帳號:guest(18.119.123.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俊宏
作者(外文):Lee, Jiunn-Horng
論文名稱(中文):微結構液動耦合效應之研究
論文名稱(外文):On the Hydrodynamic Coupling Effect of Microstructures
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:939207
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:125
中文關鍵詞:微懸臂樑陣列微機電品質因子空氣阻尼流體動力
外文關鍵詞:Micro-cantilever arrayMEMSQuality factorAir dampingHydrodynamic force
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
微機電系統工程使用微加工製程技術製作特殊的微結構,並和相關之控制電路整合,經由利用其中微結構的動態特性以執行特定之致動或感測的功能,這些微機電致動器或感測器的動態特性與其微結構的動態能量損失息息相關,尤其許多微致動器或感測器有時因為成本的考量或是使用上的需要而必須在大氣環境下操作,此時其最大的動態能量損失因子來自其微結構與周遭空氣交互作用所產生的空氣阻尼,因此,微結構與其周遭氣體互動耦合效應之研究對微元件之設計係非常重要的課題。本文首先介紹微結構動態能量損失形成的相關機制及其與微結構動態特性之關係,並整理探討其有關之研究。接著以實驗方法研究微懸臂樑在自由空氣空間振動的空氣阻尼來驗證流固耦合數值分析方法和現有近似解析模型的適用性,並根據實驗結果,修正現有近似的解析模型,提出一估算微懸臂樑品質因子的半經驗公式,使其能更準確預估微懸臂樑的品質因子,以協助進行微懸臂樑相關的應用設計。最後研究應用微結構液動耦合的效應來調控微懸臂樑的品質因子,利用三根微懸臂樑陣列結構之外側兩微懸臂樑振動所產生之流體動力,來改變位於中央之微懸臂樑的空氣阻尼大小,進而調控其動態反應,並以磁致動微懸臂樑陣列液動耦合的相關實驗,探討如何透過微懸臂樑陣列中微懸臂樑之間距、相對的振動相位和驅動力大小等的調變,來調控位於中央之微懸臂樑的品質因子,以符合設計所要求之動態特性。
The dynamic behavior of microelectromechanical systems (MEMS) devices is closely related to their energy losses during their operations. As MEMS devices operate at atmospheric pressure, air damping is the dominant factor for energy loss. Therefore, it is very important to study the fluid-structure interaction effect of microstructures to evaluate their dynamic responses, and it is of useful to tune their quality factors to further control their dynamic performances. Firstly, this study presents a review of current research on the mechanisms of dynamic energy dissipation in MEMS devices. Then, this study employs experimental methods to investigate the air damping of micro-cantilevers in free space to validate numerical approach and existing approximate models. Based on the experimental results, the study proposes a modified model which can precisely predict the quality factors of the micro-cantilevers in a free air space. Finally, this study experimentally investigates the effect of hydrodynamic coupling of a micro-cantilever array on the dynamic response of a micro-cantilever. The micro-cantilever array consists of three harmonically driven micro-cantilevers dynamically coupled through air flow. The right cantilever and left cantilever (auxiliary-cantilevers) adjacent to the middle cantilever (operating-cantilever) are exploited to generate hydrodynamic force to change the air damping of operating-cantilever. Thus, the quality factor of operating-cantilever can be controlled by changing the phase and magnitude of excitation force on auxiliary-cantilevers, and varying the gap between auxiliary-cantilevers and operating-cantilever.
中文摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究目標 4
1-4 全文架構 6
第二章 微結構空氣阻尼 17
2-1 自由空間之空氣阻尼 18
2-2 滑移膜阻尼 19
2-3 剛體平板擠壓膜阻尼 21
2-4 剛體平板扭轉運動擠壓膜阻尼 24
2-5 可撓性平板擠壓膜阻尼 25
2-6 多孔剛體平板擠壓膜阻尼 27
2-7 小結 29
第三章 微懸臂樑空氣阻尼之研究 42
3-1 理論分析 42
3-2 流固耦合數值分析 45
3-3 實驗量測 46
3-4 結果與討論 47
3-5 小結 49
第四章 微懸臂樑陣列液動耦合之研究 62
4-1 原理分析 63
4-2 實驗量測 65
4-3 結果與討論 67
4-4 小結 69
第五章 總結 86
5-1 研究成果 86
5-2 未來工作 87
參考文獻 88
附錄A 品質因子 107
A-1 品質因子之計算 107
A-2 品質因子與微結構動態特性之關係 109
附錄B 稀薄氣體 113
附錄C 微結構其他動態能量損耗的機制 117
C-1 支撐點能量損失 117
C-2 熱彈性能量損失 118
C-3 表面效應能量損失 119
論文著作 124
[1] T. Kenny, “Nanometer-scale force sensing with MEMS devices,” IEEE Sensors Journal, Vol. 1, No. 2, pp. 148-157, 2001.
[2] K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical system,” Review of Scientific Instruments, Vol. 76, 061101, 2005.
[3] R. M. Lin and W. J. Wang, “Structural dynamics of microsystems-current state of research and future directions,” Mechanical Systems and Signal Processing, Vol. 20, No. 5, pp. 1015-1043, 2006.
[4] V. T. Srikar and S. D. Senturia, “Thermoelastic damping in fine-grained polysilicon flexural beam resonators,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 499-504, 2002.
[5] S. Pourkamali, A. Hashimura, R. Abdolvand, G. K. Ho, A. Erbil, and F. Ayazi, “High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps,” Journal of Microelectromechanical Systems, Vol. 12, No. 4, pp. 487-496, 2003.
[6] J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 775-783, 2002.
[7] N. Sepulveda, J. Lu, D. M. Aslam, and J. P. Sullivan, “High-performance polycrystalline diamond micro-and nanoresonators, Journal of Microelectromechanical Systems, Vol. 17, No. 2, pp. 473-482, 2008.
[8] Y. H. Park and K. C. Park, “High-fidelity modeling of MEMS resonators□Part I: Anchor loss mechanisms through substrate,” Journal of Microelectromechanical Systems, Vol. 13, No. 2, pp. 238-247, 2004.
[9] D. Sun, W. Dong, W. Guo, C. Liu, G. Wang, X. Yan, B. Xu, W. Chen, and M. Kraft, “Study on actuating voltage and switching time of a MOEMS optical switch,” Optics & Laser Technology, Vol. 37, No. 8, pp. 601-607, 2005.
[10] H. Lee, R. A. Coutu Jr., S. Mall, and P. E. Kladitis, “Nanoindentation technique for characterizing cantilever beam style RF microelectromechanical systems (MEMS) switches,” Journal of Micromechanics and Microengineering, Vol. 15, No. 6, pp. 1230-1235, 2005.
[11] J. Liu, D. T. Martin, K. Kadirvel, T. Nishida, L. Cattafesta, M. Sheplak, and B. P. Mann, “Nonlinear model and system identification of a capacitive dual-backplate MEMS microphone,” Journal of Sound and Vibration, Vol. 309, No. 1-2, pp. 276-292, 2008.
[12] W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators A, Vol. 21, No. 1-3, pp. 328-331, 1990.
[13] T. Sandner, T. Klose, A. Wolter, H. Schenk, and H. K. Lakner, “Damping analysis and measurement for a comb-drive scanning mirror, Proceedings of SPIE, Vol. 5455, pp. 147-158, 2004.
[14] W. O. Davis, “Empirical analysis of form drag damping for scanning micromirrors,” Proceeding of SPIE, Vol. 7208, 72080S, 2009.
[15] C. Ziegler, “Cantilever-based biosensors,” Analytical and Bioanalytical Chemistry, Vol. 379, No. 7-8, pp. 946-959, 2004.
[16] N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Review of Scientific Instruments, Vol. 75, No. 7, pp. 2229-2253, 2004.
[17] J. F. Vignola, J. A. Judge, J. Jarzynski, M. Zalalutdinov, B. H. Houston, and J. W. Baldwin, “Effect of viscous loss on mechanical resonators designed for mass detection,” Applied Physics Letters, Vol. 88, 041921, 2006.
[18] S. Bianco, M. Cocuzza, S. Ferrero, E. Giuri, G. Piacenza, C. F. Pirri, A. Ricci, L. Scaltrito, D. Bich, A. Merialdo, P. Schina, and R. Correale, “Silicon resonant microcantilevers for absolute pressure measurement,” Journal of Vacuum Science & Technology B, Vol. 24, No. 4, pp. 1803-1809, 2006.
[19] F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” Journal of Vacuum Science & Technology B, Vol. 10, No. 1, pp. 19-26, 1992.
[20] H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensors and Actuators A, Vol. 49, No. 1, pp. 87-95, 1995.
[21] W. E. Newell, “Miniaturization of tuning forks,” Science, Vol. 161, No. 3848, pp. 1320-1326, 1968.
[22] C.-C. Cheng and W. Fang, “Tuning the quality factor of bulk micromachined structures using squeezed-film damping,” Microsystem Technologies, Vol. 11, No. 2-3, pp. 104-110, 2005.
[23] K. B. Lee and Y.-H. Cho, “Electrostatic control of mechanical quality factors for surface-micromachined lateral resonators,” Journal of Micromechanics and Microengineering, Vol. 6, No. 4, pp. 426-430, 1996.
[24] S. Basak, A. Raman, and S. V. Garimella, “Hydrodynamic loading of microcantilevers vibrating in viscous fluids,” Journal of Applied Physics, Vol. 99, No. 11, 114906, 2006.
[25] B. Anczykowski, J.P. Cleveland, D. Kruger, V. Elings, and H. Fuchs, “Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation,” Applied Physics A, Vol. 66, No. S1, pp. 885-889, 1998.
[26] H. Holscher, D. Ebeling, and U. D. Schwarz, “Theory of Q-controlled dynamic force microscopy in air,” Journal of Applied Physics, Vol. 99, No. 8, 084311, 2006.
[27] W. Zhang and K. Turner, “Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis,” Sensors and Actuators A, Vol. 134, No. 2, pp. 594-599, 2007.
[28] J.-H. Lee, S.-T. Lee, C.-M. Yao, and W. Fang, “Comments on the size effect on the microcantilever quality factor in free air space,” Journal of Micromechanics and Microengineering, Vol. 17, No. 1, pp. 139-146, 2007.
[29] R. G. Christian, “The theory of oscillating-vane vacuum gauges,” Vacuum, Vol. 16, No. 4, pp. 175-178, 1966.
[30] M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” Journal of Micromechanics and Microengineering, Vol. 12, No. 3, pp. 341-346, 2002.
[31] P. Li and R. Hu, “On the air damping of flexible microbeam in free space at the free-molecule regime,” Microfluidics and Nanofluidics, Vol. 3, No. 6, pp. 715-721, 2007.
[32] R. A. Bidkar, R. C. Tung, A. A. Alexeenko, H. Sumali, and A. Raman, “Unified theory of gas damping of flexible microcantilevers at low ambient pressures,” Applied Physics Letters, Vol. 94, No. 16, 163117, 2009.
[33] W. Ye, X. Wang, W. Hemmert, D. Freeman, and J. White, “Air damping in laterally oscillating microresonators: A numerical and experimental study,” Journal of Microelectromechanical Systems, Vol. 12, No. 5, pp. 557-566, 2003.
[34] Y.-J. Yang and P.-C. Yen, “An efficient macromodeling methodology for lateral air damping effects,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, pp. 812-828, 2005.
[35] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, Vol. 20, No. 1-2, pp. 25-32, 1989.
[36] Y.-H. Cho, A. P. Pisano, and R. T. Howe, “Viscous damping model for laterally oscillating microstructures,” Journal of Microelectromechanical Systems, Vol. 3, No. 2, pp. 81-87, 1994.
[37] T. Veijola and M. Turowski, “Compact damping models for laterally moving microstructures with gas-rarefaction effects,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 263-273, 2001.
[38] P. Bahukudumbi, J. H. Park, and A. Beskok, “A unified engineering model for steady and quasi-steady shear-driven gas microflows,” Nanoscale and Microscale Thermophysical Engineering, Vol. 7, No. 4, pp. 291-315, 2003.
[39] J. J. Blech, “On isothermal squeeze films,” Journal of Lubrication Technology, Vol. 105, No. 4, pp. 615-620, 1983.
[40] R. Pratap, S. Mohite, and A. K. Pandey, “Squeeze film effects in MEMS,” Journal of the Indian Institute of Science, Vol. 87, No. 1, pp. 75-94, 2007.
[41] M. Bao and H. Yang, “Squeeze film air damping in MEMS,” Sensors and Actuators A, Vol. 136, No. 1, pp. 3-27, 2007.
[42] T. Veijola, H. Kuisma, J. Lahdenpera, and T. Ryhanen, “Equivalent-circuit model of the squeezed gas film in a silicon accelerometer,” Sensors and Actuators A, Vol. 48, No. 3, pp. 239-248, 1995.
[43] T. Veijola, “Compact models for squeezed-film dampers with inertial and rarefied gas effects,” Journal of Micromechanics and Microengineering, Vol. 14, No. 7, pp. 1109-1118, 2004.
[44] M. A. Gallis and J. R. Torczynski, “An improved Reynolds-equation model for gas damping of microbeam motion,” Journal of Microelectromechanical Systems, Vol. 13, No. 4, pp. 653-659, 2004.
[45] S. Hutcherson and W. Ye, “On the squeeze-film damping of micro-resonators in the free-molecule regime,” Journal of Micromechanics and Microengineering, Vol. 14, No. 12, pp. 1726-1733, 2004.
[46] J. D. Zook, D. W. Burns, H. Guckel, J. J. Sniegowski, R. L. Engelstad, and Z. Feng, “Characteristics of polysilicon resonant microbeams,” Sensors and Actuators A, Vol. 35, No. 1, pp. 51-59, 1992.
[47] H. Sumali, “Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS,” Journal of Micromechanics and Microengineering, Vol. 17, No. 11, pp. 2231-2240, 2007.
[48] L. Mol, L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Squeezed film damping measurements on a parallel-plate MEMS in the free molecule regime,” Journal of Micromechanics and Microengineering, Vol. 19, No. 7, 074021, 2009.
[49] G. Hong and W. Ye, “A macromodel for squeeze-film air damping in the free-molecule regime,” Physics of Fluids, Vol. 22, No. 1, 012001, 2010.
[50] F. Pan, J. Kubby, E. Peeters, A. T. Tran, and S. Mukherjee, “Squeeze film damping effect on the dynamic response of a MEMS torsion mirror,” Journal of Micromechanics and Microengineering, Vol. 8, No. 3, pp. 200-208, 1998.
[51] M. Bao, Y. Sun, J. Zhou, and Y. Huang, “Squeeze-film air damping of a torsion mirror at a finite tilting angle,” Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2330-2335, 2006.
[52] A. Minikes, I. Bucher, and G. Avivi, “Damping of a micro-resonator torsion mirror in rarefied gas ambient,” Journal of Micromechanics and Microengineering, Vol. 15, No. 9, pp. 1762-1769, 2005.
[53] G. Li and H. Hughes, “Review of viscosity damping in micro-machined structures,” Proceedings of SPIE, Vol. 4176, pp. 30-46, 2000.
[54] W.-L. Li, “Squeeze film effects on dynamic performance of MEMS μ-mirrors-consideration of gas rarefaction and surface roughness,” Microsystem Technologies, Vol. 14, No. 3, pp. 315-324, 2008.
[55] A. K. Pandey and R. Pratap, “A semi-analytical model for squeeze-film damping including rarefaction in a MEMS torsion mirror with complex geometry,” Journal of Micromechanics and Microengineering, Vol. 18, No. 10, 105003, 2008.
[56] W.-L. Li, “Analytical modelling of ultra-thin gas squeeze film,” Nanotechnology, Vol. 10, No. 4, pp. 440-446, 1999.
[57] P. Li and Y. Fang, “A molecular dynamics simulation approach for the squeeze-film damping of MEMS devices in the free molecular regime,” Journal of Micromechanics and Microengineering, Vol. 20, No. 3, 035005, 2010.
[58] R. B. Darling, C. Hivick, and J. Xu, “Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green's function approach,” Sensors and Actuators A, Vol. 70, No. 1-2, pp. 32-41, 1998.
[59] A. K. Pandey and R. Pratap, “Effect of flexural modes on squeeze film damping in MEMS cantilever resonators,” Journal of Micromechanics and Microengineering, Vol. 17, No. 12, pp. 2475-2484, 2007.
[60] J. W. Lee, R. Tung, A. Raman, H. Sumali, and J. P. Sullivan, “Squeeze-film damping of flexible microcantilevers at low ambient pressures: theory and experiment,” Journal of Micromechanics and Microengineering, Vol. 19, No. 10, 105029, 2009.
[61] X. Guo and A. Alexeenko, “Compact model of squeeze-film damping based on rarefied flow simulations,” Journal of Micromechanics and Microengineering, Vol. 19, No. 4, 045026, 2009.
[62] Y.-J. Yang, M. A. Gretillat, and S. D. Senturia, “Effect of air damping on the dynamics of nonuniform deformations of microstracrures,” Proceedings of Transducers'97, Vol. II, pp. 1093-1096, 1997.
[63] A. H. Nayfeh and M. I. Younis, “A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping,” Journal of Micromechanics and Microengineering, Vol. 14, No. 2, pp. 170-181, 2004.
[64] B. McCarthy, G. G. Adams, N. E. McGruer, and D. Potter, “A dynamic model, including contact bounce, of an electrostatically actuated microswitch,” Journal of Microelectromechanical Systems, Vol. 11, No. 3, pp. 276-283, 2002.
[65] R. C. Tung, A. Jana, and A. Raman, “Hydrodynamic loading of microcantilevers oscillating near rigid walls,” Journal of Applied Physics, Vol. 104, No. 11, 114905, 2008.
[66] E. S. Hung and S. D. Senturia, “Generating efficient dynamic models for mcroelectromechanical systems from a few finite-element simulation runs,” Journal of Microelectromechanical Systems, Vol. 8, No. 3, pp. 280-289, 1999.
[67] A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman, “Reduced-order models for MEMS applications,” Nonlinear Dynamics, Vol. 41, No. 1-3, pp. 221-236, 2005.
[68] J. E. Mehner, W. Doetzel, B. Schauwecker, and D. Ostergaard, “Reduced order modeling of fluid structural interactions in MEMS based on modal projection techniques,” Proceedings of Transducers’03, Vol. II, pp. 1840-1843, 2003.
[69] Z. Skvor, “On the acoustical resistance due to viscous losses in the air gap of electrostatic transducers,” Acustica, Vol. 19, No. 5, pp. 295-299, 1967.
[70] S. S. Mohite, H. Kesari, V. R. Sonti, and R. Pratap, “Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates,” Journal of Micromechanics and Microengineering, Vol. 15, No. 11, pp. 2083-2092, 2005.
[71] M. Bao, H. Yang, Y. Sun, and Y. Wang, “Squeeze-film air damping of thick hole-plate,” Sensors and Actuators A, Vol. 108, No. 1-3, pp. 212-217, 2003.
[72] P. Y. Kwok, M. S. Weinberg, and K. S. Breuer, “Fluid effects in vibrating micromachined structures,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, pp. 770-781, 2005.
[73] D. Homentcovschi and R. N. Miles, “Viscous damping of perforated planar micromechanical structures,” Sensors and Actuators A, Vol. 119, No. 2, pp. 544-552, 2005.
[74] S. S. Mohite, V. R. Sonti, and R. Pratap, “A compact squeeze-film model including inertia, compressibility, and rarefaction effects for perforated 3-D MEMS structures,” Journal of Microelectromechanical Systems, Vol. 17, No. 3, pp. 709-723, 2008.
[75] T. Veijola and T. Mattila, “Compact squeezed-film damping model for perforated surface,” Proceedings of Transducers’01, pp. 1506–1509, 2001.
[76] A. K. Pandey, R. Pratap, and F. S. Chau, “Analytical solution of the modified Reynolds equation for squeeze film damping in perforated MEMS structures,” Sensors and Actuators A, Vol. 135, No. 2, pp. 839-848, 2007.
[77] C. Feng, Y.-P. Zhao, and D. Q. Liu, “Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration,” Microsystem Technologies, Vol. 13, No. 7, pp. 625–633, 2007.
[78] T. Veijola, “Analytic damping model for an MEM perforation cell,” Microfluidics and Nanofluidics, Vol. 2, No. 3, pp. 249-260, 2006.
[79] T. Veijola, “Compact model for a MEM perforation cell with viscous, spring, and inertial forces,” Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 203-219, 2009.
[80] Y.-J. Yang and C.-J. Yu, “Macromodel extraction of gas damping effects for perforated surfaces with arbitrarily-shaped geometries,” MSM 2002, pp. 178-181, 2002.
[81] G. Schrag and G. Wachutka, “Accurate system-level damping model for highly perforated micromechanical devices,” Sensors and Actuators A, Vol. 111, No. 2-3, pp. 222-228, 2004.
[82] A. K. Pandey and R. Pratap, “A comparative study of analytical squeeze film damping models in rigid rectangular perforated MEMS structures with experimental results,” Microfluidics and Nanofluidics, Vol. 4, No. 3, pp. 205-218, 2008.
[83] G. De Pasquale and T. Veijola, “Comparative numerical study of FEM methods solving gas damping in perforated MEMS devices,” Microfluidics and Nanofluidics, Vol. 5, No. 4, pp. 517-528, 2008.
[84] K. J. Bathe and H. Zhang, “Finite element developments for general fluid flows with structural interactions,” International Journal for Numerical Methods in Engineering, Vol. 60, No. 1, pp. 213-232, 2004.
[85] M. M. Athavale, H. Q. Yang, and A. Przekwas, “Coupled fluid-thermal-structre simulations in microvalves and microchannels,” MSM’99, pp. 570-573, 1999.
[86] M. G. Giridharan, P. Stout, H. Q. Yang, M. Athavale, P. Dionne, and A. Przekwas, “Multi-Disciplinary CAD system for MEMS,” Journal of Modeling and Simulation of Microsystems, Vol. 2, No. 1, pp. 43-50, 2001.
[87] L. D. Landau and E. M. Lifshitz, Fluid mechanics, 2nd ed., New York, NY: Pergamon Press, 1987.
[88] W. T. Thomson, Theory of vibration with applications, 4th ed., Englewood Cliffs, NJ: Prentice Hall, 1993.
[89] H. Hosaka and K. Itao, “Theoretical and experimental study on airflow damping of vibrating microcantilevers,” Transactions of the ASME, Journal of Vibration and Acoustics, Vol. 121, No. 1, pp. 64-69, 1999.
[90] F. M. White, Fluid Mechanics, 5th ed., New York, NY: McGraw-Hill, 2002.
[91] S. Patil and C. V. Dharmadhikari, “Investigation of the electrostatic forces in scanning probe microscopy at low bias voltages,” Surface and Interface Analysis, Vol. 33, No. 2, pp. 155-158, 2002.
[92] H. Hosaka and K. Itao, “Coupled vibration of microcantilever array induced by airflow force,” Transactions of the ASME, Journal of Vibration and Acoustics, Vol. 124, No. 1, pp. 26-32, 2002.
[93] J. Malo and J. I. Izpura, “Simultaneous magnetic and electrostatic driving of microcantilevers,” Sensors and Actuators A, Vol. 136, No. 1, pp. 347-357, 2007.
[94] N. Lobontiu, Dynamics of microelectromechanical systems, Springer, New York, 2007.
[95] F. Ayazi and K Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 169-179, 2001.
[96] T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity,” Journal of Applied Physics, Vol. 69, No. 2, pp. 668-673, 1991.
[97] G. M. Rebeiz, RF MEMS: theory, design, and technology, John Wiley & Sons, New Jersey, 2003.
[98] S. Pourkamali and F. Ayazi, “Electrically coupled MEMS bandpass filters: Part I: With coupling element,” Sensors and Actuators A, Vol. 122, No. 2, pp. 307-316, 2005.
[99] K. Wang, A. -C. Wong, and C. T. -C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” Journal of Microelectromechanical Systems, Vol. 9, No. 3, pp. 347-360, 2000.
[100] M. Gad-el-Hak, “The fluid mechanics of microdevices––the Freeman scholar lecture.” Journal of Fluids Engineering, Vol. 121, No. 1, pp. 5-33, 1999.
[101] R. W. Barber and D. R. Emerson, “Challenges in modeling gas-phase flow in microchannels: from slip to transition,” Heat Transfer Engineering, Vol. 27, No. 4, pp. 3-12, 2006.
[102] X. M. H. Huang, X. L. Feng, C. A. Zorman, M. Mehregany, and M. L. Roukes, “VHF, UHF and microwave frequency nanomechanical resonators,” New Journal of Physics, Vol. 7, No. 1, pp. 247, 2005.
[103] M. Pandey, R. B. Reichenbach, A. T. Zehnder, A. Lal, and H. G. Craighead, “Reducing anchor loss in MEMS resonators using mesa isolation,” Journal of Microelectromechanical Systems, Vol. 18, No. 4, pp. 836-844, 2009.
[104] D. S. Bindel and S. Govindjee, “Elastic PMLs for resonator anchor loss simulation,” International Journal for Numerical Methods in Engineering, Vol. 64, No. 6, pp. 789-818, 2005.
[105] Y. Jimbo and K. Itao, “Energy loss of cantilever vibrator,” Journal of the Horological Institute of Japan, Vol. 47, pp. 1-15, 1968.
[106] M. C. Cross and R. Lifshitz, “Elastic wave transmission at an abrupt junction in a thin plate, with application to heat transport and vibrations in mesoscopic systems,” Physical Review B, Vol. 64, 085324, 2001.
[107] Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensors and Actuators A, Vol. 109, No. 1-2, pp.156-164, 2003.
[108] J. A. Judge, D. M. Photiadis, J. F. Vignola, B. H. Houston, and J. Jarzynski, “Attachment loss of micromechanical and nanomechanical resonators in the limits of thick and thin support structures,” Journal of Applied Physics, Vol. 101, No. 1, 013521, 2007.
[109] C. Zener, “Internal friction in solids, I: theory of internal friction in reeds,” Physical Review, Vol. 52, No. 3, pp. 230-235, 1937.
[110] R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Physical Review B, Vol. 61, No. 8, pp. 5600-5609, 2000.
[111] S. Kumar and M. A. Haque, “Stress-dependent thermal relaxation effects in micro-mechanical resonators,” Acta Mechanica, 2009. (DOI 10.1007/s00707-009-0244-6)
[112] S. Prabhakar and S Vengallatore, “Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction,” Journal of Microelectromechanical Systems, Vol. 17, No. 2, pp. 494-502, 2008.
[113] A. Duwel, R.N. Candler, T.W. Kenny, and M. Varghese, “Engineering MEMS resonators with low thermoelastic damping,” Journal of Microelectromechanical Systems, Vol. 15, No. 6, pp. 1437-1445, 2006.
[114] Y. B. Yi and M. A. Martin, “Eigenvalue solution of thermoelastic damping in beam resonators using a finite element analysis,” Journal of Vibration and Acoustics, Vol. 129, No. 4, pp. 478-483, 2007.
[115] R. N. Candler, A. Duwel, M. Varghese, S. A. Chandorkar, M. Hopcroft, W. -T. Park, B. Kim, G. Yama, A. Partridge, M. Lutz, and T. W. Kenny, “Impact of geometry on thermoelastic dissipation in micromechanical resonant beams,” Journal of Microelectromechanical Systems, Vol. 15, No. 4, pp. 927-934, 2006.
[116] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” Journal of Microelectromechanical Systems, Vol. 9, No. 1, pp. 117-125, 2000.
[117] Y. Wang, J. A. Henry, D. Sengupta, and M. A. Hines, “Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators,” Applied Physics Letters, Vol. 85, No. 23, pp. 5736-5738, 2004.
[118] D. A. Czaplewski, J. P. Sullivan, T. A. Friedmann, D. W. Carr, B. E. N. Keeler, and J. R. Wendt, “Mechanical dissipation in tetrahedral amorphous carbon,” Journal of Applied Physics, Vol. 97, No. 2, 023517, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *