帳號:guest(3.142.195.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮孟河
作者(外文):Nguyen Manh Ha
論文名稱(中文):Magnetic Phenomena Associated with Random Magnetic Anisotropy: A Monte Carlo Study
論文名稱(外文):以蒙地卡羅法研究非等向隨機磁性物的性質
指導教授(中文):蕭百沂
指導教授(外文):Hsiao, Pai-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:947131
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:145
外文關鍵詞:Random magnetic anisotropymagnetic phase transitioncritical phenomenadynamic phase transitionMonte Carlo simulationcomplex susceptibilityhysteresis loopexchange biasmagnetic bilayersrandom magnetsclassical spin models
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
In this work, we conduct an extensive Monte Carlo (MC) study on magnetic phenomena associated with random magnetic anisotropy (RMA). Our MC study provides the following results.

Firstly, a second-order magnetic phase transition to magnetic quasi-long range order (QLRO) phase is possible for 3D Heisenberg RMA model with weak strength (D=J = 4) in both cases of isotropic and cubic istributions of RMA axes.Finite-size scaling analysis shows that the critical couplings for the former and latter are Kc = 0:70435(2) and Kc = 0:70998(4), respectively. While the critical exponent 1=□ = 1:40824(0) is the same for both cases.

Secondly, our MC study is carried out to investigate the magnetic ordering of RMA magnets and their behavior in ac field using this model. Our results show peculiar
similarities to recent experiments that the real part of ac susceptibility presents two peaks for weak RMA and only one for strong RMA regardless of glassy critical dynamics manifested for them. We demonstrate that the thermodynamic nature of the low-temperature peak is a ferromagnetic-like dynamic phase transition to QLRO for the former. Our simulation, therefore, is able to be incorporated with
the experiments to help clarify the existence of the QLRO theoretically predicted so far.

Finally, our MC study is performed to investigate novel bilayer and core/shell nanoparticle models of ferromagnet (FM)/amorphous magnet (AM). The RMA of the AM layer and shell is demonstrated to be a new source for exchange bias. Our simulated results show usual and unusual dependencies on cooling field, temperature, RMA strength, particle size, and FM (AM) thickness as well as training effect and time-dependent phenomenon. These FM/AM models open a new avenue, other than those of FM/antiferromagnet and FM/spin glass combinations, for magnetism of the exchange bias and for its applications.
1 Random Magnetic Anisotropy 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Theoretical Studies . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Monte Carlo Studies . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Monte Carlo Simulations for Finite Temperature Phenomena 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Stochastic Nature of Monte Carlo Methods . . . . . . . . . . . . . . 20
2.3 Realization of Importance Sampling . . . . . . . . . . . . . . . . . . 21
2.4 Metropolis Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . 23
2.5 Practical Considerations of Monte Carlo Simulations . . . . . . . . . 24
2.6 Reweighing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Finite-Size Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Random Magnetic Anisotropy: A Monte Carlo Study 35
3.1 Three-Dimensional Model of Heisenberg Spins for Random Magnetic
Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Magnetic Phase Transition for Weak Random Magnetic
Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Random Anisotropy Magnets in AC Field . . . . . . . . . . . 41
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Random Magnetic Anisotropy Yields Exchange Bias 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Model and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 New Models of Bilayer and Core/shell Nanoparticle . . . . . 50
4.2.2 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . 52
4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Positive and Negative Displacement of Hysteresis Loops . . . 56
4.3.2 Effect of Cooling Field . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Temperature Dependence . . . . . . . . . . . . . . . . . . . . 62
4.3.4 Effect of Random Magnetic Anisotropy . . . . . . . . . . . . 64
4.3.5 Finite Size Effects . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.6 Training Effect and Time Dependence . . . . . . . . . . . . . 68
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A Phase Transitions and Critical Phenomena 77
A.1 General Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Theory of Phase Transitions and Critical Phenomena . . . . . . . . 79
A.3 Critical Phenomena of Disorder-Free Classical Spin Models . . . . . 84
B Exchange Bias 87
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Exchange Bias and Related Phenomena: Experiments . . . . . . . . 89
B.2.1 Loop Shift and Effect of Cooling Field . . . . . . . . . . . . . 92
B.2.2 Effects of Thickness and Particle Size . . . . . . . . . . . . . 95
B.2.3 Temperature- and Time-Dependent Properties . . . . . . . . 97
B.2.4 Antiferromagnetic Spin Orientation . . . . . . . . . . . . . . 103
B.2.5 Role of Interfacial Microstructure . . . . . . . . . . . . . . . 105
B.2.6 Exchange Bias Using a Spin Glass . . . . . . . . . . . . . . . 106
B.3 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . 117
B.3.1 Coherent Rotation . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3.2 Antiferromagnet Domains . . . . . . . . . . . . . . . . . . . . 120
B.3.3 Partial Wall Formation . . . . . . . . . . . . . . . . . . . . . 122
B.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliography 131
[Acharyya et al. 1995] M. Acharyya and B. K. Chakrabarti, Response of Ising systems to
oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B
52 (1995) 6550. 46, 48
[Aharony 1975] A. Aharony, Critical Behavior of Amorphous Magnets, Phys. Rev. B 12
(1975) 1038. 3, 11, 12, 40
[Aharony et al. 1980] A. Aharony and E. Pytte, Infinite Susceptibility Phase in Random
Uniaxial Anisotropy Magnets, Phys. Rev. Lett. 45 (1980) 1583. 10
[Aharony et al. 1983] A. Aharony and E. Pytte, Low-temperature scaling for systems with
random fields and anisotropies, Phys. Rev. B 27 (1983) 5872. 10
[Ali et al. 2007] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey and R. L. Stamps,
Exchange bias using a spin glass, Nature Materials 6 (2007) 70. vii, 49, 52, 56, 59,
62, 64, 68, 74, 88, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117
[Andersson et al. 1997] J. O. Andersson, C. Djurberg, T. Jonsson, P. Svedlindh and
P. Nordblad, Monte Carlo studies of the dynamics of an interacting monodispersive
magnetic-particle system, Phys. Rev. B 56 (1997) 13983. 17
[Avraham et al. 2001] N. Avraham, B. Khaykovich, Y. Myasoedov, M. Rappaport,
H. Shtrikman, D. E. Feldman, T. Tamegai, P. H. Kes, M. Li, M. Konczykowski,
K. V. D. Beek and E. Zeldov, ‘Inverse’ melting of a vortex lattice, Nature 411
(2001) 451. 4, 10, 12
[Ball et al. 1996] A. R. Ball, A. J. G. Leenaers, P. J. van der Zaag, K. A. Shaw, B. Singer,
D. M. Lind, H. Fredrikze and M. Th. Rekveldt, Polarized neutron reflectometry
study of an exchange biased Fe3O4/NiO multilayer, Appl. Phys. Lett. 69 (1996)
1489. 103
[Barkema et al. 1993] G. T. Barkema and J. F. Marko, Accelerating diffusive nonequilibrium
processes in discrete spin systems, Phys. Rev. Lett. 71 (1993) 2070. 14,
27
[Baumg□rtner 1992] A. Baumg□rtner, The Monte Carlo Method in Condensed Matter
Physics, (Spinger,Verlag, Heidelberg, 1992). 20
[Belardinelli et al. 2007] R. E. Belardinelli and V. D. Pereyra, Fast algorithm to calculate
density of states, Phys. Rev. E, 75 (2007) 046701. 16, 30
[Bellini et al. 2000] T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini and
C. Zannoni, Nematics With Quenched Disorder: What Is Left When Long Range
Order Is Disrupted?, Phys. Rev. Lett. 85 (2000) 1008. 10
[Bellini et al. 2002] T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini and
C. Zannoni, Nematics with Quenched Disorder: How Long Will It Take to Heal?,
Phys. Rev. Lett. 88 (2002) 245506. 5
[Berkowitz et al. 1999] A. Berkowitz and K. Takano, Exchange anisotropy - a review, J.
Magn. Magn. Mater. 200 (1999) 552. 87, 89, 91
[Bernal 1964] J. D. Bernal, The Bakerian Lecture, 1962: The Structure of Liquids, Proc.
R. Soc. Lond. A 21 (1964) 299. 2
[Beschoten et al. 2002] B. Beschoten, J. Keller, P. Milt□nyi and G. G□ntherodt, Domain
state model for exchange bias: thickness dependence of diluted antiferromagnetic
Co1□yO on exchange bias in Co/CoO, J. Magn. Magn. Mater. 240 (2002) 248. 56,
59, 116, 118, 122
[Bianco et al. 2002] L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, L. Savini and
S. Signoretti, Magnetothermal behavior of a nanoscale Fe/Fe oxide granular system,
Phys. Rev. B 66 (2002) 174418. 68, 97
[Billoni et al. 2005] O. V. Billoni, S. A. Cannas and F. A. Tamarit, Spin-glass behavior in
the random-anisotropy Heisenberg model, Phys. Rev. B 72 (2005) 104407. 17, 45
[Binder et al. 1986] K. Binder and A. P. Young, Spin glasses: Experimental facts, theoretical
concepts, and open questions, Rev. Mod. Phys. 58 (1986) 801. 45
[Binder 1976] K. Binder, pp. 1, Vol. 5b in Phase Transitions and Critical Phenomena
edited by C. Domb and M.S. Green, (Academic Press, London, New York, San
Francisco, 1976). 21, 22
[Binek et al. 2001] C. Binek, A. Hochstrat and W. Kleemann, Exchange bias in a generalized
Meiklejohn-Bean approach, J. Magn. Magn. Mater. 234 (2001) 353. 120
[Bouquet et al. 2001] F. Bouquet, C. Marcenat, E. Steep, W. K. Kwok, R. Calemczuk,
U. Welp, G. W. Crabtree, R. A. Fisher, N. E. Phillips and A. Schilling, An unusual
phase transition to a second liquid vortex phase in the superconductor YBa2Cu3O7,
Nature 411 (2001) 448. 4, 10, 12
[Camley et al. 1999] R. E. Camley, B. V. McGrath, R. J. Astalos, R. L. Stamps, J. V. Kim
and L. Wee, Magnetization dynamics: A study of the ferromagnet/antiferromagnet
interface and exchange biasing, J. Vac. Sci. Technol. A 17 (1999) 1335. 118, 128
[Carey et al. 2001] M. J. Carey, N. Smith, B. A. Gurney, J. R. Childress and T. Lin,
Thermally assisted decay of pinning in polycrystalline exchange biased systems, J.
Appl. Phys. 89 (2001) 6579. 74, 101
[Chakrabarti et al. 1999] B. K. Chakrabarti and M. Acharyya, Dynamic transitions and
hysteresis, Rev. Mod. Phys. 71 (1999) 847. 46, 48
[Chakrabaty 1998] J. Chakrabaty, Simulation Evidence of Critical Behavior of Isotropic-
Nematic Phase Transition in a Porous Medium, Phys. Rev. Lett. 81 (1998) 385.
10
[Chen et al. 2001] X. Chen, Ch. Binek, A. Hochstrat and W. Kleemann, Dilution-induced
enhancement of the blocking temperature in exchange-bias heterosystems, Phys.
Rev. B 65 (2001) 012415. 56, 59, 97, 116, 118, 122
[Cheng et al. 1996] S. F. Cheng, J. P. Teter, P. Lubitz, M. M. Miller, L. Hoines, J. J. Krebs,
D. M. Schaefer and G. A. Prinz, Factors affecting performance of NiO biased giant
magnetoresistance structures, J. Appl. Phys. 79 (1996) 6234. 106
[Chudnovsky et al. 1986] E. M. Chudnovsky, W. M. Saslow and R. A. Serota, Ordering in
ferromagnets with random anisotropy, Phys. Rev. B 33 (1986) 251. 5, 6, 9, 45
[Cochrane et al. 1974] R. W. Cochrane, R. Harris and M. Plischke, Role of structure in
amorphous magnetic-materials- dense random packing of hard spheres of 2 sizes, J.
Non-Cryst. Solids 15 (1974) 239. 10
[Cochrane et al. 1975] R. W. Cochrane, R. Harris, M. Plischke, D. Zobin and M. J. Zuckermann,
Magnetic Properties of a Random Close Packed Amorphous Alloy, J. Phys.
F: Met. Phys. 5 (1975) 763. 2, 3
[Cochrane et al. 1978] R. W. Cochrane, R. Harris and M. J. Zuckermann, The Role of
Structure in the Mangetic Properties of Amorphous Alloys, Phys. Reports 48 (1978)
1. 2, 3, 4, 8, 52
[Coddington 1994] P. D. Coddington, Analysis of Random Number Generators Using
Monte-Carlo Simulation, Int. J. Mod. Phys. C 5 (1994) 547. 24
[Coey 1978] J. M. D. Coey, Amorphous Magnetic Order, J. Appl. Phys. 49 (1978) 1646.
5, 45
[Cooper 1989] N. G. Cooper (ed.), From Cardinals to Chaos, (Cambrigde University Press,
Cambrigde, 1989). 20
[Cubitt et al. 1993] R. Cubitt, E. M. Forgan, G. Yang, S. L. Lee, D. M. Paul, H. A. Mook,
M. Yethiraj, P. H. Kes, T. W. Li, A. A. Menovsky, Z. Tarnawski and K. Mortensen,
Direct Observation of Magnetic-flux Lattice Melting and Decompostion in the High-
Tc Superconductor Bi2:15Sr1:95CaCu2O8+x, Nature 365 (1993) 407. 4, 10, 12
[Davison 1957] B. Davison, Neutron transport theory, (Oxford Press, Ithaca, New York,
1957). 20
[Dieny et al. 1986] B. Dieny and B. Barbara, Critical Properties of a Random-Anisotropy
System a-DyNi: A New Universality Class in Disordered Systems?, Phys. Rev.
Lett. 57 (1986) 1169. 5
[Dimitrov et al. 1996] D. A. Dimitrov and G. M. Wysin, Magnetic properties of superparamagnetic
particles by a Monte Carlo method, Phys. Rev. B 54 (1996) 9237.
52
[Dimitrov et al. 1998] D. V. Dimitrov, S. Zhang, J. Q. Xiao, G. C. Hadjipanayis and C. Prados,
Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces
on exchange bias and coercivity, Phys. Rev. B 58 (1998) 12090. 93, 126
[Dmitriev et al. 2006] V. V. Dmitriev, L. V. Levitin, N. Mulders, N. Mulders and D. E.
Zmee, Longitudinal NMR and spin states in the A-like phase of He-3 in aerogel,
JETP Lett. 84 (2006) 461. 10
[Dobrynin et al. 2005] A. N. Dobrynin, D. N. Ievlev, K. Temst, P. Lievens, J. Margueritat,
J. Gonzalo, C. N. Afonso, S. Q. Zhou and A. Vantomme, Critical size for
exchange bias in ferromagnetic-antiferromagnetic particles, Appl. Phys. Lett. 87
(2005) 012501. 68, 97
[Doob 1953] J. L. Doob, Stochastic Processes, (J. Willey and Sons, New York, 1953). 21
[Dotsenko et al. 1991] V. S. Dotsenko, W. Selke and A. L. Talapova, Cluster Monte Carlo
algorithms for random Ising models, Physica A 170 (1991) 278. 14, 27
[Doussal et al. 2006] P. L. Doussal and K. J. Wiese, Random-Field Spin Models beyond 1
Loop: A Mechanism for Decreasing the Lower Critical Dimension, Phys. Rev. Lett.
96 (2006) 197202. 10
[Dudka et al. 2005] M. Dudka, R. Folk and Y. Holovatch, Critical Properties of Random
Anisotropy Magnets, J. Magn. Magn. Mater. 294 (2005) 305. 3, 4, 11, 12, 14, 40
[Dudka et al. 2007] M. Dudka, R. Folk, Y. Holovatch and G. Moser, Model C Critical
Dynamics of Random Anisotropy Magnets, J. Phys. A 40 (2007) 8247. 3, 11, 12,
40
[Earl et al. 2005] D. J. Earl and M. W. Deem, Parallel tempering: Theory, applications,
and new perspectives, Phys. Chem. Chem. Phys. 7 (2005) 3910. 12
[Els□sser et al. 1988] C. Els□sser, M. F□hnle, E. H. Brandt and M. C. B□hm, Theory of
local magnetic-anisotropy in amorphous-alloys, J. Phys. F Met. Phys. 18 (1988)
2463. 10
[Fedorenko et al. 2007] A. A. Fedorenko and F. K□hnel, Long-range correlated random field
and random anisotropy O(N) models: A functional renormalization group study,
Phys. Rev. B 75 (2007) 174206. 10
[Feldman 2000a] D. E. Feldman, Nonexistence of quasi-long-range order in strongly disordered
vortex glasses: A rigorous proof, Phys. Rev. B 62 (2000) 5364. 3, 4, 9, 10,
85
[Feldman 2000b] D. E. Feldman, Quasi-Long-Range Order in Nematics Confined in Random
Porous Media, Phys. Rev. Lett. 84 (2000) 4886. 3, 4, 9, 85
[Feldman 2000c] D. E. Feldman, Quasi-long-range order in the random anisotropy Heisenberg
model: Functional renormalization group in 4□" dimension, Phys. Rev. B 61
(2000) 382. 3, 4, 9, 10, 11, 41, 85
[Feldman 2001] D. E. Feldman, Quasi-long range order in glass states of impure liquid
crystals, magnets, and superconductors, Int. J. Mod. Phys. B 15 (2001) 2945. 3, 4,
9, 10, 11, 43, 85
[Feller 1950] W. Feller, Probability Theory and its Applications, (J. Willey and Sons, New
York, 1950). 21
[Ferrenberg et al. 1988] A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo technique
for studying phase transitions, Phys. Rev. Lett. 61 (1988) 2635. 16, 29, 39
[Ferrenberg et al. 1989] A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo
data analysis, Phys. Rev. Lett. 63 (1989) 1195. 16, 29
[Fiorani 2005] D. Fiorani (ed.), Surface Effects in Magnetic Nanoparticles, (Springer Verlag,
New York, 2005). 3
[Fisch 2009] R. Fisch, Finite-size scaling critical behavior of randomly pinned spin-density
waves, Phys. Rev. B 79 (2009) 214429. 12, 45
[Fisch 1990a] R. Fisch, Low-temperature behavior of random-anisotropy magnets, Phys.
Rev. B 42 (1990) 540. 12, 14
[Fisch et al. 1990b] R. Fisch and A. B. Harris, Long range order in random anisotropy
magnets, J. Appl. Phys. 67 (1990) 5778. 12, 14
[Fytas et al. 2008a] N. G. Fytas and A. Malakis, Phase diagram of the 3D bimodal randomfield
Ising model, Euro. Phys. J. B 61 (2008) 111. 16, 30
[Fytas et al. 2008b] N. G. Fytas, A. Malakis and K. Eftaxias, First-order transition features
of the 3D bimodal random-field Ising model., J. Stat. Mech. (2008) P03015. 16, 30
[Gangopadhyay et al. 1993] S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen and
K. J. Klabunde, Exchange anisotropy in oxide passivated Co fine particles, J. Appl.
Phys. 73 (1993) 6964. 68, 97
[Giamarchi et al. 1994] T. Giamarchi and P. L. Doussal, Elastic theory of pinned flux
lattices, Phys. Rev. Lett. 72 (1994) 1530. 3, 4, 9, 85
[Ginzburg 1981] S. L. Ginzburg, Gapless mode in spin glasses with random anisotropic
exchange, Zh. Eksp. Teor. Fiz. (JETP) 81 (1981) 1389. 9
[G□kemeijer et al. 1999] N. J. G□kemeijer and C. L. Chien, Memory effects of exchange
coupling in CoO/Ni81Fe19 bilayers, J. Appl. Phys. 85 (1999) 5516. 103
[Goldschmidt 1983] Y. Y. Goldschmidt, Magnets with random uniaxial anisotropy: Thermodynamic
properties in the large-N limit, Nucl. Phys. B 225 (1983) 123. 9, 10
[Goldschmidt 1984] Y. Y. Goldschmidt, 1=N expansion in the random anisotropy model:
A solution with replica-symmetry breaking, Phys. Rev. B 30 (1984) 1632. 9, 10
[Goodman et al. 2000] A. M. Goodman, H. Laidler, K. O’Grady, N. W. Owen and A. K.
Petford-Long, Magnetic viscosity effects on the pinned layer loop of spin-valve
materials, J. Appl. Phys. 87 (2000) 6409. 74, 101
[Gredig et al. 2002] T. Gredig, I. N. Krivorotov, P. Eames and E. D. Dahlberg, Unidirectional
coercivity enhancement in exchange-biased Co/CoO, Appl. Phys. Lett. 81
(2002) 1270. vii, 59, 62, 99, 100, 101
[Hammersley et al. 1964] J. H. Hammersley and D. C. Handscomb, Monte Carlo methods,
(Willey, New York, 1964). 20
[Han et al. 1997] D. H. Han, J. G. Zhu and J. H. Judy, NiFe/NiO bilayers with high
exchange coupling and low coercive fields, J. Appl. Phys. 81 (1997) 4996. 105
[Hannon et al. 1992] A. C. Hannon, M. Hagen, R. A. Cowley, H. B. Stanley and N. Cowlam,
A SANS study of the magnetic phase transition in amorphous (FexNi1□x)78B10Si12,
Physca B 180-181 (1992) 230. 11
[Harris et al. 1973] R. Harris, M. Plischke and M. J. Zuckermann, New Model for Amorphous
Magnetism, Phys. Rev. Lett. 31 (1973) 160. 1, 3, 8, 51
[Holovatch et al. 2002] Y. Holovatch, V. Blavat0ska, M. Dudka, C. Von Ferber, R. Folk and
T. Yavors0kii, Weak Quenched Disorder and Criticality: Resummation of Asumptotic
Series, Inter. J. Mod. Phys. B 16 (2002) 4027. 3, 11, 12, 40, 85
[Holovatch 2006] Y. Holovatch, Introduction to Renormalization, Cond. Matt. Phys. 9
(2006) 237. 3, 11, 12, 40, 85
[Hong et al. 2002] N. M. Hong, N. H. Dan and N. X. Phuc, Large unidirectional anisotropy
in Nd60Fe30Al10 bulk amorphous alloys, J. Magn. Magn. Mater. 242 (2002) 847. 49
[Hou et al. 2000] C. Hou, H. Fujiwara and K. Zhang, Temperature dependence of the
exchange-bias field of ferromagnetic layers coupled with antiferromagnetic layers,
Phys. Rev. B 63 (2000) 024411. 99
[Hukushima et al. 1996] K. Hukushima and K. Nemoto, Exchange Monte Carlo method
and application to spin glass simulations, J. Phys. Soc. Jap. 65 (1996) 1604. 12
[Iglesias et al. 2008] O. Iglesias, X. Batlle and A. Labarta, Particle size and cooling field
dependence of exchange bias in core/shell magnetic nanoparticles, J. Phys. D 41
(2008) 134010. 56, 68, 97
[Ijiri et al. 1998] Y. Ijiri, J. A. Borchers, R. W. Erwin, S. H. Lee, P. J. van der Zaag and
R. M. Wolf, Perpendicular Coupling in Exchange-Biased Fe3O4/CoO Superlattices,
Phys. Rev. Lett. 80 (1998) 608. 105
[Imry et al. 1975] Y. Imry and S. Ma, Random-Field Instability of the Ordered State of
Continuous Symmetry, Phys. Rev. Lett. 35 (1975) 1399. 5, 8, 12, 122
[Itakura 2003] M. Itakura, Frozen quasi-long-range order in the random anisotropy Heisenberg
magnet, Phys. Rev. B 68 (2003) 100405(R). iii, 3, 4, 9, 11, 12, 13, 14, 15, 17,
36, 40, 41, 45, 85
[Itakura et al. 2005] M. Itakura and C. Arakawa, Quasi long range ordered ground-state of
the random field XY model, Prog. Theor. Phys. Suppl. 157 (2005) 136. 12
[J□nsson 2004] P. E. J□nsson, Superparamagnetism and Spin Glass Dynamics of Interacting
Magnetic Nanoparticle Systems, Adv. Chem. Phys. 28 (2004) 191. 3
[Jungblut et al. 1994] R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge and
A. Reinders, Orientational dependence of the exchange biasing in molecular-beamepitaxy-
grown Ni80Fe20/Fe50Mn50 bilayers, J. Appl. Phys. 75 (1994) 6659. vi, 64,
96, 97, 105
[Jungblut et al. 1995] R. Jungblut, R. Coehoorn, M. T. Johnson, Ch. Sauer, P. J. van der
Zaag, A. R. Ball, T. G. S. M. Rijks, J. aan de Stegge and A. Reinders, Exchange
biasing in MBE-grown Ni80Fe20/Fe50Mn50 bilayers, J. Magn. Magn. Mater. 148
(1995) 300. 105
[Keller et al. 2002] J. Keller, P. Milt□nyi, B. Beschoten, G. G□ntherodt, U. Nowak and
K. D. Usadel, Domain state model for exchange bias. I. Experiments, Phys. Rev.
B, 66 (2002) 014431. 56, 59, 116, 118, 122
[Kim 1998] J. V. Kim, B.Sc. Thesis (1998), The School of Physics, The University of
Western Australia. 118, 128
[Kim et al. 2002] J. V. Kim, R. L. Stamps, B. V. McGrath and R. E. Camley,
Angular dependence and interfacial roughness in exchange-biased ferromagnetic/
antiferromagnetic bilayers, Phys. Rev. B 61 (2000) 8888. 118, 128
138
[Kim 2002] J. V. Kim, Ph.D. Thesis (2002), The School of Physics, The University of
Western Australia. vi, 90, 118, 128
[Kiwi et al. 1999a] M. Kiwi, J. Mej□a-L□pez, R. D. Portugal and R. Ram□rez, Exchangebias
systems with compensated interfaces, Appl. Phys. Lett. 75 (1999) 3995. 118,
122, 128
[Kiwi et al. 1999b] M. Kiwi, J. Mej□a-L□pez, R. D. Portugal and R. Ram□rez, Exchange
bias model for Fe/FeF2: Role of domains in the ferromagnet, Europhys. Lett. 48
(1999) 573. 118
[Kiwi 2001] M. Kiwi, Exchange bias theory, J. Magn. Magn. Mater. 234 (2001) 584. vii,
87, 89, 91, 104, 117
[Kleemann 1993] W. Kleemann, Random-field induced antiferromagentic, ferromagnetic
and structural domain states, Int. J. Mod. Phys. B 7 (1993) 2469. 118
[Knuth 1981] D. E. Knuthb, Seminumerical Algorithms, (Reading, MA: Addison-Wesley,
1981). 24
[Koon 1997] N. C. Koon, Calculations of Exchange Bias in Thin Films with Ferromagnetic/
Antiferromagnetic Interfaces, Phys. Rev. Lett. 78 (1997) 4865. viii, 105, 117,
122, 126, 127
[Korshunov 1993] S. E. Korshunov, Replica symmetry breaking in vortex glasses, Phys.
Rev. B 48 (1993) 3969. 3, 4, 9, 85
[Kouvel 1963] J. S. Kouvel, The ferromagnetic-antiferromagnetic properties of coppermanganese
and silver-manganese alloys, J. Phys. Chem. Solids 24 (1963) 795.
viii, 120, 121
[Lai et al. 2001] C. H. Lai, Y. H. Wang, C. R. Chang, J. S. Yang and Y. D. Yao, Exchangebias-
induced double-shifted magnetization curves in Co biaxial films, Phys. Rev. B
64 (2001) 094420. vi, 93, 94
[Landau et al. 2005] D. P. Landau and K. Binder, Guide to Monte Carlo Simulations in
Statistical Physics, (Cambrigde Press, Cambridge, Second Edition, 2005). 21, 22,
24, 31, 33, 39, 45, 53
[Lee et al. 2003] L. W. Lee and A. P. Young, Single Spin and Chiral Glass Transition in
Vector Spin Glasses in Three Dimensions, Phys. Rev. Lett. 90 (2003) 227203. 12
[Leighton et al. 2000] C. Leighton, J. Nogu□s, B. J□nsson-□kerman and I. K. Schuller, Coercivity
Enhancement in Exchange Biased Systems Driven by Interfacial Magnetic
Frustration, Phys. Rev. Lett. 84 (2000) 3466. 118
[Li et al. 2000] Z. Li and S. Zhang, Magnetization reversal of ferromagnetic/
antiferromagnetic bilayers, Appl. Phys. Lett. 77 (2000) 423. 118
[Liu et al. 2003] Z. Y. Liu and S. Adenwalla, Closely linear temperature dependence of
exchange bias and coercivity in out-of-plane exchange-biased [Pt/Co]3/NiO(11□)
multilayer, J. Appl. Phys. 94 (2003) 1105. vi, 97, 98
[Liu et al. 2007] Z. Y. Liu, J. L. He, D. L. Yu, Y. J. Tian, G. H. Yu and Y. Jiang, Unidirectional
coercivity enhancement in exchange-biased Co/CoO, J. Magn. Magn. Mater.
309 (2007) 176. vii, 59, 62, 99, 101, 102
[Lomba et al. 2007] E. Lomba, N. G. Almarza and C. Mart□n, Phase behavior of a family
of continuous two-dimensional n-vector models with n=2, 3, and 4, Phys. Rev. E
76 (2007) 061107. 16, 30
[Luo et al. 2008] Q. Luo, D. Q. Zhao, M. X. Pan and W. H. Wang, Critical and slow
dynamics in a bulk metallic glass exhibiting strong random magnetic anisotropy,
Appl. Phys. Lett. 92 (2008) 011923. iii, 6, 7, 41, 43
[Malozemoff 1987] A. P. Malozemoff, Random-field model of exchange anisotropy at rough
ferromagnetic antiferromagnetic interfaces, Phys. Rev. B 35 (1987) 3679. 118, 120
[Malozemoff 1988] A. P. Malozemoff, Mechanisms of exchange anisotropy, J. Appl. Phys.
63 (1988) 3874. 118, 120
[Mart□nez-Boubeta et al. 2006] C. Mart□nez-Boubeta, K. Simeonidis, M. Angelakeris,
N. Pazos-P□rez, M. Giersig, A. Delimitis, L. Nalbandian, V. Alexandrakis and
D. Niarchos, Critical radius for exchange bias in naturally oxidized Fe nanoparticles,
Phys. Rev. B 74 (2006) 054430. 68, 97
[Mauri et al. 1987a] D. Mauri, E. Kay, D. Scholl and J. K. Howard, Novel method for
determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich, J. Appl.
Phys. 62 (1987) 2929. vi, 68, 95
[Mauri et al. 1987b] D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay, Simple model
for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate, J.
Appl. Phys. 62 (1987) 3047. 68, 95, 117, 122, 125, 126
[Meiklejohn et al. 1956] W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy,
Phys. Rev. 102 (1956) 1413. 87, 117, 118
[Meiklejohn et al. 1957] W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy,
Phys. Rev. 105 (1957) 904. 87, 117, 118
[Mergia et al. 2008] K. Mergia and S. Messoloras, A small angle neutron scattering study of
the spin-glass Fe90Nd3Zr70 amorphous alloy, J. Phys.: Condens. Matter. 20 (2008)
104219. 4, 5
[Metropolis et al. 1953] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H.
Teller, Equation of State Calculations by Fast Computing Mechines, J. Chem.
Phys. 21 (1953) 1087. 21, 23
[Michel et al. 1996] R. P. Michel, A. Chaiken, Y. K. Kim and L. E. Johnson, NiO exchange
bias layers grown by direct ion beam sputtering of a nickel oxide target, IEEE Trans.
Magn. 32 (1996) 4651. 106
[Milt□nyi 2000] P. Milt□nyi, M. Gierlings, J. Keller, B. Beschoten, G. G□ntherodt,
U. Nowak and K. D. Usadel, Diluted Antiferromagnets in Exchange Bias: Proof of
the Domain State Model, Phys. Rev. Lett. 84 (2000) 4224. 56, 59, 116, 118, 122
[Mishra et al. 2009] S. K. Mishra, F. Radu, H. A. Durr and W. Eberhardt, Training-
Induced Positive Exchange Bias in NiFe/IrMn Bilayers, Phys. Rev. Lett. 102
(2009) 177208. 117
[Moorjani 1984] K. Moorjani and J. M. D. Coey, Magnetic Glasses, (Elsevier, New York,
1984). 3
[Moran et al. 1996] T. J. Moran and I. K. Schuller, Effects of cooling field strength on
exchange anisotropy at permalloy/CoO interfaces, J. Appl. Phys. 79 (1996) 5109.
105
[Moran et al. 1998] T. J. Moran, J. Nogu□s, D. Lederman and I. K. Schuller, Perpendicular
coupling at Fe-FeF2 interfaces, Appl. Phys. Lett. 72 (1998) 617. 105, 106
[Mumtaz et al. 2007] A. Mumtaz, K. Maaz, B. Janjua, S. K. Hasanain and M. F. Bertino,
Exchange bias and vertical shift in CoFe2O4 nanoparticles, J. Magn. Magn. Mater.
313 (2007) 266. 68, 97
[Nakatani et al. 1997] R. Nakatani, H. Hoshiya, K. Hoshino and Y. Sugita, Exchange coupling
of (Mn-Ir, Fe-Mn)/Ni-Fe-Co and Ni-Fe-Co/(Mn-Ir,Fe-Mn) films formed by
ion beam sputtering, IEEE Trans. Magn. 33 (1997) 3682. 106
[Nattermann 1990] T. Nattermann, Scaling approach to pinning: Charge density waves
and giant flux creep in superconductors, Phys. Rev. Lett. 64 (1990) 2454. 3, 4, 9,
85
[Nattermann et al. 2000] T. Nattermann and S. Scheidl, Vortex-glass phases in type-II
superconductors, Adv. Phys. 49 (2000) 607. 10, 12
[Nemoto et al. 1999] A. Nemoto, Y. Otani, S. G. Kim, K. Fukamichi, O. Kitakami and Y.
Shimada, Magnetoresistance and planar Hall effects in submicron exchange-coupled
NiO/Fe19Ni81 wires, Appl. Phys. Lett. 74 (1999) 4026. 118
[N□el 1967] L. N□el, A theoretical study of the ferro- antiferromagnetic coupling between
thin films, Ann. Phys. (Paris) 61 (1967) 469. 118, 120, 122
[Niederreiter 1992] H. Niederreiter, Random number Generation and Quasi-Monte Carlo
Methods, (SIAM, Philadelphia, 1992). 20, 24
[Nikitenko et al. 1998] V. I. Nikitenko, V. S. Gornakov, L. M. Dedukh, Y. P. Kabanov, A.
F. Khapikov, A. J. Shapiro, R. D. Shull, A. Chaiken and R. P. Michel, Asymmetry of
domain nucleation and enhanced coercivity in exchange-biased epitaxial NiO/NiFe
bilayers, Phys. Rev. B 57 (1998) R8111. 118
[Ngo et al. 2008] V. Thanh Ngo and H. T. Diep, Stacked triangular XY antiferromagnets:
End of a controversial issue on the phase transition, J. Appl. Phys 103 (2008)
07C712. 16, 30
[Nogu□s et al. 1996] J. Nogu□s, D. Lederman, T. J. Moran and I. K. Schuller, Positive
Exchange Bias in FeF2-Fe Bilayers, Phys. Rev. Lett. 76 (1996) 4624. vi, 56, 59,
91, 92
[Nogu□s et al. 1999a] J. Nogu□s and I. K. Schuller, Exchange bias, J. Magn. Magn. Mater.
192 (1999) 203. vi, 56, 87, 89, 91, 97, 99, 103, 105
[Nogu□s et al. 1999b] J. Nogu□s, T. J. Moran, D. Lederman, I. K. Schuller and K. V. Rao,
Role of interfacial structure on exchange-biased FeF2-Fe, Phys. Rev. B 59 (1999)
6984. 105
[Nowak et al. 2001] U. Nowak, A. Misra and K. D. Usadel, Domain state model for exchange
bias, J. Appl. Phys. 89 (2001) 7269. 56, 59, 116, 118, 122
[Nowak et al. 2002a] U. Nowak, A. Misra and K. D. Usadel, Modeling exchange bias microscopically,
J. Magn. Magn. Mater. 240 (2002) 243. 56, 59, 116, 118, 122
[Nowak et al. 2002b] U. Nowak, K. D. Usadel, J. Keller, P. Milt□nyi, B. Beschoten and
G. G□ntherodt, Domain state model for exchange bias. I. Theory, Phys. Rev. B 66
(2002) 014430. 56, 59, 116, 118, 122
[O’handley 2000] Robert C. O’handley, Modern Magnetic Materials: Principles and Applications,
Chapter 12, pp. 437-449 (John Wiley Sons, Inc., 2000). viii, 123
[Ong et al. 2009] Q. K. Ong, A. Wei and X. M. Lin, Exchange bias in Fe/Fe3O4 core-shell
magnetic nanoparticles mediated by frozen interfacial spins, Phys. Rev. B 80 (2009)
134418. 117
[Paccard et al. 1966] D. Paccard, C. Schlenker, O. Massenet, R. Montmory and A. Yelon,
Phys. Status Solidi 16 (1966) 301. 101
[Pelcovits et al. 1978] R. A. Pelcovits, E. Pytte and J. Rudnick, Spin-Glass and Ferromagnetic
Behavior Induced by Random Uniaxial Anisotropy, Phys. Rev. Lett. 40
(1978) 476. 5, 8, 12
[Peng et al. 2000] D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro and T. J. Konno,
Magnetic properties of monodispersed Co/CoO clusters, Phys. Rev. B 61 (2000)
3103. 68, 97
[Radu et al. 2003] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt and
H. Zabel, Interfacial domain formation during magnetization reversal in exchangebiased
CoO/Co bilayers, Phys. Rev. B 67 (2003) 134409. 59, 62, 99
[Rhyne et al. 1972] J. J. Rhyne, S. J. Pickart and H. A. Alperin, Direct Observation of an
Amorphous Spin-Polarization Distribution, Phys. Rev. Lett. 27 (1972) 1562. 1, 3
[Rhyne 1985] J. J. Rhyne, Effects of random field interactions in amorphous rare earth
alloys, IEEE Trans. Magn. 21 (1985) 1990. 4
[R□□ler 1999] U. K. R□□ler, Single-cluster-update Monte Carlo method for the random
anisotropy model, Phys. Rev. B 59 (1999) 13577. iii, 3, 4, 9, 12, 14, 16, 17, 27, 36,
39, 40, 41, 85
[Ryan 1992] D. H. Ryan (ed.), Recent Progress in Random Magnets, (World Scientific,
Singapore, 1992). 3, 4, 5, 6, 9, 10, 11, 14
[Sabelfeld 1991] K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems,
(Springer, Berlin, 1991). 20
[Saito et al. 2004] T. Saito, A. Suto, and S. Takenaka, Long relaxation phenomena studied
by measurements of dynamic susceptibility in a weak random anisotropy, J. Magn.
Magn. Mater. 272-276 (2004) 1319. iii, 6, 7, 41, 43, 48
[Sakamoto et al. 2005] Y. Sakamoto, H. Mukaida and C. Itoi, Effect of second-rank random
anisotropy on critical phenomena of a random-field O(N) spin model in the large
N limit, Prog. Theor. Phys. Suppl. 157 (2005) 139. 10
[Sakamoto et al. 2006] Y. Sakamoto, H. Mukaida and C. Itoi, Stability of fixed points in the
(4 + ")-dimensional random field O(N) spin model for sufficiently large N, Phys.
Rev. B 74 (2006) 064402. 10
[Schlenker et al. 1967] C. Schlenker and D. Paccard, Training effect in ferro
(F)/antiferromagnetic (AF) exchange coupled systems: Dependence on AF thickness,
J. de Phys. 28 (1967) 611. 68, 103, 107
[Schremmer et al. 1989] H. Schremmer and W. Kleemann, Field-induced sharp ferroelectric
phase transition in K0:937Li0:063TaO3, Phys. Rev. Lett. 62 (1989) 1896. 6
[Schulthess et al. 1998] T. C. Schulthess and W. H. Butler, Consequences of Spin-Flop
Coupling in Exchange Biased Films, Phys. Rev. Lett. 81 (1998) 4516. 117
[Sellmyer et al. 1985] D. J. Sellmyer and S. Nafis, Random magnetism in amorphous rareearth
alloys, J. Appl. Phys. 57 (1985) 3584. 5
[Sellmyer et al. 1986] D. J. Sellmyer and S. Nafis, Phase-Transition Behavior in a Random-
Anisotropy System, Phys. Rev. Lett. 57 (1986) 1173. 5
[Shi et al. 2001] Y. Shi and J. Ding, Strong unidirectional anisotropy in mechanically alloyed
spinel ferrites, J. Appl. Phys. 90 (2001) 4078. 49
[Shi et al. 2003] H. T. Shi, D. Lederman, N. R. Dilley, R. C. Black, J. Diedrichs, K. Jensen
and M. B. Simmonds, Temperature-induced sign change of the exchange bias in
Fe0:82Zn0:18F2/Co bilayers, J. Appl. Phys. 93 (2003) 8600. 110
[Shi et al. 2005] H. T. Shi, Z. Y. Liu and D. Lederman, Exchange bias of polycrystalline
Co on single-crystalline FexZn1□xF2 thin films, Phys. Rev. B 72 (2005) 224417.
110
[Skomski et al. 1999] R. Skomski and J. M. D. Coey, Permenent Magnetism, (Taylor &
Francis, 1999). 3
[Skumryev et al. 2003] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord
and J. Nogu□s, Beating the superparamagnetic limit with exchange bias, Nature
423 (2003) 850. 88
[Stamps 2000a] R. L. Stamps, Mechanisms for exchange bias, J. Phys. D: Appl. Phys. 33
(2000) R247. 87, 89, 91, 117, 118, 124, 126, 128
[Stamps 2000b] R. L. Stamps, Dynamic magnetic hysteresis and anomalous viscosity in
exchange bias systems, Phys. Rev. B 61 (2000) 12174. 93, 118, 126, 128
[Stamps 2002] R. L. Stamps, Mechanisms of exchange bias: partial wall pinning, and
fluctuations, J. Magn. Magn. Mat. 242-245 (2002) 139. 118, 128
[Stark et al. 2002] H. Stark and J. W. Woods, Probability and Random Processes with
Application to Signal Processing, (Prentice Hall, 2002). 20, 21
[Stiles et al. 2000] M. D. Stiles and R. D. McMichael, Model for exchange bias in polycrystalline
ferromagnet-antiferromagnet bilayers, Phys. Rev. B 59 (1999) 3722. 93,
117, 126
[Suess 2002] D. Suess, Ph.D. Thesis (2002), Institute of Solid State Physics, Viena University
of Technology, Austria. 118, 128
[Suess et al. 2003] D. Suess, M. Kirschner, T. Schrefl, J. Fidler, R. L. Stamps and and J. V.
Kim, Exchange bias of polycrystalline antiferromagnets with perfectly compensated
interfaces, Phys. Rev. B 67 (2003) 054419. 118, 128
[Tang et al. 1997] L. Tang, D. E. Laughlin and S. Gangopadhyay, Microstructural study
of ion-beam deposited giant magnetoresistive spin valves, J. Appl. Phys. 81 (1997)
4906. 106
[Taylor et al. 1999] R. H. Taylor, R. O’Barr, S. Y. Yamamoto and B. Dieny, Thermal
relaxation of the pinned layer magnetization in NiO spin valves, J. Appl. Phys. 85
(1999) 5036. 74, 101
[Tissier et al. 2006] M. Tissier and G. Tarjus, Two-loop functional renormalization group
of the random field and random anisotropy O(N) models, Phys. Rev. B 74 (2006)
214419. 10
[Toldin et al. 2006] F. P. Toldin, A. Pelissetto, and E. Vicari. Critical behaviour of the
random-anisotropy model in the strong-anisotropy limit, J. Stat. Mech. (2006)
P06002. 14
[Torbr□gge et al. 2007] S. Torbr□gge and J. Schnack, Sampling the two-dimensional density
of states g(E;M) of a giant magnetic molecule using the Wang-Landau method,
Phys. Rev. B 75 (2007) 054403. 16, 30
[Tsai et al. 2008] S. H. Tsai and D. P. Landau, Computer simulations: A window on the
static and dynamic properties of simple spin models, Amer. J. Phys. 76 (2008) 445.
16, 30
[Tsang et al. 1982] C. Tsang, N. Heiman and K. Lee, Exchange induced unidirectional
anisotropy at FeMn-Ni80Fe20 interfaces, J. Appl. Phys. 52 (1981) 2471. 120
[Tsang et al. 1981] C. Tsang and K. Lee, Temperature dependence of unidirectional
anisotropy effects in the Permalloy-FeMn systems, J. Appl. Phys. 53 (1982) 2605.
120
[Tsunoda et al. 1997] M. Tsunoda, M. Konoto and M. Takahashi, Influence Of Gas Adsorption
At The Interface On The Exchange Coupling Field Of Ni-Fe/25at Ni-Mn
Films Films, IEEE Trans. Magn. 33 (1997) 3688. 106
[Usadel et al. 2009] K.D. Usadel and U. Nowak, Exchange bias for a ferromagnetic film
coupled to a spin glass, Phys. Rev. B 80 (2009) 014418. 59, 62, 68, 117
[Uyama et al. 1997] H. Uyama, Y. Otani, K. Fukamichi, O. Kitakami, Y. Shimada and
J. Echigoya, Effect of antiferromagnetic grain size on exchange-coupling field of
Cr70Al30/Fe19Ni81 bilayers, Appl. Phys. Lett. 71 (1997) 1258. 106
[van der Zaag et al. 2000] P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner,
R. M. Wolf, J. M. Gaines, R. W. Erwin and M. A. Verheijen, Difference between
Blocking and N□el Temperatures in the Exchange Biased Fe3O4/CoO System, Phys.
Rev. Lett. 84 (2000) 6102. 97
[Vasilakaki et al. 2009] M. Vasilakaki and K. N. Trohidou, Numerical study of the exchangebias
effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell
morphology, Phys. Rev. B 79 (2009) 144402. 117
[V□zqueza et al. 2004] M. V□zqueza, C. Luna, M. P. Morales, R. Sanz, C. J. Serna and
C. Mijangos, Magnetic nanoparticles: synthesis, ordering and properties, Physica
B 354 (2004) 71. 68, 97
[Vincent 2007] E. Vincent, Ageing, Rejuvenation and Memory: The Example of Spin-
Glasses in the 716/2007 Volume Ageing and the Glass Transition of Book series
Lecture Notes in Physics, (Springer, Berlin, 2007). 17
[Wang et al. 1997] S. X. Wang, W. E. Bailey and C. Sugers, Ion beam deposition and
structural characterization of GMR spin valves, IEEE Trans. Magn. 33 (1997)
2369. 106
[Wang et al. 2001a] F. Wang and D. P. Landau, Efficient, Multiple-Range Random Walk
Algorithm to Calculate the Density of States, Phys. Rev. Lett. 86 (2001) 2050. 16,
29, 30
[Wang et al. 2001b] L. Wang, J. Ding, H. Z. Kong, Y. Li and Y. P. Feng, Monte Carlo
simulation of a cluster system with strong interaction and random anisotropy, Phys.
Rev. B 64 (2001) 214410. 6, 52
[Wohlfarth 1987] E. P. Wohlfarth (ed.), Ferromagnetic Materials: A handbook on the properties
of magnetically ordered substances, Volume 3, pp. 68 (North-Holland Physics
Publishing, 1987). 124
[Wu et al. 1998] X. W. Wu, T. Ambrose and C. L. Chien, Exchange bias and spin-valve
structures using amorphous ferromagnetic Co65Mo2B33 layers, Appl. Phys. Lett.
72 (1998) 2176. 95
[Xu et al. 2007] J. Xu and H. R. Ma, Density of states of a two-dimensional XY model
from the Wang-Landau algorithm, Phys. Rev. E 75 (2007) 041115. 16, 30
[Yaron et al. 1994] U. Yaron, P. L. Gammel, D. A. Huse, R. N. Kleiman, C. S. Oglesby,
E. Bucher, B. Batlogg, D. J. Bishop, K. Mortensen, K. Clausen, C. A. Bolle and
F. D. L. Cruz, Neutron Diffraction Studies of Flowing and Pinned Magnetic Flux
Lattices in 2H-NbSe2, Phys. Rev. Lett. 73 (1994) 2748. 4, 10, 12
[Yuan et al. 2010] F. T. Yuan, J. K. Lin, Y. D. Yao and S. F. Lee, Exchange bias in
spin glass (FeAu)/NiFe thin films, 2010 Annual Meeting of the Physical Society of
R.O.C, Febuary 2-4, 2010, Tainan, Taiwan. 117
[Yuitoo et al. 1993] I. Yuitoo and M. Kitada, Influence of Oxidation on Exchange Coupling
of °-FeMn/NiFe Bilayer Thin Films, J. Jpn. Inst. Met. 57 (1993) 549. 106
[Zhang et al. 2002] K. Zhang, T. Zhao and H. Fujiwara, Training effect in ferro
(F)/antiferromagnetic (AF) exchange coupled systems: Dependence on AF thickness,
J. Appl. Phys. 91 (2002) 6902. 101
[Zhou et al. 1993] P. Zhou, B. G. Morin, Joel S. Miller and A. J. Epstein, Magnetization
and Static Scaling of the high-Tc Disordered Molecular-based Magnet
V (tetracyanoethylene)x ¢ y(CH3CN) with x » 1:5 and y » 2, Phys. Rev. B 48
(1993) 1325. 3
[Zhou et al. 2006] C. Zhou, T. C. Schulthess, S. Torbr□gge and D. P. Landau, Wang-
Landau Algorithm for Continuous Models and Joint Density of States, Phys. Rev.
Lett. 96 (2006) 120201. 16, 30
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *