帳號:guest(18.220.1.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡智偉
作者(外文):Tsai, Chih-Wei
論文名稱(中文):介電式液態透鏡與光圈之研究
論文名稱(外文):Studies of dielectric liquid lenses and irises
指導教授(中文):葉哲良
指導教授(外文):Yeh, J. Andrew
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:939205
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:140
中文關鍵詞:調變光學元件液態透鏡液態光圈介電力
外文關鍵詞:adaptive optical componentliquid lensliquid irisdielectric force
相關次數:
  • 推薦推薦:0
  • 點閱點閱:105
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
The studies in this dissertation focused on developing dielectric liquid lenses and dielectric liquid irises. Their main body composed of two immiscible dielectric liquids with identical densities. When an external electric field passed through the liquid interface, a dielectric force generated deforms the liquid interface to achieve the function of variable focus for a liquid lens and variable aperture for a liquid iris.
A simple force balance model was proposed to derive a experimental equation, which describes the relationship between actuation contact angle and actuation voltage of the dielectric liquid lens. A dynamic equation was constructed to be the foundation of improving the focusing time. Innovative concentric comb electrodes were proposed to lower the actuation voltage and shorten the actuation time.
The measured results of the dielectric liquid lens in this study achieved a great improvement compared to the published results. The experimental dielectric liquid lens shows that the contact angle changed from 7 ° to 63 ° while the effective voltage range is from 4 to 40Vrms. The maximum diopter change was larger than 154 D, as well as the power consumption downed to 0.3 mW.
The study of the dielectric liquid iris proposed is firstly demonstrated in the world. The iris has a capability to continuously vary its aperture with a truly circular shape. The experimental iris had the initial aperture of aperture 4 mm while its aperture shrunk to 1.5 mm under the maximum actuation voltage of 160Vrms and its transmittance in the range of visible light was above 85%.
本研究專注於開發具低耗電量與低驅動電壓的介電式液態透鏡與介電式液態光圈。其基本主體主要是以兩不互溶之等密度介電溶液組成,當外加電場通過兩液體所形成的介面時,由於兩液體具有介電常數差異,因而在介面上產生介電力,本研究即利用介電力作為兩光學調變元件的驅動機制。介電力會調變液態透鏡內之液體介面的形狀以達到調變屈光度的效果,在液態光圈則會調變液體介面的位置以控制光圈大小。
在介電式液態透鏡的研究主要是在於性能提升以及基本理論機制建立。藉由深入了解介電式液態透鏡的驅動機制,作為性能提升的基礎。本論文提出以作用力平衡模型建構出油珠接觸角與驅動電壓的經驗方程式,並且建立介電式液態透鏡的動態方程式以分析其調變時間。藉由理論分析,本論文提出新式的同心指叉式電極以降低驅動電壓以及縮短調變時間。在介電式液態透鏡性能提升研究的具體成果主要有下列幾點:實驗之介電式液態透鏡的直徑為5.0 mm,在接觸角從7°到63°的變化範圍內,其最大驅動電壓範圍為40 Vrms,屈光度變化可達到154D以及最大耗電量在0.3 mW。
本研究之介電式液態光圈是世界首創之調變液態光圈,其特性為具有連續性調變圓形光圈的能力。實驗量測之介電式光圈的起始孔徑為4 mm,在最大驅動電壓為160Vrms的作用下,其孔徑縮小為1.5 mm,孔徑變化率為62%。由於其驅動機制與介電式液態透鏡相同,故耗電量低,其最大耗電量為5 mW,可見光範圍內之光穿透率在85%以上。
Chapter I Introduction 1
1.1 Motivation 1
1.2 Demands for a optical components used in battery-power device 2
1.3 Dissertation structure 3
1.4 Main contributions 4
Chapter II Introduction of variable focus lenses 5
2.1 Optical theory of auto-focus and zoom in image systems 5
2.2 Introduction of variable focus liquid lenses 9
2.3 Variable focus liquid crystal lens 11
2.4 A liquid-filled lens 13
2.5 A liquid lens by a force directly exerted on liquid interface 15
2.6 Objectives of dielectric liquid lenses 19
Chapter III Theories of dielectric liquid lenses 21
3.1 Two-liquid system 21
3.2 Review of electric field assistant interfacial profile change 26
3.3 Characteristics of coplanar electrode 33
3.3.1 General equivalent circuit of co-planar electrode 34
3.3.2 Electric field simulation in vicinity of contact line 36
3.4 Static analysis of deformation of the liquid interface 41
3.4.1 Pressure balance on the liquid interface 41
3.4.2 Surface tension force due to deformation of the liquid interface 44
3.4.3 Force balance on the liquid contact line 45
3.5 Dynamic analysis of a liquid interface under influence of electric field 46
3.5.1 Dynamic wetting of a droplet on the solid substrate 46
3.5.2 Dynamic contact angle under the influence of the electric field 50
Chapter IV Design and Fabrication of electrode substrates 55
4.1 Design of the actuation electrode substrate 55
4.1.1 Design of coplanar interdigital electrodes 55
4.1.2 Concentric annular electrodes 57
4.1.3 Concentric comb electrodes 61
4.2 Fabrication of a dielectric liquid lens 62
Chapter V Experimetal results and Discussion of dielectric liuqid lenses 67
5.1 Design of a dielectric liquid lens 67
5.1.1 Physical structure of a dielectric liquid lens 67
5.1.2 Liquid consideration 71
5.1.3 Optical design of a dielectric liquid lens 72
5.2 Measurement system 75
5.2.1 Contact angle measurement system 75
5.2.2 Electric measurement system 76
5.2.3 Influence of measured parameters 76
5.3 Static measurement and discussion of a dielectric liquid lens 82
5.3.1 Static measurement of a dielectric liquid lens 83
5.3.2 Influence factor for static characteristics 90
5.5 Dynamic measurement of a dielectric liquid lenses 94
5.5.1 Dynamic contact angle 94
5.5.2 Influence factors for dynamic characteristics 98
5.6 Summary of a dielectric liquid lens 102
Chapter VI Introduction of iris diaphragms 105
6.1 Optical theory of a variable diaphragm 105
6.2 History of a variable iris diaphragm 108
6.3 Non-traditional iris diaphragm 110
6.4 Object of dielectric liquid irises 115
Chapter VII Designa, Measurement and Discussion of dielectric liquid irises 117
7.1 Design of a dielectric liquid iris diaphragm 117
7.1.1 A dielectric liquid iris diaphragm 117
7.1.2 A simple model for estimating the surface tension force 118
7.2 Experimental result and Discussion 122
7.2.1 Measurement result of the dielectric liquid iris 122
7.2.2 Influence of geometrical parameters 125
7.2.3 Thickness influence of the opaque ink 126
7.2.4 Variable hexagon aperture 127
7.3 Summary 128
Chapter VIII Conclusion 129
Reference 131
Appendix A A-1
Appendix B B-1
Appendix C C-1
[1] E. Hecht, “ Optics,” Addison Wesley, 4th , (2002).
[2] R. E. Fisher, B. Tadic-Galeb, and P. R. Yoder, ”Optical system design,” Mc Graw Hill, 2th, (2008).
[3] S. H. Ahn and Y. K. Kim, ”Proposal of human eye’s crystalline lens-like variable focusing lens,” Sens. Act.,78, 48-53 (1999).
[4] C. S. Liu and P. D. Lin, “A miniaturized low-power VCM actuator for auto-focusing applications,” Opt. Express, 16, 2533-2540 (2008).
[5] K. H. Kim, S. Y. Lee, and S. Y. Kim, “A mobile auto-focus actuator based on a rotary VCM with the zero holding current,” Opt. Express, 17, 5891-5896 (2009).
[6] C. S. Liu, and et al., ”Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Tran. Magnet., 45,155-159 (2009).
[7] S. Sato, ”Liquid-crystal lens cells with variable focal length,” Jan. J. Appl. Phys., 18, 1679-1684 (1979).
[8] T. H. Lin, Y. Huang, A. Y. G. Fuh, and S. T. Wu, ”Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express, 14, 2359-2364 (2006).
[9] H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens array using patterned polymer networks,” Opt. Lett., 29, 1608-1610 (2004).
[10] M. Ye, B. Wang, and S. Sato, ”Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt., 43, 6407-6412 (2004).
[11] P. Valley, and et al., ”Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett., 35, 336- 338 (2010).
[12] R. S. Cudney, L. A. Rios, and H. M. Escamilla, ”Electrically controlled Fresnel zone plats made from ring-shaped 1800 domains,” Opt. Express, 12, 5783-5788 (2004).
[13] G. Li, and et al., “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” PNAS, 103, 6100-6104 (2006).
[14] G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, ”Variable focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am., 49, 253-261 (1971).
[15] N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, ”Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express, 11, 2370-2378 (2003).
[16] D. Y. Zhang, N. Justis, and Y. H. Lo, ”Integrated Fluidic lenses and optic systems,” IEEE J. Sel. Top. Quant. Electron., 11, 97-106 (2005).
[17] H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express, 15, 5931-5936 (2007).
[18] W. Wang, J. Fang, and K. Varahramyan, “Compact variable focusing microlens with integrated thermal actuator and sensor,” IEEE Photo. Tech. Lett., 17, 2643-2645 (2005).
[19] W. Wang and K. Varahramyan, “Design, fabrication and testing of a micromcahined integrated tunable microlens,” J. Micromech. Microeng., 16, 1221-1226 (2006).
[20] H. Oku, K. Hashimoto, and M. Ishikawa, “Variable focus lens with 1-kHz bandwidth,” Opt. Express, 12, 2138-2149 (2004).
[21] H. Oku and M. Ishikawa, ”High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett., 94, 221108 (2009).
[22] J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng., 14, 675-680 (2004).
[23] S. J. Abdullah, M. M. Ratnam, and Z. Samad, “Error-based autofocus system using image feedback in a liquid-filled diaphragm lens,” Opt. Eng., 48, 123602 (2009).
[24] H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett., 86, 211107 (2005).
[25] L. Dong, and et al., ”Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature, 442, 551-554 (2006).
[26] C. A. Lopez and A. H. Hiesa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics, 2, 610-613 (2008).
[27] M. G. Pollack, R. B. Fair, and A. D. Shenderov, ”Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., 77, 1725-1726 (2000).
[28] F. Krogmann, W. Monch, and H. Zappe, ”A MEMS-based variable micro-lens system, “ J. Opt. A: Pure Appl. Opt., 8, 330-226 (2006).
[29] F. Mugele and J. C. Baret, ”Electrowetting: from basics to applications,” J. Phys.-Condens. Mat., 17, 705-774 (2005).
[30] B. Berge and J. Peseux, ”Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E., 3, 159-163 (2000).
[31] S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., 85, 1128-1130 (2004).
[32] www.varioptic.com
[33] C. C. Cheng and J. A. Yeh,” Dielectrically actuated liquid lens,” Opt. Express, 15, 7140-7145 (2007).
[34] A. H. Rawicz, and L. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt., 35, 1587-1589 (1996).
[35] N. Sugiura and S. Morita, “Variable focus liquid-filled optical lens,” Appl. Opt., 32, 4181-4186 (1993).
[36] C. G. Tsai, L. S. Chen, C. L. Peng, and J. A. Yeh, “Planar centering mechanism for dielectrically liquid lens,” Optical MEMS and Nanophotonics, Freiburg, Germany, 2008.
[37] T. Roques-Carmes, S. Palmier, R. A. Hayes, and L. J. M. Schlangen, ”The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Colloids and Surfaces A: Physicochem Eng. Aspects, 267, 56-63 (2005).
[38] H. C. Kim and D. J. Burgess, “Prediction of interfacial tension between oil mixtures and water,” J. Colloid Interface Sci., 241, 509-513 (2001).
[39] M. Mulqueen and D. Blankschtein, ”Theoretical and experimental investigation of the equilibrium oil-water interface tensions of solution containing surfactant mixtures,” Langmuir, 18, 365-376 (2002).
[40] J. Koplik and J. R. Banavar, ”Slip, immiscibility, and boundary conditions at the liquid-liquid interface,” Phys. Rev. Lett., 96, 044505 (2006).
[41] D. Ozmen, S. Cehreli, and U. Dramur, ”(Liuqid+liquid) equilibria of (water+propionic acid+dimethylphthalate) at several temperatures,” J. Chem. Thermodyncmics, 37, 837-842 (2005).
[42] M. B. Shiflett and A. Yokozeki, ”Solubility differences of halocarbon isomers in ionic liquid,” J. Chem. Eng. Data, 52, 2007-2015 (2007).
[43] P. Polyakov, M. Zhang, F. Muller-Plathe, and S. Wiegand, ”Thermal diffusion measurements and simulations of binary mixtures of spherical molecules,” J. Chem. Phys., 127, 014502 (2007).
[44] B. Smit, and et al., ”Structure of a water oil interface in the presence of micelles in computer simulation study,” J. Phys. Chem., 95, 6361-6368 (1991).
[45] I. Benjamin, ”Molecular structure and dynamics at liquid-liquid interfaces,” Ann. Rev. Phys. Chem., 48, 407-451 (1997).
[46] B. Neumann, and et al., “Stability of various silicone oil/water emulsion films as a function of surfactant and salt concentration,” Langmuir, 20, 4336-4344 (2004).
[47] T. S. Horozov, B. P. Binks, and T. G. Gaudig, ”Effect of electrolyte in silicone oil-in-water emulsions stabilized by fumed silica particles,” Phys. Chem. Chem. Phys., 9, 6398-6404 (2007).
[48] G. L. DArdhuy, F. Amlot, and G. Malet, ”Multi-phase composition and optical electrowetting device that incorporates the same,” USA application patent: 2007/0179200.
[49] J. Y. Bae, and et al., “Unique fluid ensemble including silicone oil for the application of optical liquid lens,” Bull. Korean Chem. Soc., 29, 731-735 (2008).
[50] J. R. Melcher, ”Continuum electromechanics,” The MIT (1981).
[51] J. S. Hong, S. H. Ko, K. H. Kang, and I. S. Kang, ”A numerical investigation on AC electrowetting of a droplet,” Microfluidics and Nanofluidics, 5, 263-271 (2008).
[52] T. B. Jones, K. L. Wang, and D. J. Yao, ”Frequency-dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis.” Langmuir, 20, 2813-2818 (2004).
[53] S. S. Dukhin and B. V. Derjaguin, "Electrokinetic Phenomena," J. Willey and Sons, 1974.
[54] R. J. Hunter, "Foundations of Colloid Science," Oxford University Press, 1989.
[55] H. A. Pohl, ”Dielectrophoresis the behavior of neutral matter in nonuniform electric fields,” Cambridge University Press, 1978.
[56] T. B. Jones, ”Electromechanics of particles,” Cambridge University Press, 1995.
[57] D. C. Grahame, ”The electrical double layer and the theory of electrocapillarity,” Chem. Rev., 41, 441-501 (1947).
[58] D. M. Mohilner and T. R. Beck, ”Thermodynamic theory of electrocapillarity for solid metal-electrodes,” J. Phys. Chem., 83, 1160-1166 (1979).
[59] W. J. J. Welters and L. G. Fokkink, ”Fast electrically switchable capillary effects,” Langmuir, 14, 1535-1538 (1998).
[60] H. Moon, S. K. Cho, and R. L. Garrell, ”Low voltage electrowetting- on-dielectric,” J. Appl. Phys., 92, 2080-2087 (2002).
[61] J. Lee, and et al., “Electrowetting and electrowetting-on-dielectric for microscale liquid handing,” Sens. Actuator A-phys., 95, 259-268 (2002).
[62] J. D. Jackson, ”Classical electrodynamics,” J. Wiley and sons, 3th, 155-158 (1999).
[63] K. C. Kao, “Dielectric phenomena in solid: with emphasis on physical concepts of electronic processes,” Elsevier Academic Press, Chapter 2 (2004).
[64] K. H. Kang, ”How electrostatic fields change contact angle in electrowetting,” Langmuir, 18, 10318-10322 (2002).
[65] T. B. Jones, ”An electromechanical interpretation of electrowetting,” J. Micromech. Microeng., 15, 1184-1187 (2005).
[66] M. Vallet, M. Vallade, and B. Berge, “Limiting phenomena for the spreading of water on polymer films by electrowetting,” Eur. Phys. J. B, 11, 583-591 (1999).
[67] H. J. J. Verheijen and M. W. J. Prins, ”Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir, 15, 6616-6620 (1999).
[68] H. N. Al-Shareef, D. Diamos, M. V. Raymond, and R. W. Schwartz, ”Tunability and calculation of the dielectric constant of capacitor structures with interdigital electrodes,” J. Electroceram, 1, 145-153 (1997).
[69] R. Igreja and C. J. Dias, ”Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure,” Sens. Actuators A-Phys., 112, 291-301 (2004).
[70] E. Carlsson and S. Gevorgian, ”Conformal mapping of the field and charge distribution in multilayered substrate CPW’s,” IEEE Tran. Micro. Theory Tech., 47, 1544-1552 (1999).
[71] C. L. Liao and C. H. Hsiung, ”A novel coplanar waveguide directional coupler with finite extent basked conductor,” IEEE Tran. Micro. Theory Tech., 51, 200-206 (2003).
[72] K. Inagawa and M. Koshiba, ”Equivalent networks for SAW interdigital transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 14, 402-411 (1994).
[73] R. Rica, C. Fernandez-Sanchez, and A. Baldi, ”Polysilicon interdigitated electrodes as impedimeteric sensors,” Electrochem. Commun., 8, 1239-1244 (2006).
[74] D. Langemann, ”A droplet in a stationary electric field,” Mathematics and Computers in Simulation, 63, 529-539 (2003).
[75] J. Zeng and T. Korsmeyer, “Principles of droplet electrohydrodynamics for lab-on-a-chip,” Lab on a Chip, 4, 265-277 (2004).
[76] M. T. Harris and O. A. Basaran, “Equilibrium shapes and stability of nonconducting pendant drops surrounded by a conducting fluid in an electric field,” J. Colloid Interface Sci., 170, 308 (1995).
[77] A. I. Daygiannakis, A. G. Papathanasiou, and A. G. Boudouvis, ”On the connection between Dielectric Breakdown Strength, Trapping of Charge, and contact Angle Saturation in Electrowetting,” Langmuir, 25, 147-152 (2009).
[78] F. Mugele and J. Buehele, ”Equilibrium drop surface profiles in electric fields,” J. Phys.- Condens. Mater., 19, 375112 (2007).
[79] C. Decamps and J. De Coninck, ”Dynamics of spontaneous spreading under electrowetting conditions,” Langmuir, 16, 10150-10153 (2000).
[80] T. D. Blake, A. Clarke, and E. H. Stattersfield, ”An investigation of electrostatic assist in dynamic wetting,” Langmuir, 16, 2928-2935 (2000).
[81] T. D. Blake and Y. D. Shikhmurzaev, ”Dynamic wetting by liquids of different viscosity,” J. Colloid Interface Sci., 253, 196-202 (2002).
[82] T. D. Blake and J. De Coninck, ”The influence of solid-liquid interactions on dynamic wetting,” Adv. Colloid Interface Sci., 96, 21-36 (2002).
[83] R. R. A. Stms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, ”Surface tension powered self-assembly of microstructures – the state-of-the-art,” J. Microelectromechanical Syst., 15, 1184-1187 (2003).
[84] K. L. Wang and T. B. Jones, ” Electrowetting dynamics of microfluidic actuation,” Langmuir, 21, 4211-4217 (2005).
[85] T. D. Blake, ”The physics of moving wetting lines,” J. Colloid Interface Sci., 299, 1-13 (2006).
[86] J. C. Berg, ”Wettability,” Dekker, New York, 251 (1993).
[87] E. B. Dussan V, ”On the spreading of liquids on solid surface: static and dynamic contact line,“ Ann. Rev. Fluid Mech. 11, 371-400 (1979).
[88] Y. Suo, K. Stoev, and S. Garoff, ”Hydrodynamics and contact angle relaxation during unsteady spreading,” Langmuir, 17, 6988-6994 (2001).
[89] P. G. Petrov and J. G. Petrov, ”A combined molecular-hydrodynamic approach to wetting kinetics,” Langmuir, 8, 1762-1767 (1992).
[90] R. G. Cox, ”The dynamics of the spreading of the liquid on a solid surface. Part 1. Viscous flow,” J. Fluid Mech., 168, 169- (1986).
[91] C. G. Tsai, and et al., ”Planar liquid confinement for optical centering of dielectric liquid lens,” IEEE Photo. Tech. Lett., 21, 1396-1398 (2009).
[92] C. C. Harrison and J. Schnitzer, ”Diaphragm for photographic cameras,” USA patent: 21,470 (1858).
[93] J. B. Reade, “The Waterhouse diaphragms,” J. Photographic Soc. London, 5, 254-255 (1859).
[94] L. Derr, “Photography for students of physics and chemistry” The Macmillan Co., (1906).
[95] R. Kingslake, ”History of the photography lens,” Academic Press, Inc., pp. 10 (1989).
[96] M. J. Obrien, R. A. Colleluord, and R. C. Bryant, ”Iris diaphragm for high speed photographic printers,” USA patent: 5993079.
[97] M. J. Obrien, R. C. Bryant, and R. A. Colleluord, “Iris diaphragm,” USA patent: 5923913
[98] H. Kaise, ”Iris diaphragm device for a camera,” USA patent: 4588276.
[99] H. F. Shih, and C. H. Hsien, ”Optical device with variable numerical apertures,” USA patent: 6577376.
[100] H. Y. Kim, J. Y. Sohn, G. Cho, and C. S. Seo, ”Micromirror array with iris function,” USA patent: 7589916.
[101] Y. Cjikazawa and T. Gotoh, ”Variable iris using charged opaque particles,” USA patent application: 2007/0205671.
[102] J. Aizenberg, T. N. Kroupenkine, S. Pau, and S. Yang, “Lenses with tunable liquid optical elements,” USA patent: 6891682.
[103] Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, ”Optofluidic variable aperture,” Opt. Lett., 33, 548-550 (2008).
[104] C. C. Cheng, C. A. Chang, and J. A. Yeh, ”Variable focus dielectric liquid droplet lens,” Opt. Express, 14, 4101-4106 (2006).
[105] E. Kim and G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater., 7, 1257 (1995).
[106] C. G. Tsai, C. M. Hsieh, and J. A. Yeh, “Self-alignment of microchips using surface tension and solid edge,” Sens. Actuators A-Phys, 139, 343 (2007).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *