帳號:guest(18.118.121.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):布瓦娜
作者(外文):Sivakolundu Bhuvaneswari
論文名稱(中文):利用鈀、銅與鉑金屬催化進行環化、偶合以及加成反應
論文名稱(外文):Palladium-, Copper-, and Platinum-Catalyzed Carbocyclization, Coupling and Addition Reactions
指導教授(中文):鄭建鴻
指導教授(外文):Cheng, Chien-Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:947410
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:353
中文關鍵詞:環化偶合加成
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
The thesis delineates the Palladium-, Copper-, and Platinum-Catalyzed Carbocyclization, Coupling and Addition Reactions. For better clarity, this thesis has been divided into eight chapters.
Chapter 1 explains the nature and history of benzynes. Also, a quantity of methods for generating benzynes and their applications in metal catalyzed reactions are denoted.
Chapter 2 demonstrates the carbocyclization reactions of aryl iodides, bicyclic alkenes and benzynes. These three components in the presence of palladium trifurylphosphine complex gave annulated 9,10-dihydrophenanthrene in good to excellent yields. The catalytic carbocyclization reaction shows interesting product regiochemistry. The carbocyclization products from oxabenzonorbornadiene can be further applied for the synthesis of highly substituted aromatic hydrocarbons via a deoxyaromatization reaction. A possible mechanism for the present catalytic reaction is proposed.
Chapter 3 portrays the synthesis of 1-allyl-2-alkynylbenzenes. The reaction of 2-trimethylsilylphenyl triflate with allyl acetates or halides and terminal alkyne provides three component assembling products in good to excellent yields. The catalytic reaction is compatible with various functional groups. A suitable mechanism is proposed for the reaction. These types of 1,6-Enynes are highly useful synthetic intermediates in various organic reactions.
Chapter 4 depicts the palladium catalyzed three-component coupling of benzyne with allylic electrophiles and trialkyl metal reagents as the transmetallating agent in the presence of Pd(dba)2/dppp affording 1-allyl-2-alkylbenzene derivatives in good to excellent yields. So far, the organometallic reagents employed as transmetallating agent are capable of coupling only sp and sp2 bonds to benzene moiety. Groups like alkene, alkyne, allene and aryl are coupled easily. But, sp3 bond generating organometallic reagents has not been used. We attempted sp3 bond generating reaction and succeeded in it.
Chapter 5 discusses about a highly regio- and chemoselective atom-economical three-component coupling of benzynes with allylic epoxides and terminal alkynes catalyzed by cooperative palladium and copper metals. In three-component sequential coupling reactions, several allylic electrophiles such as allylic acetates, carbonates and halides are successfully used. We intended to use allylic epoxide as electrophile and we succeeded in it. The three-component reaction proceeds in the presence of palladium complex alone. But it shows low regioselectivity. In presence of palladium complex and Cu(I) bimetal catalyst system regioselectivity of the product is greatly enhanced.
Chapter 6 elucidates the copper catalyzed reaction of benzynes with activated alkenes and terminal alkynes giving 1,2 disubstituted benzenes in good to excellent yields. The product formation can be explained by alkynylcupration of benzyne with cuprous acetylide giving 2-alkynylphenylcuprous reagent followed by 1,4-addition to activated alkenes. A variety of benzynes, terminal alkynes and activated alkenes including enone, acrylate, acetonitrle and viny sulphone are employed in this reaction.
Chapter 7 narrates a highly regioselective platinum-catalyzed multi-step reaction of indoles with alkynyl alcohols. The methodology offers a simple and mild method for the preparation of 3-substituted 5-membered tetrahydrofuran and 6-membered tetrahydro-2H-pyran indole derivatives. Ring closure of these alkynyl alcohols are highly regioselective. The catalytic reaction was examined with various substituted indoles and various substituted alkynyl alcohols. The results showed that indoles with electron-donating substituents were more reactive affording higher product yields than those with electron withdrawing groups. Mechanistically, the catalytic reaction proceeds via an intramolecular hydroalkoxylation of alkynyl alcohol affording cyclic enol ether followed by the addition of C-H bond of indole to the unsaturated moiety of cyclic enol ether providing the final product. Experimental evidences to support this proposed mechanism are provided.
Chapter 8 explains a platinum catalyzed multi-step reaction of N-heteroaromatics with propargyl alcohols. Indole derivatives having a 3-oxobutyl group at the 3-position are synthesized by this method. The platinum catalyst plays dual role in this reaction. It first catalyzes the transformation of propargyl alcohol into □,□-unsaturated ketone and then the addition of heteroaromatics to the □,□-unsaturated ketone in one pot. It is significant that C3-substituted indole derivatives show a variety of biological activities and are essential building blocks for the synthesis of biologically active compounds and natural products.
TABLE OF CONTENTS
Page
Abstract
English
Chinese
1
3

List of Publications
5

Chapter 1: Application of Benzynes in Transition Metal Catalyzed Reaction
6
Introduction 7
Methods to Generate Benzynes 9
Application of Benzynes in Transition Metal Catalyzed Reactions 13
Conclusion 27
References 27

Chapter 2: Carbocyclization of Aromatic Iodides, Bicyclic Alkenes and Benzynes Involving a Palladium Catalyzed C-H Bond Activation as a Key Step
32
Introduction 33
Results and Discussion 36
Conclusion 46
Experimental Section 46
References 61

Chapter 3: Palladium Catalyzed Three-Component Coupling of Benzynes with Allylic Acetates or Halides and Terminal Alkynes Promoted by Cuprous Iodide
63
Introduction 64
Results and Discussion 67
Conclusion 76
Experimental Section 76
References 85

Chapter 4: Palladium Catalyzed Three-Component Coupling of Benzynes with Allylic Carbonates or Halides and Trialkyl Boranes
88
Introduction 89
Results and Discussion 90
Conclusion 96
Experimental Section 96
References 101

Chapter 5: A Cooperative Copper and Palladium Catalyzed Three Component Coupling of Benzynes, Allylic Epoxides and Terminal Alkynes
103
Introduction 104
Results and Discussion 105
Conclusion 118
Experimental Section 119
References 129

Chapter 6: Copper Catalyzed Three-Component Coupling of Arynes, Terminal Alkynes and Activated Alkenes
132
Introduction 133
Results and Discussion 134
Conclusion 142
Experimental Section 142
References 150

Chapter 7: Platinum Catalyzed Multi-step Reaction of Indoles with Alkynyl Alcohols
152
Introduction 153
Results and Discussion 154
Conclusion 167
Experimental Section 168
References 179

Chapter 8: Platinum Catalyzed Multi-Step Reaction of Propargyl Alcohols with N-Heteroaromatics
182
Introduction 183
Results and Discussion 183
Conclusion 195
Experimental Section 195
References 206

Chapter 2: 1H and 13C NMR Spectra of All Compounds
209
Chapter 3: 1H and 13C NMR Spectra of All Compounds 230
Chapter 4: 1H and 13C NMR Spectra of All Compounds 251
Chapter 5: 1H and 13C NMR Spectra of All Compounds 262
Chapter 6: 1H and 13C NMR Spectra of All Compounds 288
Chapter 7: 1H and 13C NMR Spectra of All Compounds 306
Chapter 8: 1H and 13C NMR Spectra of All Compounds 329
References
1. (a). Negishi, E.-I.; Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365. (b). Malacria, M. Chem. Rev. 1996, 96, 289. (c). Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (d). Tietze, L. F.; Ila, H.; Bell, H.P. Chem. Rev. 2004, 104, 3453. (e). Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101. (f). Tietze, L. F. Chem. Rev. 1996, 96, 115. (g). Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. T. Chem. Rev., 1996, 96, 635. (h). Negishi, E.-I.; Anastasia, L. Chem. Rev., 2003, 103, 1979. (i). Malacria, M. Chem. Rev., 1996, 96, 289. (j). Nakamura, I.; Yamamoto, Y. Chem. Rev., 2004, 104, 2127. (k). Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev., 2004, 104, 3453. (k). Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem., 2003, 4101. (l). Tietze, L. F. Chem. Rev., 1996, 96, 115.
2. (a). Gevorgyan, V.; Yamamoto, Y. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; John Wiley & Sons: New York, 2002; Chapter IV.2.6, pp 1361-1367. (b). Cacchi, S.; Fabrizi, G. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; John Wiley & Sons: New York, 2002; Chapter IV.2.5, 1335-1359. (c) Negishi, E.-I; Anastasia, L.; Chem. Rev. 2003, 103, 1979.
3. Kozhushkov, S.-I.; De Meijere, A. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; John Wiley & Sons: New York, 2002; Chapter IV.2.4, pp 1317-1334.
4. (a). Ma, S. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; John Wiley & Sons: New York, 2002; Chapter IV.7, 1491-1521. (b). Chang, H.-M.; Cheng, C.-H. J. Org. Chem. 2000, 65, 1767. (c). Huang, T.-H.; Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H.; J. Org. Chem. 2002, 67, 99.
5. (a). Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic Press: New York, 1967. (b). Hart, H. The Chemistry of Functional Groups; Patai, S.; Rappaport, Z., Eds.; Wiley: New York, 1994; Supplement C2, Chapter 18, pp 1017-1134. (c). Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701. (d) For reviews prior to 1970 (e). Bunnett, J. F. J. Chem. Educ. 1961, 38, 278; (f) Heany, H. Chem. Rev. 1962, 62, 81. (g). Wittig, G. Angew.Chem. Int. Ed. Engl. 1965, 4, 731.
6. Stoermer, R.; Kahlert, B. Ber. Dtsch. Chem. Ges. 1902, 35, 1633.
7. Roberts, J. D.; Simmons, H. E.; Carlsmith, L. A.; Vaughan, C.W. J. Am. Chem. Soc. 1953, 75, 3290.
8. Wittig, G. Angew. Chem. 1957, 69, 245.
9. (a). Friedman, L.; Logullo, F. M. J. Am. Chem. Soc. 1963, 85, 1549. (b). Logullo, F. M.; Seitz, A. H.; Friedman, L. Org.Synth. 1968, 48, 12. (c). For a mechanistic study, see: Buxton, P. C.; Fensome, M.;Heaney, H.; Mason, K. G. Tetrahedron 1995, 51, 2959.
10. (a). Campbell, C. D.; Rees, C. W. J. Chem. Soc. (C) 1969, 742. (b). Campbell, C. D.; Rees, C. W. J. Chem. Soc. (C) 1969,748, see also pp752.
11. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211.
12. (a). Kitamura, T.; Yamane, M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y. J. Am. Chem. Soc. 1999, 121, 11674. (b). Buchwald, S. L.; Watson, B. T. J. Am. Chem. Soc. 1986, 108, 7411.
13. (a). Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem., Int. Ed. 1998, 37, 2659. (b). Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 1999, 1, 1555. (c). Peña, D.; Cobas, A.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 2000, 2, 1629.
14. (a). Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827. (b). Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944.
15. (a). Radhakrishnan, K. V.; Yoshikawa, E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533. (b). Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 729. (c). Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280. (d). Yoshikawa, E.; Yamamoto, Y. Angew. Chem., Int. Ed. 2000, 39, 173.
16. Chatani, N.; Kamitani, A.; Oshita, M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 2001, 123, 12686.
17. (a). Hsieh; J.-C.; Rayabarapu, D.K.; Cheng, C.-H. Chem. Commun. 2004, 532. (b). Jayanth, T. T.; Jeganmohan M.; Cheng, C.-H.; J. Org. Chem., 2004, 69, 8445. (c). Hsieh; J.-C.; Cheng, C.-H. Chem. Commun. 2005, 2459.
18. Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Eur. J. Org. Chem. 2003, 1238.
19. Sato, Y.; Tamura, T.; Mori, M. Angew. Chem., Int. Ed. 2004, 43, 2436.
20. Liu, Y.-L.; Liang, Y.; Pi, S.-F.; Huang, X.-C.; Li, J.-H. J. Org. Chem. 2009, 74, 3199.
21. Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun. 2001, 1880-1881.
22. Xie, C.; Liu, L.; Zhang Y.; Xu, P. Org. Lett. 2008, 10, 2393.
23. Xie, C.; Zhang, Y.; Yang, Y. Chem. Commun. 2008, 4810.
24. Yoshida, H.; Morishita, T.; Nakata, H.; Ohshita, J. Org. Lett, 2009, 11, 373.
25. Jayanth T. T.; Jeganmohan, M.;Cheng, M-J.; Chu, S-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2006, 128, 2232.
26. Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2003, 125, 6638.
27. (a). Yoshida, H.; Tanino, K.; Ohshita, J.; Kunai, A. Angew. Chem., Int. Ed. 2004, 43, 5052. (b). Yoshida, H.; Tanino, K.; Ohshita, J.; Kunai, A. Chem. Commun. 2005, 5678.
28. Pena, D.; Perez, D.; Guitian E. Angew. Chem. Int. Ed. 2006, 45, 3579.
29. Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett., 2000, 41, 729.
30. Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 6, 2821.
31. (a). Jeganmohan, M.; Cheng, C.-H. Synthesis 2005, 1693. (b). Jayanth, T. T.; Jeganmohan, M.; Cheng. C.-H. Org. Lett., 2005, 7, 2921.
32. Bhuvaneswari, S,; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2008, 2158.
33. Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. unpublished result.
34. Jeganmohan, M.; Bhuvaneswari, S, Cheng, C.-H. Angew. Chem. Int. Ed. 2009, 48, 391.
35. (a). Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc., 2006, 127, 7426. (b). Henderson, J. L.; Edwards A. S.; Greaney, M. F. Org. Lett., 2007, 9, 5589.
36. Jayanth, T. T.; Cheng, C.-H. Angew. Chem. Int. Ed. 2007, 46, 5927.
37. Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2008, 5013.
38. Liu, Z.; Zhang, X.; Larock, R. C.; J. Am. Chem. Soc. 2005, 127, 15716.
39. Jayanth, T. T.; Cheng, C.-H. Chem. Commun. 2006, 894.
40. Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2006, 8, 5581.
41. Liu, Z.; Larock, R. C.; Angew. Chem., Int. Ed. 2007, 46, 2535.
42. Xie, C.; Zhang, Y.; Huang, Z.; Xu, P. J. Org. Chem. 2007, 72, 5431.
43. Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2009, 48, 572.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *