chem, 279, 38755-38761.
98. Volk, D.E., Chavez, L., Beasley, D.W., Barrett, A.D., Holbrook, M.R. and Gorenstein, D.G. (2006) Structure of the envelope protein domain III of Omsk hemorrhagic fever virus. Virology, 351, 188-195.
99. Volk, D.E., Lee, Y.C., Li, X., Thiviyanathan, V., Gromowski, G.D., Li, L., Lamb, A.R., Beasley, D.W., Barrett, A.D. and Gorenstein, D.G. (2007) Solution structure of the envelope protein domain III of dengue-4 virus. Virology, 364, 147-154.
100. Wu, C.W., Lin, Y.T., Huang, K.C. and Cheng, J.W. (2005) 1H, 15N and 13C resonance assignments of the domain III of the Dengue virus envelope protein. J Biomol NMR, 33, 76.
101. Wu, K.P., Wu, C.W., Tsao, Y.P., Kuo, T.W., Lou, Y.C., Lin, C.W., Wu, S.C. and Cheng, J.W. (2003) Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem, 278, 46007-46013.
102. Yu, S., Wuu, A., Basu, R., Holbrook, M.R., Barrett, A.D. and Lee, J.C. (2004) Solution structure and structural dynamics of envelope protein domain III of mosquito- and tick-borne flaviviruses. Biochemistry, 43, 9168-9176.
103. Capila, I.L., R.J. (2002) Heparin-protein interactions. Angew Chem Int Ed, 41, 390-412.
104. Germi, R., Crance, J.M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R.W., Zarski, J.P. and Drouet, E. (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology, 292, 162-168.
105. Hung, J.J., Hsieh, M.T., Young, M.J., Kao, C.L., King, C.C. and Chang, W. (2004) An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol, 78, 378-388.
106. Lin, Y.L., Lei, H.Y., Lin, Y.S., Yeh, T.M., Chen, S.H. and Liu, H.S. (2002) Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res, 56, 93-96.
107. Lee, E. and Lobigs, M. (2002) Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol, 76, 4901-4911.
108. Liu, H., Chiou, S.S. and Chen, W.J. (2004) Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. J Med Virol, 72, 618-624.
109. Su, C.M., Liao, C.L., Lee, Y.L. and Lin, Y.L. (2001) Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology, 286, 206-215.
110. Marks, R.M., Lu, H., Sundaresan, R., Toida, T., Suzuki, A., Imanari, T., Hernaiz, M.J. and Linhardt, R.J. (2001) Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors. J Med Chem, 44, 2178-2187.
111. Wu, S.C., Lian, W.C., Hsu, L.C. and Liau, M.Y. (1997) Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res, 51, 173-181.
112. Wu, S.C., Lian, W.C., Hsu, L.C., Wu, Y.C. and Liau, M.Y. (1998) Antigenic characterization of nine wild-type Taiwanese isolates of Japanese encephalitis virus as compared with two vaccine strains. Virus Res, 55, 83-91.
113. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wuthrich, K. (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J Biomol NMR, 12, 1-23.
114. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR, 6, 135-140.
115. Trybala, E., Bergstrom, T., Svennerholm, B., Jeansson, S., Glorioso, J.C. and Olofsson, S. (1994) Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. J Gen Virol, 75 ( Pt 4), 743-752.
116. Cecilia, D. and Gould, E.A. (1991) Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology, 181, 70-77.
117. Lin, C.W. and Wu, S.C. (2003) A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol, 77, 2600-2606.
118. Seif, S.A., Morita, K., Matsuo, S., Hasebe, F. and Igarashi, A. (1995) Finer mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system. Vaccine, 13, 1515-1521.
119. Jiang, W.R., Lowe, A., Higgs, S., Reid, H. and Gould, E.A. (1993) Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J Gen Virol, 74 ( Pt 5), 931-935.
120. Holzmann, H., Heinz, F.X., Mandl, C.W., Guirakhoo, F. and Kunz, C. (1990) A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J Virol, 64, 5156-5159.
121. Holzmann, H., Stiasny, K., Ecker, M., Kunz, C. and Heinz, F.X. (1997) Characterization of monoclonal antibody-escape mutants of tick-borne encephalitis virus with reduced neuroinvasiveness in mice. J Gen Virol, 78 ( Pt 1), 31-37.
122. Schlesinger, J.J., Chapman, S., Nestorowicz, A., Rice, C.M., Ginocchio, T.E. and Chambers, T.J. (1996) Replication of yellow fever virus in the mouse central nervous system: comparison of neuroadapted and non-neuroadapted virus and partial sequence analysis of the neuroadapted strain. J Gen Virol, 77 ( Pt 6), 1277-1285.
123. Hiramatsu, K., Tadano, M., Men, R. and Lai, C.J. (1996) Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology, 224, 437-445.
124. Lin, B., Parrish, C.R., Murray, J.M. and Wright, P.J. (1994) Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology, 202, 885-890.
125. Roehrig, J.T., Bolin, R.A. and Kelly, R.G. (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology, 246, 317-328.
126. Feng, X.Z., Lin, Z., Yang, L.J., Wang, C. and Bai, C.I. (1998) Investigation of the interaction between acridine orange and bovine serum albumin. Talanta, 47, 1223-1229.
127. Russell, P.K., Nisalak, A., Sukhavachana, P. and Vivona, S. (1967) A plaque reduction test for dengue virus neutralizing antibodies. J Immunol, 99, 285-290.
128. Balagurumoorthy, P., Brahmachari, S.K., Mohanty, D., Bansal, M. and Sasisekharan, V. (1992) Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res, 20, 4061-4067.
129. Fialova, M., Kypr, J. and Vorlickova, M. (2006) The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex. Biochem Biophys Res Commun, 344, 50-54.
130. Rujan, I.N., Meleney, J.C. and Bolton, P.H. (2005) Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res, 33, 2022-2031.
131. Michalowski, D., Chitima-Matsiga, R., Held, D.M. and Burke, D.H. (2008) Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases. Nucleic Acids Res, 36, 7124-7135.
132. Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A. and Feigon, J. (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A, 90, 3745-3749.
133. Mashima, T., Matsugami, A., Nishikawa, F., Nishikawa, S. and Katahira, M. (2009) Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucleic Acids Res, 37, 6249-6258.
134. Sukupolvi-Petty, S., Austin, S.K., Purtha, W.E., Oliphant, T., Nybakken, G.E., Schlesinger, J.J., Roehrig, J.T., Gromowski, G.D., Barrett, A.D., Fremont, D.H. et al. (2007) Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J Virol, 81, 12816-12826.
135. Gromowski, G.D., Barrett, N.D. and Barrett, A.D. (2008) Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol, 82, 8828-8837.
136. Matsui, K., Gromowski, G.D., Li, L., Schuh, A.J., Lee, J.C. and Barrett, A.D. (2009) Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III. Virology, 384, 16-20.
137. Aurup, H., Tuschl, T., Benseler, F., Ludwig, J. and Eckstein, F. (1994) Oligonucleotide duplexes containing 2'-amino-2'-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res, 22, 20-24.
138. Bell, C., Lynam, E., Landfair, D.J., Janjic, N. and Wiles, M.E. (1999) Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro. In Vitro Cell Dev Biol Anim, 35, 533-542.
139. McBride, W.J. and Bielefeldt-Ohmann, H. (2000) Dengue viral infections; pathogenesis and epidemiology. Microbes Infect, 2, 1041-1050.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *