帳號:guest(18.218.196.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姚佳賢
作者(外文):Yao, Jia-Hsien
論文名稱(中文):矽基稀磁半導體材料開發及其特性研究
論文名稱(外文):Si-based diluted-magnetic-semiconducting materials and the characterization
指導教授(中文):金重勳
指導教授(外文):Chin, Tsung-Shune
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:943576
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:157
中文關鍵詞:氫化非晶矽磁性半導體異常霍爾效應錳攙雜鉻攙雜載子誘發鐵磁性
外文關鍵詞:hydrogenated amorphous siliconmagnetic semiconductoranomalous Hall effectMn-dopingCr-dopingcarrier-mediated ferromagnetism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
稀磁半導體具有可在同一個材料中控制電荷和自旋自由度的特性,因此被認為是極有可能實現自旋電子元件的重要候選人之一,在各種稀磁半導體的系統中,四族的半導體材料(矽、鍺)具有可和現代電子工業快速整合的優勢,因此最受到矚目。在本篇論文的研究中,我們將著重於矽基稀磁半導體的新材料開發,以及其相關物理性質之研究,例如:微結構分析、磁性、以及電性量測等。本論文可以細分成三個主要的研究主題: 第一個研究主題著重於具有室溫鐵磁性之稀磁半導體材料的開發與研究,我們成功地利用磁控濺鍍法成長鉻添加氫化非晶矽薄膜,並觀察到高於室溫的鐵磁性,在經由X光繞射儀和電子顯微鏡鑑定其微結構特性後,發現所有的初鍍態試片皆呈現非晶結構,並且沒有任何的二次磁性相或鉻團簇產生。由異常霍爾效應的觀察,以及磁化量對溫度的關係中,我們發現在此材料中的磁性來源機制可以被磁性子的展透理論合理地解釋。我們利用延伸X光射線吸收微結構光譜分析鉻原子的局域環境,進一步確認了我們成功地將鉻添加於氫化非晶矽中,沒有發現任何的團簇物或是氧化物產生。除此之外,我們亦發現氫化處理會影響材料的磁性和電性表現,只有當薄膜中的斷鍵被氫填補之後,才能觀察到試片的鐵磁性表現。在第二個研究主題方面,延續在鉻添加氫化非晶矽的實驗,我們開發了具有室溫鐵磁性的錳添加氫化非晶矽薄膜,並利用一樣的分析方法去探究結構、磁性,以及電性性質。我們也再次觀察到氫化處理提升了試片的各項性質。然而值得注意的是,在磁化量對溫度的關係上,錳添加的試片具有和鉻添加試片不一樣的行為。並且異常霍爾效應在錳添加氫化非晶矽薄膜中可以在高達150 K的溫度下被觀察到。此外,我們也進一步利用居禮-偉斯和三維自旋波定理去適套磁化量對溫度的關係曲線。這些量測及分析結果顯示試片的鐵磁性是源自於巡迴式載子所誘發的。最後,在第三個研究主題方面,我們探討後退火處理對試片性質的影響。我們發現後退火處理可以提升試片的磁性及電性表現,例如飽和磁化量、導電度,以及載子濃度等。此外,我們利用電子彈回偵測法去量測氫濃度,發現在低溫退火的過程中,氫都沒有逸散。因此我們推測後退火處理能提升試片的各項性質,是因為熱能促使氫擴散,使氫能更均勻的分佈於試片中,降低缺陷密度。更重要的是,經退火處理的錳添加氫化非晶矽試片在室溫下可以明顯地觀察到異常霍爾效應。這是四族稀磁半導體中所被觀察到的最高溫度,同時這個量測結果也代表試片的磁性來源是載子所誘發的,且可被實際應用於自旋電子元件中。
Diluted magnetic semiconductors (DMSs) is one of the most promising candidates to realize spintronics devices with the potentials to control both charge and spin degrees of freedom in one material. Among various systems, group IV-based (Si, Ge) DMSs specially attract much attention due to the compatibility with existing industry of modern electronics. In our works, we aimed at exploring to develop new Si-based DMSs materials, and the corresponding distinct physical properties. These included microstructure, ferromagnetism, and transport properties. Three main topics have been involved.
In the first topic, we have demonstrated room-temperature ferromagnetism in Cr-doped hydrogenated amorphous Si (a-Si1-xCrx:H) thin films grown by sputtering method. The microstructure of these samples was identified by XRD and HRTEM, in which all as-deposited films are amorphous without any clusters or second phases. Pronounced anomalous Hall effect (AHE) and temperature dependent magnetization (M-T) curve both suggest the origin of the ferromagnetism may arise from percolation of magnetic polarons. Furthermore, the local environments around Cr atom were analyzed by EXAFS, confirming that successful incorporation of an unusually high concentration of Cr magnetic ions in a-Si:H thin films nearly free of Cr clusters and oxides. In addition, the effect of hydrogenation shows precipitous influence on magnetic and electrical properties of the samples. Only when dangling bonds in the sample are largely hydrogenated, will robust ferromagnetic order be observed.
In the second topic, we have developed Mn-doped a-Si:H thin films, which also show room-temperature ferromagnetic order. The structural, magnetic and electrical properties were also studied by the analyses discussed in Cr-doped samples. Moreover, the enhancement of these properties by hydrogenation was observed again. However, it is noted that the behaviors in M-T and AHE measurements are quite different from those of Cr-doped ones. The M-T curve fits very well by combination of Curie-Weiss law and 3D spin-wave model and AHE was reproducibly obtained at 150 K. These results suggest that the origin of ferromagnetism may arise from the itinerant carrier mediated mechanism.
Finally, in the last topic, we have studied the effect of post-annealing treatment on the properties of a-Si1-xMnx:H thin films. Annealing manifestly enhances saturation magnetization, electrical conductivity, and carrier concentration. Moreover, the hydrogen concentration was determined by ERD methods. The results revealed that there is no hydrogen effusion during low temperature annealing. The reason of property enhancement by annealing arises from the thermal energy which promotes hydrogen diffusion, hence a more homogeneous distribution and lessens defect density. In particular, AHE was clearly and reproducibly observed at room temperature in annealed samples, which is the highest temperature ever observed in Si-based DMSs. These results indicate that the origin of ferromagnetism arises from hole-mediated mechanism, which is essential for the realization of practical Si-based spintronics devices.
摘 要
Abstract
Acknowledgement
List of Figures

Chapter 1 Introduction and Motivation
1-1 Introduction to spintronics
1-1-1 Metal-based spintronics
1-1-2 Semiconductor-based spintronics
1-1-3 Challenges in semiconductor-based spintronics
1-2 Purposes of study
1-2-1 Novel Si-based diluted magnetic semiconductor with
room-temperature ferromagnetism
1-2-2 Observation of Anomalous Hall effect around room
temperature
1-2-3 Exchange bias effect in SiMn:H/IrMn bilayer

Chapter 2 Literature review
2-1 Ferromagnetism in diluted magnetic semiconductors (DMSs)
2-1-1 A synopsis of DMS theories
2-1-2 Experimental results of ferromagnetism in Si-based
DMSs
2-1-3 Anomalous Hall effect in DMSs
2-1-4 Effect of hydrogenation on properties in DMSs
2-2 Properties of hydrogenated amorphous silicon (a-Si:H)
2-2-1 Atomic structure
2-2-2 Electrical properties
2-2-3 Applications
2-3 Electric-field control of ferromagnetism in DMSs

Chapter 3 Experimental procedures
3-1 Deposition of transition metal doped a-Si:H thin films:Co-sputtering technique
3-2 Structural measurements
3-2-1 X-ray diffraction (XRD)
3-2-2 High-resolution transmission electron microscopy
(HRTEM)
3-2-3 Extended X-ray Absorption Fine Structure (EXAFS)
3-3 Magnetic measurements:Superconducting Quantum
Interface Device (SQUID)
3-4 Electrical measurements
3-4-1 Hall measurements
3-4-2 Physical Property Measurement System (PPMS)
3-5 Other analysis methods:Rutherford back-scattering
spectrum (RBS), Electron recoil detection ERD

Chapter 4 Ferromagnetism in Cr-doped a-Si:H thin films
4-1 Synopsis
4-2 Basic properties of a-Si1-xCrx:H
4-2-1 Structure analyses
4-2-2 Magnetic properties
4-2-3 Electrical properties
4-2-4 Hydrogenation effect on the properties
4-2-5 Discussion
4-3 Percolation theory fitting in M-T curves of a-
Si0.86Cr0.14:H
4-4 Extended X-ray Absorption Fine Structure analysis
4-5 Summary

Chapter 5 Ferromagnetism in Mn-doped a-Si:H thin films
5-1 Synopsis
5-2 Basic properties of a-Si1-xMnx:H
5-2-1 Structure analyses
5-2-2 Magnetic properties
5-2-3 Electrical properties
5-2-4 Discussion
5-3 Hydrogenation effect on the properties of a-
Si0.895Mn0.105
5-4 Three dimension spin wave model and Curie-Weiss law
fitting in M-T curves of a-Si0.895Mn0.105:H
5-5 Extended X-ray Absorption Fine Structure analysis
5-6 Exchange bias effect in SiMn:H/IrMn bilayer
5-7 Summary

Chapter 6 Post-annealing effect on properties of Mn-doped a-
Si:H thin films
6-1 Synopsis
6-2 Basic properties of a-Si1-xMnx:H
6-2-1 Structure analyses
6-2-2 Magnetic properties
6-2-3 Electrical properties
6-2-4 Discussion
6-3 Anomalous Hall effect measurements of post-annealed a-
Si0.895Mn0.105:H
6-4 Extended X-ray Absorption Fine Structure analysis
6-5 Summary

Chapter 7 Concluding remarks and prospects
7-1 Conclusions
7-2 Suggestions for future works

References

Appendix I
Appendix II
Appendix III
[1] H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser, Proc. IEEE 87, 537 (1999).
[2] http://www.itrs.net/Common/2004Update/2004_05_ERD.pdf
[3] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[4] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
[5] N. F. Mott, Proc. Royal Soc. 156, 368 (1936); N. F. Mott, Adv. Phys. 13, 325 (1964).
[6] http://en.wikipedia.org/wiki/Giant_magnetoresistance
[7] T. Kasuyam, and A. Yanase, Rev. Mod. Phys. 40, 684 (1968).
[8] L. Esaki, P. Stiles, and S. von Molnar, Phys. Rev. Lett. 19, 852 (1967).
[9] J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Phys. Rev. B 42, 8235 (1988).
[10] P. M. Tedrow, and R. Meservey, Phys. Rev. Lett. 26, 192 (1971).
[11] P. M. Tedrow, and R. Meservey, Phys Rev. B 7, 318 (1973).
[12] P. M. Tedrow, and R. Meservey, Phys. Rep. 238, 173 (1994).
[13] P. Fulde, Adv. Phys. 22, 667 (1973).
[14] J. S. Moodera, J. Nassar, and G. Mathon, Annu. Rev. Matter. 29, 381 (1999).
[15] D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000).
[16] M. Julliere, Phys. Lett. A 54, 225 (1975).
[17]http://www.physics.brown.edu/physics/researchpages/cme/supermag/research/spintronics.html
[18] S. Maekawa, and U. Gafvert, IEEE Trans. Magn. 18, 707 (1982).
[19] T. Miyazaki and N. J. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
[20] J. S. Moodera, L. R. Kinder, T. M. Wang, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
[21] M. Tanaka, J. Crystal Growth 278, 25 (2005).
[22] T. Kasuya, A. Yanase, Rev. Mod. Phys. 40, 684 (1968).
[23] J. Furdyna, J. Appl. Phys. 64, R29 (1988); J.K. Furdyna, J. Kossut (Eds.), Semiconductors and Semimetals 25, (1986).
[24] K. Onodera, T. Matsumoto, M. Kimura, Electron. Lett. 30, 1954 (1994).
[25] K. Onodera, H. Ohba, M. Kimura, T. Kawamura, Y. Nagayama, OPTRONICS 195, 134 (1998).
[26] H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L.L. Chang, L. Esaki, Phys. Rev. Lett. 63, 1894 (1989).
[27] H. Ohno, H. Munekata, T. Penny, S. von Molnar, L.L. Chang, Phys. Rev. Lett. 68 2664 (1992); H. Munekata, H. Ohno, R.R. Ruf, R.J. Gambino, L.L. Chang, J. Crystal Growth 111,1011 (1991).
[28] T. Slupinski, A. Oiwa, S. Yanagi, H. Munekata, J. Crystal Growth 237–239, 1326 (2002).
[29] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, H. Iye, Appl. Phys. Lett. 69, 363 (1996); H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).
[30] T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, Y. Ootuka, J. Crystal Growth 175/176, 1063 (1997); M. Tanaka, J. Vac. Sci. Technol. B 16 2267 (1998).
[31] A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A.S. van Steenbergen, P.J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, G. Borghs, Phys. Rev. B 56 13103 (1997).
[32] D. Chiba, K. Takamura, F. Matsukura, H. Ohno, Appl. Phys. Lett. 82,3020 (2003); K.W. Edmonds, P. Bogustawski, K.Y. Wang, R.P. Campion, S.N. Novikov, N.R.S. Farley, B.L. Gallagher, C.T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, J. Bernholc, Phys. Rev. Lett. 92,037201 (2004).
[33] S. Ohya, Y. Higo, H. Shimizu, J.M. Sun, M. Tanaka, Japan J. Appl. Phys. (Part 2) 41,L24 (2002).
[34] T. Slupinski, H. Munekata, A. Oiwa, Appl. Phys. Lett. 80, 1592 (2002).
[35] S. Ohya, H. Kobayashi, M. Tanaka, Appl. Phys. Lett. 83,2175, 4450 (2003).
[36] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 652 (2002).
[37] A. P. Li, J. Shen, J. R. Thompson, and H. H. Weitering, Appl. Phys. Lett. 86, 152507 (2005).
[38] A. Verna, L. Ottaviano, M. Passacantando, S. Santucci, P. Picozzi, F. D’Orazio, and F. Lucari, Phys. Rev. B 74, 085204 (2006).
[39] F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du, H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 786 (2004).
[40] M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).
[41] J.R. Waldrop, R.W. Grant, Appl. Phys. Lett. 34,630 (1979).
[42] G.A. Prinz, J.J. Krebs, Appl. Phys. Lett. 39,397 (1981).
[43] T. Sands, J.P. Harbison, M.L. Leadbeater, S.J. Allen, G.W. Hull, R. Ramesh, V.G. Keramidas, Appl. Phys. Lett. 57,2609 (1990).
[44] M. Tanaka, J.P. Harbison, J. De Boeck, T. Sands, B. Philips, T.L. Cheeks, V.G. Keramidas, Appl. Phys. Lett. 62,1565 (1993).
[45] M. Tanaka, J.P. Harbison, T. Sands, T.L. Cheeks, V.G. Keramidas, G.M. Rothberg, J. Vac. Sci Technol. B 12, 1091 (1994); M. Tanaka, J.P. Harbison, M.C. Park, Y.S. Park, T. Shin, G.M. Rothberg, Appl. Phys. Lett. 65,1964 (1994).
[46] K. Akeura, M. Tanaka, M. Ueki, T. Nishinaga, Appl. Phys. Lett. 67, 3349 (1995);
K. Akeura, M. Tanaka, T. Nishinaga, J. De Boeck, J. Appl. Phys. 79, 4957 (1996) .
[47] M. Tanaka, K. Saito, T. Nishinaga, Appl. Phys. Lett. 74, 64 (1999).
[48] K. Takahashi, M. Tanaka, J. Appl. Phys. 87, 6695 (2000); S. Sugahara, M. Tanaka, Appl. Phys. Lett. 80, 1969 (2002).
[49] M. Ramsteiner, H.Y. Hao, A. Kawaharazuka, H.J. Zhu, M. Kastner, R. Hey, L. Daweritz, H.T. Grahn, K.H. Ploog, Phys. Rev. B 66, 081304 (2002); H.J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schonherr, K.H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).
[50] B.T. Jonker, Proc. IEEE 91, 727 (2003).
[51] J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, G. Borghs, Appl. Phys. Lett. 68, 2744 (1996).
[52] H. Akinaga, S. Miyanishi, K. Tanaka, W. Van Roy, K. Onodera, Appl. Phys. Lett. 76, 97 (2000); H. Shimizu, M. Miyamura, M. Tanaka, J. Vac. Sci. Technol. B 18, 2063 (2000); M. Tanaka, H. Shimizu, M. Miyamura, J. Crystal Growth 227–228, 839 (2001).
[53] H. Shimizu, M. Tanaka, Appl. Phys. Lett. 81, 5246 (2002).
[54] H. Akinaga, M. Mizuguchi, K. Ono, M. Oshima, Appl. Phys. Lett. 76, 357 (2000).
[55] G.A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, K. Sato, Japan J. Appl. Phys. 39, L949 (2000).
[56] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyo, S. Koshihara, H. Koinuma, Science 291, 854 (2001).
[57] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
[58] S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, H. Hori, J. Crystal Growth 237-239, 1358 (2002).
[59] M. Hashimoto, Y.K. Zhou, M. Kanamura, H. Asahi, Solid State Commun. 122, 37 (2002).
[60] S.E. Park, H.J. Lee, Y.C. Cho, S.Y. Jeong, C.R. Cho, S. Cho, Appl. Phys. Lett. 80, 4187 (2002).
[61] H. Saito, V. Zayets, S. Yamagata, K. Ando, Phys. Rev. Lett. 90, 207202 (2003).
[62] M. Tanaka, Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).
[63] W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001).
[64] H. Akinaga, T. Manago, M. Shirai, Japan J. Appl. Phys. 39 (2000) L1118.
[65] M. Shirai, Physica E 10, 143 (2001); M. Shirai, J. Appl. Phys. 93, 6844 (2003);
A. Sakuma, J. Phys. Soc. Japan 71, 2534 (2002); B. Sanyal, L. Bergqvist, O. Ericksson, Phys. Rev. B 68, 054417 (2003).
[66] J.H. Zhao, F. Matsukura, K. Takamura, E. Abe, D. Chiba, H. Ohno, Appl. Phys. Lett. 39, 2776 (2001).
[67] K. Ono, J. Okabayashi, M. Mizuguchi, M. Oshima, A. Fujimori, H. Akinaga, J. Appl. Phys. 91, 8088 (2002).
[68] M. I. D’yakonov and V. I. Perel’, Sov. Phys. Solid State 13, 3023-3026 (1972).
[69] W. H. Lau and M. E. Flatte, J. Appl. Phys. 91, 8682-8684 (2002).
[70] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790–R4793 (2000).
[71] E. I. Rashba, Phys. Rev. B 62, R16267-R16270 (2000).
[72] D. L. Smith, and R. N. Silver, Phys. Rev. B 64, 045323 (2001).
[73] A Fert, and H. Jaffres, Phys. Rev. B 64, 184420 (2001).
[74] Z. G. Yu, and M. E. Flatte, Phys. Rev. B 66, 201202 (2002).
[75] Z. G. Yu, and M. E. Flatte, Phys. Rev. B 66, 235302 (2002).
[76] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, G and A. Petrou, Appl. Phys. Lett. 80, 1240-1242 (2002).
[77] C. Adelmann, X. Lou, J. Strand, C. J. Palmstrom, and P. A. Crowell, Phys. Rev. B 71, 121301(R) (2005).
[78] X. Jiang et al., Phys. Rev. Lett. 94, 056601 (2005).
[79] T. Koga, Y. Sekine, and J. Nitta, Phys. Rev. B 74, 041302 (2006).
[80] F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys. Rev. B 67, 085319 (2003).
[81] X. Lou et al., Nature Phys. 3, 197-202 (2007).
[82] Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Nature 427, 50-53 (2004).
[83] Koga, T., Sekine, Y. & Nitta, J. Phys. Rev. B 74, 041302 (2006).
[84] Bergsten, T., Kobayashi, T., Sekine, Y. & Nitta, J. Phys. Rev. Lett. 97, 196803 (2006).
[85] Datta, S. & Das, B. Appl. Phys. Lett. 56, 665-667 (1990).
[86] Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Science 306, 1910-1913 (2004).
[87] Sih, V. et al. Nature Phys. 1, 31–35 (2005).
[88] Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Phys. Rev. Lett. 94, 047204 (2005).
[89] Sih, V. et al. Phys. Rev. Lett. 97, 096605 (2006).
[90] Valenzuela, S. O. & Tinkham, M. Nature 442, 176-179 (2006).
[91] Stern, N. P. et al. Phys. Rev. Lett. 97, 126603 (2006).
[92] Hankiewicz, E. M., Vignale, G. & Flatte, M. E. Phys. Rev. Lett. 97, 266601 (2006).
[93] Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Phys. Rev. Lett. 93, 176601 (2004).
[94] Silov, A. Yu. et al. Appl. Phys. Lett. 85, 5929–5931 (2004).
[95] Hall, K. C. and Flatte, M. E. Appl. Phys. Lett. 88, 162503 (2006).
[96] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
[97] K. F. Eid et al., Appl. Phys. Lett. 85, 1556 (2004).
[98] S. H. Chun et al., ibid. 78, 2530 (2001).
[99] K. Ohno, S. Ohya, and M. Tanaka, J Supercond Nov Magn 20, 417-420 (2007).
[100] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 16 (2004).
[101] K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, and M. Kawasaki, Appl. Phys. Lett. 90, 072103 (2007)
[102] H. S. Hsu, C. P. Lin, H. Chou, and J. C. A. Huang, Appl. Phys. Lett. 93, 142507 (2008).
[103] F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, and T. Chikyow, Phys. Rev. Lett. 91, 177203 (2003).
[104] R. R. Gareev, Yu. V. Bugoslavsky, R. Schreiber, A. Paul, M. Sperl, and M. Döppe, Appl. Phys. Lett. 88, 222508 (2006).
[105] Y. Shuto, M. Tanaka, and S. Sugahara, J. Appl. Phys. 99, 08D516 (2006).
[106] Y. X. Chen, Shi-shen Yan, Y. Fang, Y. F. Tian, S. Q. Xiao, G. L. Liu, Y. H. Liu, and L. M. Mei, Appl. Phys. Lett. 90, 052508 (2007).
[107] T. Story, R. R. Galazaka, R. B. Frankel and Pa. Wolef, Phys. Rev. Lett. 56, 777 (1986).
[108] A. H. Macdonald, P. Schiffer and N. Samarth, Nat. Mater. 4, 195 (2005).
[109] C. Zener, Phys. Rev. 82, 403 (1951).
[110] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science. 287, 1019 (2000).
[111] D. Ferrand, J. Cibert, C. Bourgognon, S. Tatarenko, A. Wasiela, G. Fishman, A. Bonanni, H. Sitter, S. KolesH nik, J. JaroszynH ski, A. Barcz, T. Dietl, J. Crystal Growth 214/215, 387 (2000).
[112] M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001).
[113] A. Kaminski and S. Das Sarma, ibid. 88, 247201 (2001).
[114] T. Dielt, F. Matsukura and H. Ohno, Phys. Rev. B 66, 033203 (2002).
[115] S. Das Sarma, E. H. Wang and A. Kaminski, ibid. 67, 155201 (2003).
[116] J. Warnock and P. A. Wolff, ibid. 31, 6579 (1985).
[117] M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz and W. Plesiewicz, Phys. Rev. Lett. 56, 508 (1986).
[118] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
[119] T. Dietl and J . Spalek, Phys. Rev. Lett. 48, 355 (1982).
[120] H.-M. Kim and N. M. Kim, Chem. Mater. 15, 3964 (2003).
[121] F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, and Y. W. Du, Appl. Phys. Lett. 85, 786 (2004).
[122] M. Bolduc and C. A. Affouda, Phys. Rev. B 71, 033302 (2005).
[123] Y. H. Kwon, T. W. Kang, H. Y. Cho, and T. W. Kim, Solid State Commun. 136, 257 (2005)
[124] X. C. Liu, Z. H. Lu, Z. L. Lu, L. Y. Lv, X. S. Wu, F. M. Zhang, and Y. W. Du, J. Appl. Phys. 100, 073903 (2006).
[125] H. Nakayamaa, H. Ohtab, and E. Kulatov, Physica B 302-303, 419-424 (2001).
[126] T. Yokota, N. Fujimura, and T. Ito, Appl. Phys. Lett. 81, 21 (2002).
[127] H. M. Kim, N. M. Kim, C. S. Park, S. U. Yuldashev, T. W. Kang, and K. S. Chung, Chem. Mster. 15, 3964-3965 (2003).
[128] F. M. Zhang, X. C. Liu, J. Gao, X. S. Wu, Y. W. Du H. Zhu, J. Q. Xiao, and P. Chen, Appl. Phys. Lett. 85, 5 (2004).
[129] M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).
[130] Y.H. Kwon, T.W. Kang, H.Y. Cho, T.W. Kim, Solid state communications 136, 257-261 (2005).
[131] P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.-H. Chen, S. Jin, S. A. Song, and J. R. O’Brien, Appl. Phys. Lett. 89, 112502 (2006).
[132] X. C. Liu, Z. H. Lu, Z. L. Lu, L. Y. Lv, X. S. Wu, F. M. Zhang,a_ and Y. W. Du, Journal of Appl. Phys. 100, 073903 (2006).
[133] L. Liua, N. Chenb, Y. Wanga, Z. Yinb, F. Yangb, C. Chaib, and X. Zhanga, Journal of Crystal Growth 291, 239-242 (2006).
[134] S. S. Yua, K. H. Kima, Y. E. Ihma, D. Kima, H. Kima, S. K. Honga, C. S. Kimb, H. Ryub, and S. Ohc, Journal of Magnetism and Magnetic Materials 304, e167-e169 (2006).
[135] S.B. Ma, Y.P. Sun_, B.C. Zhao, P. Tong, X.B. Zhu, W.H. Song, Solid state communications 140, 192-196 (2006).
[136] H. W. Wu, C. J. Tsai, and L. J. Chen, Appl. Phys. Lett. 90, 043121 (2007).
[137] I.T. Yoon_, C.J. Park, T.W. Kang, Journal of Magnetism and Magnetic Materials 31, 693-696 (2007).
[138] S. Zhou, K. Potzger, G. Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B 75, 085203 (2007).
[139] J. H. Yao, H. -H. Lin and T. S. Chin, Appl. Phys. Lett. 92, 242501 (2008).
[140] S. H. Chiu, H. S. Hsu, and J. C. A. Huang, Journal of Appl. Phys. 103, 07D110 (2008).
[141] Li Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and David J. Smith, Phys. Rev. B 77, 073306 (2008).
[142] J. H. Yao, S. C. Li, M. D. Lan and T. S. Chin, Appl. Phys. Lett. 94, 072507 (2009).
[143] Q. Xu, S. Zhou, B. Schmidt, A. Mucklich, H. Schmidt, Nuclear Instruments and Methods in Physics Research B 267, 3558-3561 (2009).
[144] Liu Xingchong, Zhang Fengming, Journal of Magnetism and Magnetic Materials 321, 4103-4107 (2009).
[145] H. Ohno et al., Science 281, 951–956 (1998).
[146] H. Toyosaki,T. Fukumura, Y. Yamada, K. Nakajima,T. Chikyow, T. Hasegawa, H. Koinuma, And M. Kawasaki, Nat. Mater. 3, 221 (2004).
[147] S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene,and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004).
[148] J. S. Higgins, S. R. Shinde, S. B. Ogale, T. Venkatesan, and R. L. Greene, Phys. Rev B. 69, 073201 (2004).
[149] N. Manyala, Y. Sidis, J. F. Ditusa, G. Aeppli, D. P. Young and Z. Fisk, Nat. Mater. 3, 255 (2004).
[150] Chien, C. L. & Westgate, C. R. (eds) The Hall Effect and its Applications (Plenum,New York, 1980).
[151] See, e.g. C.L. Chien, C.R. Westgate (Eds.), The Hall Effect and Its Applications, Plenum, New York, 1980.
[152] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, 4 (1998).
[153] Ahsan M. Nazmul, S. Sugahara, and M. Tanaka, Phys. Rev. B 67, 241308 (2003).
[154] K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, T. Yamasaki, Y. Yamada, and
M. Kawasaki, Journal of Appl. Phys. 103, 07D114 (2008)
[155] V. Ko, K. L. Teo,a_ T. Liew, and T. C. Chong, Appl. Phys. Lett. 89, 042504 (2006).
[156] S. Yada, S. Sugahara, and M. Tanaka1, Appl. Phys. Lett. 93, 193108 (2008).
[157] K. H. Baik et al., Appl. Phys. Lett. 83, 5458 (2003).
[158] H.-J. Lee, C. H. Park, S. Y. Jeong, K. J. Yee, C. R. Cho, M. H. Jung, and D. J. Chadi, Appl. Phys. Lett. 88, 062504 (2006).
[159] S. T. B. Goennenwein et al., Phys. Rev. Lett. 92, 227202 (2004).
[160] X. C. Liu, Y. B. Lin, J. F. Wang, Z. H. Lu, Z. L. Lu, J. P. Xu, L. Y. Lv, F. M. Zhang, and Y. W. Du, Journal of Appl. Phys. 102, 033902 (2007).
[161] R. A. Street, ‘Hydrogenated Amorphous Silicon’ (Cambridge University Press, New York, 1991)
[162] K. F. Eid, M. B. Stone, K. C. Ku, O. Maksimov, P. Schiffer, N. Samarth, T. C. Shih, and S. J. Palmstrøm, Appl. Phys. Lett. 85, 1556 (2004).
[163] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, ibid. 402, 790 (1999).
[164] H. X. Tang, R. K. Kawakami, D. D. Awschalom, M. L. Roukes, Phys. Rev. Lett. 90, 107201 (2003).
[165] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani, Nature 408, 944 (2000).
[166] D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003)
[167] http://www.qdusa.com/products/ppms.html
[168] R. C. Chittick, J. H. Alexander, and H. F. Sterling, J. Electrochem. Soc. 116, 77 (1969).
[169] L. Neel, J. Phys. Soc. Jpn. (suppl. B-I) 17, 676 (1962).
[170] N. H. Hong, J. Sakai, and A. Hassini, J. Appl. Phys., 97, 10D312 (2005).
[171] D. Milivojevic, J. Blanusa, V. Spasojevic, V. Kusigerski, B. Babic-Stojic, Solid State Comm. 141, 641 (2007).
[172] W. B. Peak, J. Kim, S.H. Lim, Phys. Sat. Sol. (b) 241, No. 7, 1521 (2004).
[173] Y. L. Soo, Z. H. Ming, S. W. Huang, Y. H. Kao, R. N. Bhargava, and D. Gallagher, Phys. Rev. B 50, 7602 (1994) and references cited therein.
[174] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
[175] E. A. Stern, Phys. Rev. B 48, 9825 (1993).
[176] R. Gunnella, N. Pinto, L. Morresi, M. Abbas, and A. Di Cicco, J. Non-Cryst. Solids 354, 4193 (2008).
[177] L. Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and D. J. Smith, Phys. Rev. B 77, 073306 (2008).
[178] G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, S. Colis, T. M. Pedersen, A. Moewes, and A. Dinia, Phys. Rev. B 75, 195215 (2007).
[179] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, NatureMater. 4, 173 (2005).
[180] S.-J. Sun and H.-H. Lin, Phys. Lett. A 327, 73 (2004).
[181] J. E. Bunder, S.-J. Sun and H.-H. Lin, Appl. Phys. Lett. 89, 072101 (2006).
[182] A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
[183] J. C. A. Huang, H. S. Hsu, Y. M. Hu, C.H. Lee, Y.H. Huang and M. Z. Lin, App. Phys. Lett. 85, 3815 (2004).
[184] S. H. Liu, H.S. Hsu, C. R. Lin, C. S. Lue, J. C. A. Huang, Appl. Phys. Lett. 90, 222505 (2007).
[185] R. A. Street and K. Winer, Phys. Rev. B 40, 6236 (1989).
[186] W. C. Hsiao, C. P. Liu, and Y. L. Wang, J. Phys. Chem. Solids 69, 648-652 (2008).
[187] R. Ruther. J. Livingstone, N. Dytlewski, and D. Cohen, Thin Solid Films 271, 151-156 (1995).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *