帳號:guest(3.145.105.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魯才德
作者(外文):Lu, Tsai-Te
論文名稱(中文):Study on the Multifunctional Dinitrosyl Iron Complexes Containing Redox-Activated Nitric Oxide, Iron and Reducing Thiolate Ligand
論文名稱(外文):含氧化還原活化之一氧化氮,鐵以及具還原力硫醇基之多功能雙亞硝基鐵錯合物之探討
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:943434
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:141
中文關鍵詞:雙亞硝基一氧化氮生物無機
外文關鍵詞:dinitrosylironnitric oxidebioinorganic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:229
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
早在四十五年前便已利用g值位於2.03之電子順磁光譜儀訊號鑑定出雙亞硝基鐵錯合物之存在,但雙亞硝基鐵錯合物在生物體內之原生生成仍需要進一步的探討。在亞硝基化錯合物[Fe(SR)4]2–/1–(R為Ph,Et或tBu)的過程中,會先形成中間物單亞硝基鐵錯合物[Fe(NO)(SR)3]–(1)再生成雙亞硝基鐵錯合物[(RS)2Fe(NO)2]–(2)。相較而言,錯合物[(SEt)2Fe(μ-S)2Fe(SEt)2]2–與一氧化氮則是經由一步反應生成雙亞硝基鐵錯合物2-Et。做為內生的一氧化氮傳遞者,雙亞硝基鐵錯合物[(NO)2Fe(C12H8N)2]–(2-Car)可釋放出不同氧化還原形式的一氧化氮([NO]+,•NO 或 [NO]–)。然而此釋放的機制是控制於外來的配位基(S2CNMe2)2,(PyPepS)2 及 P(C6H3-3-SiMe3-2-SH)3)。此乃呼應了在生物體中雙亞硝基鐵錯合物所引發的氮原子或硫原子之亞硝基化、血基質的亞硝基化以及血管舒張。相較於在乙腈中錯合物2-tBu會轉換成帶負電之R氏紅酯[Fe(μ-StBu)(NO)2]2–(8-tBu),以及在二氯甲烷中變成中性R氏紅酯[Fe(μ-StBu)(NO)2]2 (3-tBu),中性的R氏紅酯3-tBu以及雙亞硝基鐵錯合物2-tBu在甲醇中的平衡共存說明了在生物體中,蛋白質中親水或疏水的環境會影響雙亞硝基鐵錯合物的轉換。搭配上{Fe(NO)2}9之雙亞硝基鐵錯合物位於g = 2.03以及帶負電R氏紅酯位於g = 1.997的特徵電子順磁光譜儀訊號,吾人可以利用從鐵的1s軌域到3d軌域之躍遷能量來鑑定出{Fe(NO)2}9/{Fe(NO)2}10單核雙亞硝基鐵錯合物以及雙核雙亞硝基鐵錯合物在生物體中的存在。此特徵吸收峰會位於7113.3到7113.8電子伏特之能量範圍內。經由([(NO)2Fe(SEt)2]– (2-Et)/ [(NO)2Fe(μ-SEt)2Fe(NO)2]– (8-Et)→ [(NO)2Fe(μ-SEt)(μ-S)Fe(NO)2]– (9-Et)→ [(NO)2Fe(μ-S)2Fe(NO)2]2– (10)→ [(SEt)2Fe(μ-S)2Fe(SEt)2]2–)的再組裝過程,雙亞硝基鐵錯合物可與三酚基甲基硫醇或雙甲基三硫化合物反應生成二鐵二硫錯合物。此也印證了在大腸桿菌中,不需外加鐵或其他蛋白質便可利用半胱胺酸去硫酶與半胱胺酸之協同作用修復雙亞硝基鐵錯合物回二鐵二硫錯合物。然而,利用單核雙亞硝基鐵錯合物2-Et/2-Ph、雙核雙亞硝基鐵錯合物3-Et/8-Et/9-Et/10以及二鐵二硫錯合物所展現出的不同之硫原子吸收光譜可偵測並追蹤雙亞硝基鐵錯合物轉換回二鐵二硫鐵錯合物之過程。除此之外,根據鐵原子吸收光譜中的前邊緣吸收能量佐以硫原子吸收光譜可得知雙亞硝基鐵錯合物的電子結構為{FeIII(NO–)2}9。硫原子吸收光譜也說明了單核雙亞硝基鐵錯合物2-Ph的單佔有分子軌域以及雙核雙亞硝基鐵錯合物3-Et的最低未占據分子軌域為鐵硫之反鍵結軌域。此結果進一步解釋了錯合物2-Ph可與[SEt]–經由配位基交換的反應生成錯合物2-Et以及錯合物3-Et可與[SEt]–經由橋接硫醇鍵斷裂的反應生成錯合物2-Et。除此之外,此也說明了化合物2-Et的硫配位基可還原三酚基甲基硫醇或雙甲基三硫化合物進而促使錯合物2-Et變成錯合物9-Et。除了做為可以提供不同氧化還原態之一氧化氮的內生一氧化氮傳遞者,雙亞硝基鐵錯合物亦攜帶具還原能力的硫醇配位基以促成二鐵二硫核心的組裝。甚至,雙亞硝基鐵錯合物更可在二鐵二硫鐵硫簇以及四鐵四硫鐵硫簇的生物合成中做為鐵的來源。
Despite of the identification of dinitrosyl iron complexes (DNICs) featuring the EPR signal at g = 2.03 forty-five years ago, the de novo synthesis of DNICs in biological system remains elusive. Compared to the nitrosylation of complexes [Fe(SR)4]2–/1– (R = Ph, Et, tBu) leading to the formation of DNIC [(RS)2Fe(NO)2]– (2) via the intermediate mononitrosyl iron complexes (MNIC) [Fe(NO)(SR)3]– (1), binding of nitric oxide to complex [(SEt)2Fe(μ-S)2Fe(SEt)2]2– yields DNIC 2-Et through a concerted reaction pathway. Acting as the endogenous NO-carrier, the release of distinct redox-interrelated forms of NO ([NO]+, •NO and [NO]–) from DNIC [(NO)2Fe(C12H8N)2]– (2-Car) modulated by the incoming ligands (S2CNMe2)2, (PyPepS)2 and P(C6H3-3-SiMe3-2-SH)3) supports the N-/S-nitrosation, heme-nitrosylation and nitroxyl-related vascular relaxation triggered by DNICs. In contrast to the conversion of DNIC 2-tBu into anionic Roussin’s red ester (RRE) [Fe(μ-StBu)(NO)2]2– (8-tBu) in CH3CN and into neutral RRE [Fe(μ-StBu)(NO)2]2 (3-tBu) in CH2Cl2, respectively, the dynamic equilibrium between DNIC 2-tBu and neutral RRE 3-tBu observed in CH3OH illustrates the aspect of how the hydrophobic/hydrophilic protein environment regulates the transformation of DNICs in the biological system. In combination with the typical EPR signal at g = 2.03 of {Fe(NO)2}9 DNICs and 1.997 of {Fe(NO)2}9-{Fe(NO)2}10 anionic RREs, the pre-edge energy derived from 1s→3d transition in a distorted Td environment of the Fe center of DNICs within the range of 7113.3-7113.8 eV could be utilized to probed the formation of the monomeric {Fe(NO)2}9/{Fe(NO)2}10 DNICs, {Fe(NO)2}9-{Fe(NO)2}10 anionic RREs and {Fe(NO)2}9-{Fe(NO)2}9 RREs containing thiolate/sulfide bridging ligands in biological systems. Transformation of DNICs into [2Fe-2S] clusters facilitated by HSCPh3 or Me2S3 via the reassembling process ([(NO)2Fe(SEt)2]– (2-Et)/ [(NO)2Fe(μ-SEt)2Fe(NO)2]– (8-Et)→ [(NO)2Fe(μ-SEt)(μ-S)Fe(NO)2]– (9-Et)→ [(NO)2Fe(μ-S)2Fe(NO)2]2– (10)→ [(SEt)2Fe(μ-S)2Fe(SEt)2]2–) was consistent with the repair of DNICs back to the ferredoxin [2Fe-2S] cluster by cysteine desulfurase (IscS) and L-cysteine in vitro with no need of the addition of iron or any other protein components in E. coli. The distinct spectroscopic feature of S K-edge spectra displayed by monomeric DNICs 2-Et/2-Ph, dimeric/dinuclear DNICs 3-Et/8-Et/9-Et/10 and [2Fe-2S] clusters could be used to probe the transformation of DNICs into [2Fe-2S]. On the basis of the pre-edge energy in the Fe K-edge spectra and the pre-edge energy in combination with the 1s(S)□□*(C-S bond) transition energy in the S K-edge spectra, the electronic structure of DNICs is best described as {FeIII(NO–)2}9. Furthermore, the nature of the SOMO of DNIC 2-Ph and the LUMO of RRE 3-Et characterized by S K-edge XAS is the Fe-S antibonding orbital. This rationalizes the ligand-exchange reaction observed in the reaction of DNIC 2-Ph and [SEt]– yielding DNIC 2-Et, the bridged-thiolate cleavage reaction upon addition of [SEt]– to RRE 3-Et leading to the formation of DNIC 2-Et and conversion of complex 2-Et into complex 9-Et via reduction of HSCPh3/Me2S3 by the pendant thiolate of complex 2-Et. In addition to acting as the endogenous NO-carrier and redox-activating nitric oxide to donate distinct redox-interrelated forms of nitric oxide, DNICs serve as not only the thiolate/electron carrier activating the incorporation of sulfide to assemble [Fe(□-S)2Fe] core but also the Fe carrier/source in the biosynthesis of [2Fe-2S] and [4Fe-4S] iron-sulfur clusters
Table of Contents


中文摘要 i
Abstract iii
Table of Contents v
List of Tables viii
List of Figures ix
I. CHPATER ONE: Introduction 1
1. Nitric Oxide 1
1.1 Biosynthesis of Nitric Oxide 1
1.2 Natural Carrier of NO 2
1.3 NO-Responsive Targets and NO Regulatory Functions 5
2. Iron-Sulfur [Fe-S] Proteins 10
2.1 Maturation of [Fe-S] Proteins in Prokaryotes 10
2.2 Proteins Involved in Repair/Regeneration of [Fe-S] Proteins 16
3. Bioinspired Coordination Chemistry 18
II. CHAPTER TWO: Experimental Section 25
General Procedures 25
Reaction of [PPN]2[FeII(SPh)4] and NO(g) 26
Reaction of [PPN][FeIII(SPh)4] and NO(g) 27
Reaction of [PPN][Fe(SPh)3(NO)] (1-Ph) and NO(g) 28
Reaction of [PPN][Fe(SPh)3(NO)] (1-Ph) and [NO][BF4] 28
Preparation of [PPN][Fe(SEt)3(NO)] (1-Et) 28
Transformation of [PPN][Fe(SPh)3(NO)] (1-Ph) into [PPN][Fe(SEt)3(NO)] (1-Et) 29
Conversion of [PPN][Fe(SEt)3(NO)] (1-Et) into [PPN][Fe(SPh)3(NO)] (1-Ph) 29
Reaction of [PPN][Fe(SEt)3(NO)] (1-Et) and NO(g) 29
Transformation of [PPN][(SPh)2Fe(NO)2] (2-Ph) into [PPN][(SEt)2Fe(NO)2] (2-Et) 30
Reaction of [PPN][Fe(SPh)3(NO)] (1-Ph) and S-nitrosothiol ([(Ph)3CSNO]) 30
Reaction of [PPN]2[(SEt)2Fe(μ-S)2Fe(SEt)2] and nitric oxide under the presence of PPh3 30
Preparation of [cation][(NO)2Fe(C12H8N)2] (C12H8N = carbazolate) (cation = PPN+ or Na+-18-crown-6-ether) (2-Car) 31
Reaction of bis(dimethylthiocarbamoyl) disulfide (DTC) and complex 2-Car 32
Reaction of compound 5 and N-acetyl-penicillamine (NAP) 32
Reaction of (PyPepS)2 (PyPepS = [SC6H4-o-NHC(O)(C5H4N)]2) and complex 2-Car 33
Reaction of P(SH)3 (P(SH)3 = P(C6H3-3-SiMe3-2-SH)3) and complex 2-Car 34
Reaction of P(SNa)3 (P(SNa)3 = P(C6H3-3-SiMe3-2-SNa)3) and complex 2-Car 34
Preparation of [cation][(tBuS)2Fe(NO)2] (cation = Na-18-crown-6-ether (2-tBu-Na), PPN (2-tBu)) 35
Preparation of [K-18-crown-6-ether][Fe(μ-StBu)(NO)2]2 (8-tBu) 36
Transformation of complex 2-tBu in CH3CN 36
Transformation of complex 2-tBu in CH2Cl2 37
Reaction of complex 3-tBu and two equiv of [Na-18-crown-6-ether][StBu] 37
Addition of Cp2Co into the MeOH solution of Complex 2-tBu 38
Reaction of Complex 3-tBu and [Na-18-crown-6-ether][StBu] in CD3OD monitored by 1H-NMR at variable temperature 38
Reaction of Complex 3-tBu and [Na-18-crown-6-ether][StBu] in MeOH 38
Conversion of 2-Et into [PPN][(NO)2Fe(μ-SEt)(μ-S)Fe(NO)2] (9-Et) 39
Transformation of 2-Et into [PPN][(NO)2Fe(μ-SMe)(μ-S)Fe(NO)2] (9-Me) 40
Transformation of [K-18-crown-6-ether][(NO)2Fe(μ-SEt)2Fe(NO)2] (8-Et) into [K-18-crown-6-ether][(NO)2Fe(μ-SEt)(μ-S)Fe(NO)2] (9-Et) 40
Transformation of 9-Et into [K-18-crown-6-ether]2[(NO)2Fe(μ-S)2Fe(NO)2] (10) 41
Conversion of 9-Et into [K-18-crown-6-ether][(NO)2Fe(μ-SPh)(μ-S)Fe(NO)2] (9-Ph) 41
Transformation of complex 9-Ph into 9-Et 42
Reaction of complex 10 and [K-18-crown-6-ether][Fe(SEt)4] 42
Preparation of complex [PPN][(NO)2Fe(-SC9H6N-)2] (11) 43
EPR Measurements 43
Magnetic Measurements 43
Crystallography 43
X-ray Absorption Measurements 44
III. CHAPTER THREE: Results and Discussion 57
Degradation of Analogues of [Fe-S] Proteins via Nitrosylation 57
Distinct redox-interrelated forms of nitric oxide deriving from DNICs and conversion of DNICs into N-nitrosamine (R2N-NO) and S-nitrosothiol (RS-NO) 67
Interconversion between monomeric DNICs and dimeric/dinuclear DNICs containing bridged (SR, SR), (S, SR) and (S,S) ligands 75
Transformation of DNICs into [2Fe-2S] cluster: relevant to the repair of NO-modified [Fe-S] proteins 90
Structure Comparison 94
Characterization of monomeric and dimeric/dinuclear DNICs by XAS spectroscopy 105
IV. CHAPTER FOUR: Conclusion and Comments 118
References 129
Structure of Complexes and Compounds 141
References
1. (a) Wendehenne, D.; Pugin, A.; Klessig, D. F.; Durner, J. Trends Plant Sci. 2001, 6, 177-183. (b) Zhou, L.; Zhu, D-Y. Nitric Oxide 2009, 20, 223-230.
2. (a) Bryan, N. S.; Rassaf, T.; Maloney, R. E.; Rodriguez, C. M.; Saiji, F.; Rodriguez, J. R.; Feelisch, M. Proc. Natl. Acad. Sci. 2004, 101, 4308-4313. (b) Rassaf, T.; Bryan, N. S.; Kelm, M. Feelisch, M. Free Radic. Biol. Med. 2002, 33, 1590-1596.
3. Lundberg, J. O.; Weitzberg, E. Arch. Pharm. Res. 2009, 32, 1119-1126.
4. (a) Doyle, M. P.; Mahapatro, S. N.; Broene, R. D.; Guy, J. K. J. Am. Chem. Soc. 1988, 110, 593-599. (b) Turk, T.; Hollocher, T. C. Biochem. Biophys. Res. Comm. 1992, 183, 983-988. (c) Murphy, M. E.; Sies, H. Proc. Natl. Acad. Sci. 1991, 88, 10860-10864. (d) Fukuto, J. M.; Wallace, G. C.; Hszieh, R.; Chaudhuri, G. Biochem. Pharmacol. 1992, 43, 607-613. (e) Scharfstein, J. S.; Keany, J. F.; Slivka, A.; Welch, G. N.; Vita, J. A.; Stamler, J. S.; Loscalzo, J. J. Clin. Invest. 1994, 94, 1432-1439. (f) Arnelle, D. R.; Stamler, J. S. Arch. Biochem. Biophys. 1995, 318, 279-285.
5. (a) Feelisch, M.; Rassaf, T.; Mnaimneh, S.; Singh, N.; Bryan, N. S.; Jourd’heuil, D.; Kelm, M. FASEB J. 2002, 16, 1775-1785. (b) Zhang, Y. Y.; Xu, A. M.; Nomen, M.; Walsh, M.; Keaney, J. F. Jr; Loscalzo, J. J. Biol. Chem. 1996, 271, 14271-14279.
6. (a) Sonnenschein, K.; de Groot, H.; Kirsch, M. J. Biol. Chem. 2004, 279, 45433-45440. (b) Yanagimoto, T.; Toyota, T.; Matsuki, N.; Makino, Y.; Uchiyama, S.; Ohwada, T. J. Am. Chem. Soc 2007, 129, 736-737.
7. (a) Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Proc. Natl. Acad. Sci. 2006, 103, 7670-7675. (b) Richardson, D. R.; Lok, H. C. Biochem. Biophys. Acta 2008, 1780, 638-651. (c) Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, N. D. Biochemistry 1994, 33, 3679-3687. (d) Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Proc. Natl. Acad. Sci. 2006, 103, 7670-7675.
8. (a) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J. Biol. Chem. 1995, 270, 29244-29249. (b) Vanin, A. F. FEBS Lett. 1991, 1, 1-3. (c) Giannone G.; Takeda, K.; Kleschyov, A. L. J. Physiol. 2000, 529, 735-745. (d) Badorff, C.; Fichtlscherer, B.; Muelsch, A.; Zeiher, M. A.; Dimmeler, S. Nitric Oxide 2002, 6, 305-312. (e) Severina, I. S.; Bussygina, G. O.; Pyatakova, V. N.; Malenkova, V. I.; Vanin, A. F. Nitric Oxide 2003, 8, 155-163. (f) Vasil’eva, S. V.; Osipov, A. N.; Sanina, N. A.; Aldoshin, S. M. Biochem. Biophys. 2007, 414, 102-105. (g) Kleschyov, A. L.; Strand, S.; Schmitt, S.; Gottfried, D.; Skatchkov, M.; Sjakste, N.; Daiber, A.; Umansky, V.; Munzel, T. Free Rad. Biol. Med. 2006, 40, 1340-1348.
9. (a) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898-1902. (b) Stamler, J. S. Cell 1994, 78, 931-936.
10. Hess, D. T.; Matusmoto, A.; Kim, S.-O.; Marshall, H. E.; Stamler, J. S. Nat. Rev. Mol. Cell Biol. 2005, 6, 150-166.
11. Foster, M. W.; Hess, D. T.; Stamler, J. S. Trends Mol. Med. 2009, 15, 391-404.
12. Boese, M; Keese, M. A.; Becker, K.; Busse, R.; Mülsch, A. J. Biol. Chem. 1997, 272, 21767-21773.
13. (a) Mayer, B.; Kleschyov, A. L.; Stessel, H.; Russwurm, M.; Münzel, T.; Koesling, D.; Schmidt, K. Mol. Pharm. 2009, 75, 886-891. (b) Friebe, A.; Koesling, D. Circ. Res. 2003, 93, 96-105.
14. (a) Autre´aux, B. D.; Tucker, N. P.; Dixon, R.; Spiro, S. Nature. 2005, 437, 769-772. (b) Tucker, N. P.; Autreaux, B. D.; Yousafzai, F. K.; Shirley A. Fairhurst, S. A.;Spiro, S.; Dixon. R. J. Biol. Chem. 2008, 283, 908-918.
15. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
16. Gruer, M. J.; Artymiuk, P. J.; Guest, J. R. Trends Biochem. Sci. 1997, 22, 3-6.
17. Kennedy, M. C.; Antholone, W. E.; Beinert, H. J. Biol. Chem. 1997, 272, 20340-20347.
18. Pullan, S. T.; Gidley, M. D.; Jones, R. A.; Jason, Barret, J.; Stevanin, T. M.; Read, R. C.; Freen, J.; Poole, R. K. J. Bacteriol. 2007, 189, 1845-1855.
19. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. 2000, 97, 5146-5150.
20. (a) Ding, H.; Hidalgo, E.; Demple, B. J. Biol. Chem. 1996, 271, 33173-33175. (b) Gaudu, P.; Weiss, B. Proc. Natl. Acad. Sci. 1996, 93, 10094-10098.
21. (a) Lambden, P. R.; Guest, J. R. J. Gen. Microbiol. 1976, 97, 145-160. (b) Kang, Y. S; Weber, K. D.; Yu, Q.; Kiley, P. J.; Blattner, F. R. J. Bacteriol. 2005, 187, 1135-1160. (c) Unden, G.; Trageser, M. Antonie Van Leeuwenhoek 1991, 59, 65-76.
22. (a) Crack, J. C.; Gaskell, A. A.; Green, J.; Cheesman, M. R.; Le Brun, N. E.; Thomson, A. J. J. Am. Chem. Soc. 2008, 130, 1749-1758. (b) Sharrocks, A. D.; Green, J.; Guest, J. R. Proc. Biol. Sci. 1991, 245, 219-226. (c) Lazazzera, B. A.; Bates, D. M.; Kiley, P. J. Genes Dev. 1993, 7, 1993-2005.
23. Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, N. M.; Scott, C.; Thomson, J. A.; Green, J.; Poole, K. R. EMBO J., 2002, 21, 3235-3244.
24. Schwartz, C. J.; Giel, J. L.; Patschkowski, T.; Luther, C.; Ruzicka, F. J.; Beinert, H.; Kiley, P. J. Proc. Natl. Acad. Sci. 2001, 98, 14895-14900.
25. Nakano, M. M.; Geng, H.; Nakano, S.; Kobayashi, K. J. Bacteriol. 2006, 188, 5878-5887.
26. (a) Link, T. A. Adv. Inorg. Chem., 1999, 47, 83-157. (b) Calzolai, L.; Zhou, Z. –H.; Adams, M. W. W.; Lamar, G. N. J. Am. Chem. Soc., 1996, 118, 2513-2514. (c) Hunsicker-Wang, L. M.; Heine, A., Chen, Y.; Luna, E. P.; Todaro, T.; Zhang, Y. M.; Williams, P. A.; McRee, D. E.; Hirst, J.; Stout, C. D.; Fee, J. A. Biochemistry, 2003, 42, 7303-7317.
27. (a) Flint, D. H.; Allen, R. M. Chem. Rev., 1996, 96, 2315-2334. (b) Beinert, H.; Kennedy, M. C.; Stout, C. D. Chem. Rev., 1996, 96, 2335-2373. (c) Jarrett, J. T. Curr. Opin. Chem. Biol. 2003, 7, 174-182. (d) Cheek, J.; Broderick, J. B. J. Biol. Inorg. Chem. 2001, 6, 209-226. (e) Dobbek, H.; Svetlitchnyi, V.; Gremer, L; Huber, R.; Meyer, O. Science 2001, 293, 1281-1285. (f) Nicolet, Y.; Cavazza, C.; Fontecilla-Camps, J. C. J. Inorg. Biochem. 2002, 91, 1-8. (g) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858.
28. (a) Thauer, R. K.; Schonheit, P. Iron Sulfur Proteins. 329-341. (b) Hedderich, R.; Albracht, S. P.; Linder, D.; Koch, J.; Thauer, R. K. FEBS Lett. 1992, 298, 65-68. (c) Reeve, J. N.; Beckler, G. S.; Cram, D. S.; Hamilton, P.T.; Brown, J. W.; Krzycki, J. A.; Kolodziej, A. F.; Alex, L.; Ormejohnson, W. H.; Walsh, C. T. Proc. Natl. Acad. Sci. 1989, 86, 3031-3035.
29. (a) Kiley, P. J.; Beinert, H. Curr. Opin. Microbiol. 2003, 6, 181-185. (b) Demple, B.; Ding, H.; Jorgensen, M. Methods Enzymol. 2002, 348, 355-364. (c) Wu, C. K.; Dailey, H. A.; Rose, J. P.; Burden, A.; Sellers, V. M.; Wang, B. C. Nat. Struct. Biol. 2001, 8, 156-160.
30. (a) Dai, S.; Schwendtmayer, C.; Schurmann, P.; Ramaswamy, S.; Eklund, H. Science 2000, 287, 655-658. (b) Duin, E. C.; Madadi-Kahkesh, S.; Hedderich, R.; Clay, M. D.; Johnson, M. K. FEBS Lett. 2002, 512, 263-268. (c) Walters, E. M.; Johnson, M. K. Photosynth. Res. 2004, 79, 249-264. (d) Ugulava, N. B.; Gibney, B. R.; Jarrett, J. T. Biochemistry 2001, 40, 8343-8351. (e) Berkovitch, F.; Nicolet, Y.; Wan, J. T.; Jarrett, J. T.; Drennan, C. L. Science 2004, 303, 76-79. (f) Jameson, G. N.; Cosper, M. M.; Hernandez, H. L.; Johnson, M. K.; Huynh, B. H. Biochemistry 2004, 43, 2022-2031.
31. Zheng, L.; Cash, V. L.; Flint, D. H.; Dean, D. R. J. Biol. Chem. 1998, 273, 13264-13272.
32. Takahashi, Y.; Nakamura, M. J. Biochem. (Tokyo) 1999, 126, 917-926.
33. Schwartz, C. J.; Giel, J. L.; Patschkowski, T.; Luther, C.; Ruzicka, F. J.; Beinert, H.; Kiley, P. J. Proc. Natl. Acad. Sci. 2001, 98, 14895-14900.
34. Agar, J. N.; Zheng, L.; Cash, V. L.; Dean, D. R.; Johnson, M. K. J. Am. Chem. Soc. 2000, 122, 2136-2137.
35. Agar, J. N.; Krebs, C.; Frazzon, J.; Huynh, B. H.; Dean, D. R.; Johnson, M. K. Biochemistry 2000, 39, 7856-7862.
36. (a) Urbina, H. D.; Silberg, J. J.; Hoff, K. G.; Vickery, L. E. J. Biol. Chem. 2001, 276, 44521-44526. (b) Smith, A. D.; Agar, J. N.; Johnson, K. A.; Frazzon, J.; Amster, I. J.; Dean, D. R.; Johnson, M. K. J. Am. Chem. Soc. 2001, 123, 11103-11104. (c) Kato, S.; Mihara, H.; Kurihara, T.; Takahashi, Y.; Tokumoto, U.; Yoshimura, T.; Esaki, N. Proc. Natl. Acad. Sci. 2002, 99, 5948-5952.
37. Smith, A. D.; Frazzon, J.; Dean, D. R.; Johnson, M. K. FEBS Lett. 2005, 579, 5236-5240.
38. Zeng, J.; Geng, M.; Jiang, H.; Liu, Y.; Liu, J.; Qiu, G. Arch. Biochem. Biophys. 2007, 463, 237-244.
39. Adinolfi, S.; Rizzo, F.; Masino, L.; Nair, M.; Martin, S. R.; Pastore, A.; Temussi, P. A. Eur. J. Biochem. 2004, 271, 2093-2100.
40. (a) Nuth, M.; Yoon, T.; Cowan, J. A. J. Am. Chem. Soc. 2002, 124, 8774-8775. (b) Mansy, S. S.; Wu, G.; Surerus, K. K.; Cowan, J. A. J. Biol. Chem. 2002, 277, 21397-21404.
41. Chandramouli, K.; Unciuleac, M. C.; Naik, S.; Dean, D. R.; Huynh, B. H.; Johnson, M. K. Biochemistry 2007, 46, 6804-6811.
42. Unciuleac, M. C.; Chandramouli, K.; Naik, S.; Mayer, S.; Huynh, B. H.; Johnson, M. K.; Dean, D. R. Biochemistry 2007, 46, 6812-6821.
43. Ollagnier-de-Choudens, S.; Mattioli, T.; Takahashi, Y.; Fontecave, M. J. Biol. Chem. 2001, 276, 22604-22607.
44. (a) Morimoto, K.; Nishio, K.; Nakai, M. FEBS Lett. 2002, 519, 123-127. (b) Morimoto, K.; Yamashita, E.; Kondou, Y.; Lee, S. J.; Arisaka, F.; Tsukihara, T.; Nakai, M. J. Mol. Biol. 2006, 360, 117-132. (c) Zeng, J.; Geng, M.; Jiang, H.; Liu, Y.; Liu, J.; Qiu, G. Arch. Biochem. Biophys. 2007, 463, 237-244.
45. (a) Krebs, C.; Agar, J. N.; Smith, A. D.; Frazzon, J.; Dean, D. R.; Huynh, B. H.; Johnson, M. K. Biochemistry 2001, 40, 14069-14080. (b) Ollagnier-de Choudens, S.; Nachin, L.; Sanakis, Y.; Loiseau, L.; Barras, F.; Fontecave, M. J. Biol. Chem. 2003, 278, 17993-18001. (c) Ollagnier-de Choudens, S.; Sanakis, Y.; Fontecave, M. J. Biol. Inorg. Chem. 2004, 9, 828-838.
46. (a) Bonomi, F.; Lametti, S.; Ta, D.; Vickery, L. E. J. Biol. Chem. 2005, 280, 29513-29518. (b) Yang, J.; Bitoun, J. P.; Ding, H. J. Biol. Chem. 2006, 281, 27956-27963.
47. Johnson, D. C.; Unciuleac, M. C.; Dean, D. R. J. Bacteriol. 2006, 188, 7551-7561.
48. Ding, B.; Smith, E. S.; Ding, H. Biochem. J. 2005, 389, 797-802.
49. (a) Ding, H.; Clark, R. J.; Ding, B. J. Biol. Chem. 2004, 279, 37499-37504. (b) Ding, H.; Clark, R. J. Biochem. J. 2004, 379, 433-440.
50. Yoon, T.; Cowan, J. A. J. Am. Chem. Soc. 2003, 125, 6078-6084.
51. Layer, G.; Ollagnier-de Choudens, S.; Sanakis, Y.; Fontecave, M. J. Biol. Chem. 2006, 281, 16256-16263.
52. (a) Nakamura, M.; Saeki, K.; Takahashi, Y. J. Biochem. (Tokyo) 1999, 126, 10-18. (b) Tokumoto, U.; Takahashi, Y. J. Biochem. (Tokyo) 2001, 130, 63-71. (c) Tokumoto, U.; Nomura, S.; Minami, Y.; Mihara, H.; Kato, S. J. Biochem. (Tokyo) 2002, 131, 713-719.
53. (a) Hoff, K. G.; Ta, D. T.; Tapley, T. L.; Silberg, J. J.; Vickery, L. E. J. Biol. Chem. 2002, 277, 27353-27359. (b) Hoff, K. G.; Cupp-Vickery, J. R.; Vickery, L. E. J. Biol. Chem. 2003, 278, 37582-37589. (c) Hoff, K. G.; Silberg, J. J.; Vickery, L. E. Proc. Natl. Acad. Sci. 2000, 97, 7790-7795. (d) Silberg, J. J.; Hoff, K. G.; Tapley, T. L.; Vickery, L. E. J. Biol. Chem. 2001, 276, 1696-1700. (e) Cupp-Vickery, J. R.; Peterson, J. R.; Ta, D. T.; Vickery, L. E. J. Mol. Biol. 2004, 342, 1265-1278. (f) Tapley, T. L.; Vickery, L. E. J. Biol. Chem. 2004, 279, 28435-28442.
54. Chandramouli, K.; Johnson, M. K. Biochemistry 2006, 45, 11087-11095.
55. (a) Lange, H.; Kaut, A.; Kispal, G.; Lill, R. Proc. Natl. Acad. Sci. 2000, 97, 1050-1055. (b) Barros, M. H.; Nobrega, F. G. Gene 1999, 233, 197-203.
56. Tong, W. H.; Rouault, T. A. Cell Metab. 2006, 3, 199-210.
57. (a) Velayudhan, J.; Castor, M.; Richardson, A.; Main-Hester, K. L.; Fang, F. C. Mol. Microbiol. 2007, 63, 1495-1507. (b) Bulteau, A.; O’Neill, H. A.; Kennedy, M. C.; Saito-Ikeda, M.; Isaya, G.; Szweda, L. I. Science 2004, 305, 242-245.
58. Djaman, O.; Outten, F. W.; Imlay, J. A. J. Biol. Chem. 2004, 279, 44590-44599.
59. (a) Roger, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980-30986. (b) Roger, P. A.; Eide, L.; Klungland, A.; Ding, H. DNA Repair 2003, 2, 809-817.
60. Justino, M. C.; Almeida, C. C.; Teixeira, M.; Saraiva, L. M. J. Biol. Chem. 2007, 282, 10352-10359.
61. Overton, T. W.; Justino, M. C.; Li, Y.; Baptista, J. M.; Melo, A. M. P.; Cole, J. A.; Saraiva, L. M. J. Bacteriol. 2008, 190, 2004-2013.
62. Strube, K.; de Vries, S.; Cramm, R. J. Biol. Chem. 2007, 282, 20292-20300.
63. Gomes, C. M.; Vicente, J. B.; Wasserfallen, A.; Teixeira, M. Biochemistry 2000, 39, 16230-16237.
64. Haas, K. L.; Katherine, J. F. Chem. Rev. 2009, 109, 4921-4960.
65. Holm, R. H.; Solomon, E. I. Chem. Rev. 2004, 104, 347-348.
66. Solomon, E. I. Inorg. Chem. 2006, 45, 8012-8025.
67. (a) Beinert, H.; Holm, R. H.; Munck, E. Science 1997, 277, 653-659. (b) Rao, P. V.; Holm, R. H. Chem. Rev. 2004, 104, 527-559. (c) Kennedy, M. C.; Kent, T. A.; Emptage, M.; Merkle, H.; Beinert, H.; Munck, E. J. Biol. Chem. 1984, 259, 14463-14471.
68. Penner-Hahn, J. E. Coord. Chem. Rev. 2005, 249, 161-177.
69. de Groot, F. Coord. Chem. Rev. 2005, 249, 31-63.
70. (a) Solomon, E. I.; Hedman, B.; Hodgson, K. O.; Dey, A.; Szilagyi, R. K. Coord. Chem. Rev. 2005, 249, 97-129. (b) Dey, A.; Jenney Jr., F. E.; Adams, M. W. W.; Babini, E.; Takahashi, Y.; Fukuyama, K.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Science 2007, 318, 1464.
71. Vithayathil, A. J.; Ternberg, J. L.; Commoner, B. Nature, 1965, 207, 1246-1249.
72. (a) Martini, G.; Tiezzi, E. Z. Naturtorsch 1973, 28b, 300-305. (b) Tiezzi, E. Z.; Niccolai, N.; Basosi, R. J. Chim. Phys. 1977, 74, 559-562. (c) Jezowska-Trezebiatowska, B.; Jezierski, A. J. Mol. Struct. 1974, 19, 635-640.
73. (a) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872-5881. (b) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I.-J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579-9591. (c) Huang, H. W.; Tsou, C. C.; Kuo, T. S.; Liaw, W. F. Inorg. Chem. 2008, 47, 2196-2204.
74. (a) Hung, M. C.; Tsai, M. C.; Lee, G. H.; Liaw, W. F.; Inorg. Chem. 2006, 45, 6041-6047. (b) Tsai M. L.; Hsieh, C. H.; Liaw, W. F. Inorg. Chem. 2007, 46, 5110-5117.
75. Tsai, M. L.; Liaw,W. F.; Inorg. Chem. 2006, 45, 6583-6585.
76. Works, C. F.; Jocher, C. J.; Bart, G. D.; Bu, X.; Ford, P. C. Inorg. Chem. 2002, 41, 3728-3739
77. (a) Rao, P. V.; Holm, R. H. Chem. Rev. 2004, 104, 527-559. (b) Arulsamy, N.; Bohle, D. S.; Butt, J. A.; Irvine, G. J.; Jordan, P. A.; Sagan, E. J. Am. Chem. Soc. 1999, 121, 7115-7123. (c) Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 2000, 39, 357-362. (b) Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am.Chem. Soc. 1989, 111, 2327-2329.
78. Rauchfuss, T. B.; Weatherill, T. D. Inorg. Chem. 1982, 21, 827-830.
79. Butcher, R. J.; Sinn, E. Inorg. Chem. 1980, 19, 3622-3626.
80. (a) Sonnenschein, K.; de Groot, H.; Kirsch, M. J. Biol. Chem. 2004, 279, 45433-45440. (b) Yanagimoto, T.; Toyota, T.; Matsuki, N.; Makino, Y.; Uchiyama, S.; Ohwada, T. J. Am. Chem. Soc 2007, 129, 736-737.
81. Tsai, M. L.; Chen, C. C.; Hsu. I. J.; Ke, S. C.; Hsieh, C. H.; Chiang, K. A.; Lee, G. H.; Wang, Y.; Liaw, W. F.; Inorg. Chem. 2004, 43, 5159-5167.
82. Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799-8806.
83. Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050.
84. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Germany, 1996.
85. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
86. (a) Harrop, T. C.; Song, D. T.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 3528-3529. (b) Jaworska, M.; Stasicka, Z. J. Organomet. Chem. 2004, 689, 1702-1713.
87. (a) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867-10874. (b) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627-2632.
88. Rauchfuss, T. B.; Weatherill, T. D. Inorg. Chem. 1982, 21, 827-830.
89. Bryan, S. N.; Fernandez, O. B.; Bauer, M. S.; Garcia-Saura, F. M.; Milsom, B. A.; Rassaf, T.; Maloney, E. R.; Bharti, A.; Rodriguez, J.; Feelisch, M. Nat. Chem. Biol. 2005, 1, 290-297.
90. Suzuki, T.; Yamaoka, R.; Nishi, M.; Ide, H.; Makino, K. J. Am. Chem. Soc. 1996, 118, 2515-2516.
91. (a) Conradie, J.; Quarless, Jr. D. A.; Hsu, H.-F.; Harrop, T. C.; Lippard, S. J.; Koch, S. A.; Ghosh, A. J. Am. Chem. Soc. 2007, 129, 10446-10456. (b) Lee, C.-M.; Chen, C.-H.; Chen, H.-W.; Hsu, J.-L.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 6670-6679.
92. (a) Stebler, A.; Ammeter, J. H.; Fuerholz, U.; Ludi, A. Inorg. Chem. 1984, 23, 2764-2767. (b) Ondrechan, M. J.; Ko, J.; Zhang, L.-T. J. Am. Chem. Soc. 1987, 109, 1672-1676.
93. Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 4093.
94. Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050.
95. Coucouvanis, D.; Swenson, D.; Stremple, P.; Baenziger, N. C. J. Am. Chem. Soc. 1979, 101, 3392-3394.
96. (a) Thomas, J. T.; Robertson, J. H.; Cox, E. G. Acta Cryst. 1958, 11, 599-604. (b) Sanina, N. A.; Filipenko, O. S.; Aldoshin, S. M.; Ovanesyana, N. S. Russ. Chem. Bull. 2000, 49, 1109-1112.
97. Tsou, C.-C.; Lin, Z.-S.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2008, 130, 17154-17160.
98. Lill, R.; Muhlenhoff, U. Annu. Rev. Biochem. 2008, 77, 669-700.
99. (a) Land, T.; Rouault, T. A. Mol. Cell 1998, 2, 807-815. (b) Tong, W. H.; Rouault, T. A. EMBO J. 2000, 19, 5692-5700.
100. Fontecave, M.; Ollagnier-de-Choudens S. Arch. Biochem. Biophys. 2008, 474, 226-237.
101. (a) Isikawa, T.; Li, Z.-S.; Lu, Y.-P.; Rea, P. A. Biosci. Rep. 1997, 17, 189-207. (b) Roy, A.; Solodovnikova, N.; Nicholson, T.; Antholine, W.; Walden, W. E. EMBO J. 2003, 22, 4826-4835.
102. Colpas, G. J.; Maroney, M. J.; Bagyinka, C.; Kumar, M.; Willis, W. S.; Suib, S. L.; Baidya, N.; Mascharak, P.K. Inorg. Chem. 1991, 30, 920-928.
103. (a) DuBois, J. L.; Mukherjee, P.; Stack, T. D. P.; Hedman, B.; Solomon, E. I.; Hodgson, K. O. J. Am. Chem. Soc. 2000, 122, 5775-5787. (b) Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1997, 119, 6297-6314.
104. Hsu, I.-J. Unpublished results.
105. (a) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993-1017. (b) Butler, A. R.; Megson, I. L. Chem. Rev. 2002 102, 1155-1166. (c) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485-493. (d) Frederik. A. C.; Wiegant, I. Y.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett 1999, 455, 179-182. (e) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019-1065. (f) McCleverty, J. A. Chem. Rev. 2004, 104, 403-418. (g) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935-991. (h) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091-1134. (i) Mülsch, A.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R. FEBS Lett 1991, 294, 252-256. (j) McDonald, C. C.; Phillips, W.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319-3326.
106. Tonzetich, Z. J.; Do, L. H.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7964-7965.
107. Chen, Y.-C.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-H.; Chen, Y.-J. J. Am. Chem. Soc. 2008, 130, 10929-10938.
108. (a) Toledo, J. C.; Bosworth, C. A. Jr.; Hennon, S. W.; Mahtani, H. K.; Bergonia, H. A.; Lancaster, J. R. Jr. J. Biol. Chem. 2008, 283, 28926-28933. (b) Lewandowska, H.; Meczynska, S.; Sochanowicz, B.; Sadlo, J.; Kruszewski, M. J. Biol. Inorg. Chem. 2007, 12, 345-352.
(此全文未開放授權)
電子全文
中文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *