帳號:guest(13.59.122.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王唯本
作者(外文):Wang, Wei-Ben
論文名稱(中文):濕式製程製作之高效率藍光有機發光二極體
論文名稱(外文):High-Efficiency Blue Organic Light-Emitting Diodes via Solution-Process
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:947516
出版年(民國):99
畢業學年度:99
語文別:中文
論文頁數:193
中文關鍵詞:有機發光二極體主體奈米點
外文關鍵詞:OLEDhostnano dot
相關次數:
  • 推薦推薦:0
  • 點閱點閱:113
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究,利用濕式製程,製作一系列具單一發光層之高效率藍光有機發光二極體(Organic Light Emitting Diodes, OLEDs),所製備元件,可分為三部分作探討。
第一部分:我們使用一新穎分子型主體3,5-di(9H-carbazol-9-yl)tetraphenylsilane(SimCP2),並利用濕式製程製作此主體組成的發光層,可獲得一高效率藍光OLED,其在亮度100 cd/m2下,電流效率有41.2 cd/A、外部量子效率21.0%、能量效率24.9 lm/W;在1,000 cd/m2下有31.1 cd/A、15.8%、15.4 lm/W;此元件之高效率,部分歸因於使用此分子主體,其具有寬三重態能隙、高電洞電子移動率、雙極性傳輸特性以及高玻璃轉換溫度等特性;除了主體材料本身的優異物性,濕式製程的使用,亦是獲得高效率元件的關鍵因素,因該製程可使主客體分子均勻分佈在發光層中,有效幫助主客體間能量轉移;還有,元件在高亮度時,可經由電子阻擋層的使用,使效率獲得顯著強化。
第二部分:我們發表一新穎寡聚物主體,其具有寬三重態能隙及高電子移動率等特性;利用濕式製程製作此主體組成的發光層,可獲得一高效率藍光OLED,其在亮度231 cd/m2下,電流效率有40.4 cd/A、外部量子效率21.6%、能量效率28.2 lm/W;在1,000 cd/m2下有24.7 cd/A、10.3%、15.5 lm/W;此高效率,可能歸因於此主體的寬三重態能隙,可有效幫助主客體間的能量轉移;再者,此主體的高電子移動率,可幫助電子傳輸而強化元件載子注入平衡;為進一步提升元件效率,可於發光層旋塗前,預先加熱發光溶液至一高溫,使元件效率在亮度124 cd/m2下,達42.6 cd/A、22.9%、29.7 lm/W;在1,000 cd/m2下有28.8 cd/A、15.4%、17.8 lm/W。
第三部分:我們發表一系列新穎高表面電荷奈米點,將其摻混於非發光層中,可大幅強化本身已為高效率藍光OLED的性能;其中,藉由胺根奈米點(Amino-functionalized PND, Am-PND)的使用,一效率在100 cd/m2下已有18.0 lm/W高的藍光元件,可倍增至35.8 lm/W;在照明應用下的亮度,例如:1,000 cd/m2,元件效率可由原先的12.4 lm/W,強化至21.2 lm/W,增幅達71%;這些高表面電荷奈米點,可產生阻擋或侷限電洞的效果,有效調制電洞傳輸,避免過多電洞進入至發光層而發生載子注入不平衡;再者,經由奈米點高表面電荷產生的強烈斥力場或吸引力場,僅有帶足夠能量的電洞,克服這些障礙,而穿入發光層內更深的距離,並與電子在更寬廣的覆合區中結合,而使元件表現更高亮度、且有更高效率。
In this study, we demonstrate a series of high-efficiency blue oganic light emitting diodes with a solution-processed emissive layer. Their result and discussion will be shown in three parts.
In the first part, we present a high-efficiency blue organic light-emitting diode (OLED) with a solution-processed emissive layer composing a melucular-based host of 3,5-di(9H-carbazol-9-yl) tetraphenylsilane. The device exhibits a current efficiency of 41.2 cd/A with an external quantum efficiency (EQE) of 21.0% and power efficiency of 24.9 lm/W at 100 cd/m2 or 31.1 cd/A (15.8%, 15.4 lm/W) at 1,000 cd/m2. The high efficiency is partly attributed to the use of a novel molecular host, which possesses wide triplet band gap, high carrier mobility, ambipolar transport property and high glass transition temperature. Besides the intrinsically good physical properties, solution-process also plays an important role to fabricate the high-efficiency device, since it could make the molecular distribution of host and guest homogeneous in the emissive layer to facilitate host-to-guest energy transfer. Moreover, the device efficiency at higher brightness could be markedly enhanced by using an electron-blocking layer.
In the sencond part, we also demonstrate a high-efficiency blue OLED with a solution-processed emissive layer composing an oligomeric host of 3-(carbazol-9-ylmethyl)-3-methyloxetane that possesses high triplet-energy and especially high electron-mobility. The device exhibits a current efficiency of 40.4 cd/A with an external quantum efficiency (EQE) of 21.6% and power efficiency of 28.2 lm/W at 231 cd/m2 or 24.7 cd/A (10.3%, 15.5 lm/W) at 1,000 cd/m2. The high efficiency may be attributed to the host that possesses a wide triplet band-gap, effectively facilitating energy-transfer from the host to guest. Moreover, the high electron-mobility favors the transport of electron, resulting to a more balanced carrier-injection in the emissive layer. The device efficiency has been further enhanced to 42.6 cd/A (22.9%, 29.7 lm/W) at 124 cd/m2 or 28.8 cd/A (15.4%, 17.8 lm/W) at 1,000 cd/m2 by pre-heating the emissive solution at elevated temperature before spin-coating.
In the last part, the efficiency of highly efficient blue OLEDs has been substantially advanced through the use of high surface-charge nanodots embedded in a non-emissive layer. Amonst, the blue OLED’s markedly high initial power efficiency of 18.0 lm/W at 100 cd/m2 was doubled to 35.8 lm/W when an amino-functionalized polymeric nanodot was employed. At high luminance, such as 1,000 cd/m2, used for illumination applications, the efficiency was improved from 12.4 to 21.2 lm/W showing a significant enhancement of 71%. The incorporated highly charged nanodots are capable of effectively modulating the transportation of holes via a blocking or trapping mechanism, preventing excessive holes from entering the emissive layer and the resulting carrier-injection imbalance. Furthermore, in the presence of a high-repelling or dragging field arising from the highly charged nanodots, only those holes with sufficient energy are able to overcome the included barriers, causing them to penetrate deeper into the emissive layer. This penetration leads to carrier recombination over a wider region and results in a brighter emission and, therefore, higher efficiency.
目錄
封面
中文摘要
英文摘要
致謝
目錄
表目錄
圖目錄
壹、緒論
貳、文獻回顧
2-1、發光原理
2-1-1、摻雜技術與能量轉移
2-1-2、螢光與磷光
2-1-3、電荷的注入、傳導與再結合
2-2、藍磷光OLED使用之主客體材料
2-2-1、藍光客體染料
2-2-2、藍光主體材料
2-3、濕式製程製作藍光OLEDs之發展
2-4、奈米點強化OLEDs之發展
參、實驗方法
3-1、實驗流程
3-2、製作元件所使用材料
3-3、新穎藍磷光主體材料之合成
3-4、新穎藍磷光主體材料之合成
3-5、奈米點合成
3-6、奈米點粒徑與表面電位量測
3-7、元件製作流程
3-8、元件電流、電壓與亮度特性量測
肆、結果與討論
4-1、以濕式製程製作含分子型主體SimCP2之高效率藍光OLED
4-1-1、新穎分子型主體材料之物理性質
4-1-2、分子型主體材料對藍光元件發光特性之影響
4-1-3、元件製程對藍光OLEDs效率之影響
4-2、以濕式製程製作含寡聚物主體RS-12之高效率藍光OLED
4-2-1、新穎寡聚物主體材料之物理性質
4-2-2、寡聚物主體材料對藍光元件發光特性之影響
4-3、以高表面電荷奈米點強化高效率藍光OLED
4-3-1、新穎高表面電荷奈米點之物理性質
4-3-2、高表面電荷奈米點對藍光元件發光特性之影響
4-3-3、高表面電荷奈米點對各色光元件效率之影響
伍、結論
陸、參考資料
捌、附錄
[1] R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 2002, 80, 3470.
[2] W. D’ Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
[3] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
[4] Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, M. E. Thompson, Science 1997, 276, 2009.
[5] H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, K. Lee, Adv. Mater. 2002, 14, 1275.
[6] J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lett. 2004, 85, 3450.
[7] 周卓煇,化工資訊與商情,第八十期,第四頁,民國九十九年。
[8] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 2009, 459, 14.
[9] B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, and F. So, Appl. Phys. Lett. 2006, 88, 113506.
[10] S. J. Su, E. Gnmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189.
[11] J. H. Jou, P. Y. Hwang, W. B. Wang, C. W. Lin, J. J. Shyue, S. Z. Chen, submitted for publication.
[12] J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen, H. Y. Chen, Chem. Mater. 2009, 21, 2565.
[13] S. Watanabe, N. Ide, J. Kido, Jpn. J. Appl. Phys. 2007, 46, No. 3A.
[14] J. H. Jou, S. M. Shen, S. H. Chen, M. H. Wu, W. B. Wang, H. C. Wang, C. R. Lin, Y. C. Jou, P. S. Wu, Appl. Phys. Lett. 2010, 96, 143306.
[15] J. H. Jou, P. H. Wu , C. H. Lin, M. H. Wu, Y. C. Chou, H. C. Wang, J. Mater. Chem. DOI: 10.1039/C0JM02102D.
[16] X. Zhang, C. Jiang, Y. Mo, Y. Xu, H. Shi, Y. Cao, Appl. Phys. Lett. 2006, 88, 051116.
[17] (a) J. H. Jou, P. H. Chiang, Y. P. Lin, C. Y. Chang, C. L. Lai, Appl. Phys. Lett. 2007, 91, 043504; (b) J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li, R. S. Liu, Org. Electron. 2007, 8, 29.
[18] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
[19] H. Namai, H. Ikeda, Y. Hoshi, N. Kato, Y. Morishita, K. Mizuno, J. Am. Chem. Soc. 2007, 129, 9032.
[20] (a) M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, C. I. Wu, Adv. Mater. 2006, 18, 1216; (b) M. H. Tsai, Y. H. Hong, C. H. Chang, H. C. Su, C. C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius, C. P. Hsu, Adv. Mater. 2007, 19, 862.
[21] S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen, Adv. Mater. 2005, 17, 3.
[22] R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett. 2003, 82, 15.
[23] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys. Lett. 2003, 83, 569.
[24] P. I. Shih, C. H. Chien, C. Y. Chuang, C. F. Shu, C. H. Yang, J. H. Chen, Y. Chi, J. Mater. Chem. 2007, 17, 1692.
[25] P. I. Shih, C. L. Chiang, A. K. Dixit, C. K. Chen, M. C. Yuan, R. Y. Lee, C. T. Chen, E. W. G. Diau, C. F. Shu, Org. Lett. 2006, 8, 13.
[26] J. J. Lin, W. S. Liao, H. J. Huang, F. I. Wu, C. H. Cheng, Adv. Funct. Mater. 2008, 18, 485.
[27] (a) A. B. Padmaperuma, L. S. Sapochak, P. E. Burrows, Chem. Mater. 2006, 18, 2389; (b) L. S. Sapochak, A. B. Padmaperuma, P. A. Vecchi, H. Qiao, P. E. Burrow, Proc. of SPIE 2007, 6333, 63330F-1.
[28] P. E. Burrows, A. B. Padmaperuma, L. S. Sapochak, P. Djurovich, M. E. Thompson, Appl. Phys. Lett. 2006, 88, 183503.
[29] M. K. Mathai, V. E. Choong, S. A. Choulis, B. Krummacher, F. So, Appl. Phys. Lett. 2006, 88, 243512.
[30] (a) S. J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691; (b) F. M. Hsu, C. H. Chien, P. I. Shih, C. F. Shu, Chem. Mater. 2009, 21, 1017.
[31] P. I. Shih, C. H. Chien, F. I. Wu, C. F. Shu, Adv. Funct. Mater. 2007, 17, 3514.
[32] (a) J. J. Lin, W. S. Liao, H. J. Huang, F. I. Wu, C. H. Cheng, Adv. Mater. 2008, 18, 485; (b) L. H. Chan, H. C. Yeh, C. T. Chen, Adv. Mater. 2001, 13, 21.
[33] J. Y. Shen, C. Y. Lee, T. H. Huang, J. T. Lin, Y. T. Tao, C. H. Chien, C. Tsai, J. Mater. Chem. 2005, 15, 2455.
[34] W. J. Shen, R. Dodda, C. C. Wu, F. I. Wu, T. H. Liu, H. H. Chen, C. H. Chen, C. F. Shu, Chem. Mater. 2004, 16, 930.
[35] H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater. 2003, 15, 1080.
[36] X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Chem. Mater. 2004, 16, 4743.
[37] (a) S. J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189; (b) N. Chopra, J. Lee, Y. Zheng, S. H. Eom, J. Xue, F. So, Appl. Phys. Lett. 2008, 93, 143307.
[38] F. So, J. Kido, P. Burrows, MRS Bulletin 2008, 33, 663.
[39] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
[40] B. W. D'Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
[41] J. H. Jou, C. C. Chen, Y. C. Chung, M. F. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang, J., J. Shyue, Adv. Funct. Mater. 2008, 18, 121.
[42] J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue, C. C. Chiang, Org. Electron. 2008, 9, 291.
[43] J. M. Caruge, J. E. Halpert, V. Bulovic, M. G. Bawendi, Nano Lett. 2006, 6, 2991.
[44] Z. F. Zhang, Z. B. Deng, C. J. Liang, M. X. Zhang, D. H. Xu, Displays 2003, 24, 231.
[45] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 2003, 83, 1038.
[46] Zhu, F. R.; Low, B. L.; Zhang, K. R.; Chua, S. J. , Appl. Phys. Lett. 2001, 79, 1205.
[47] Z. Y. Xie, L. S. Hung, S. T. Lee, Appl. Phys. Lett. 2001, 79, 1048.
[48] L. S. Hung, C. H. Chen, Mater. Sci. Eng. R 2002, 39, 143.
[49] M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater. 2005, 17, 2493.
[50] V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D'Andrade, S. R. Forrest, Org. Electron. 2003, 4, 77..
[51] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, H. C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
[52] J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, C. Chang, Appl. Phys. Lett. 2008, 92, 223504.
[53] J. H. Jou, Y. P. Lin, M. F. Hsu, M. H. Wu, P. Lu, Appl. Phys. Lett. 2008, 92, 193314.
[54] Z. F. Zhang, Z. B. Deng, C. J. Liang, M. X. Zhang, D. H. Xu, Displays 2003, 24, 231.
[55] J. M. Caruge, J. E. Halpert, V. Bulovic, M. G. Bawendi, Nano Lett. 2006, 6, 2991.
[56] S. A. Carter, J. C. Scott, and P. J. Brock, Appl. Phys. Lett. 1997, 71, 1145.
[57] V. Bliznyuk, B. Ruhstaller, P. J. Brock, U. Scherf, S. A. Carter, Adv. Mater. 1999, 11, 1257.
[58] Y. K. Kim, K. Y. Lee, O. K. Kwon, D. M. Shin, B. C. Sohn, J. H. Choi, Synth. Met. 2000, 111-112, 207.
[59] C. C. Oey, A. B. Djurisic, C. Y. Kwong, C. H. Cheung; W. K. Chan, J. M. Nunzi, and P. C. Chui, Thin Solid Films 2005, 492, 253.
[60] J. H. Jou, W. B. Wang, C. C. Chen, M. H. Wu, M. F. Hsu, S. M. Shen, Y. C. Chung, J. J. Shyue, IEICE TRANS. ELECTRON. 2008, E91-C, NO.10.
[61] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
[62] Dodabalapur, Bell Lab., Solid State Com. 1997, 102, 259.
[63] T. Forster, Ann. Phys. 1948, 6, 55.
[64] L. Dexter, J. Chem. Phys. 1953, 21, 836.
[65] D. Gupta, M. Katiyar, Deepark, Optical Mater. 2006, 28, 295.
[66] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 1998, 83, 4928.
[67] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Chap 1, Gordon and Breach Science Publishers, 1997.
[68] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[69] W. Brutting, S. Berleb, A. G. Muckl, Org. Electron. 2001, 2, 1.
[70] D. K. Schroder, Semiconductor Material and Device Characterization, Chap 3, Wiley-Interscience, 1998.
[71] J. Kalinowski, J. Phys. D: Appl. Phys. 1999, 32, R179
[72] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 1997, 70, 152.
[73] G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett. 1998, 73, 1185.
[74] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Oxford University Press, New York, 1999.
[75] S. Miyata, H. S. Nalwa, Organic Electroluminescence Materials and Devices, Chap 3, Golden and Breach Science Publishers, Netherlands, 1997.
[76] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. Appl. Phys. 1996, 79, 7991.
[77] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 2082.
[78] 陳金鑫、陳錦地、吳忠幟,白光OLED照明,五南出版社,民國九十八年.
[79] http://www.ledtronics.com
[80] A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377.
[81] E. J. Nam, J. H. Kim, B. O. Kim, S. M. Kim, N. G. Park, Y. S. Kim, Y. K. Kim, Y. Ha, Bull. Chem. Soc. Jpn. 2004, 77, 751.
[82] J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713.
[83] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818.
[84] R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y. J. Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys. Lett. 2005, 87, 243507.
[85] C. F. Chang, Y. M. Cheng, Y. Chi, Y. C. Chiu, C. C. Lin, G. H. Lee, P. T. Chou, C. C. Chen, C. H. Chang, C. C Wu, Angew. Chem. Int. Ed. 2008, 47, 4542.
[86] Y. C. Chiu, J. Y. Hung, Y. Chi, C. C. Chen, C. H. Chang, C. C. Wu, Y. M. Cheng, Y. C. Yu, G.H. Lee, P. T. Chou, Adv. Mater. 2009, 21, 2221.
[87] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, Adv. Mater. 2001, 14, 581.
[88] Y. Y. Lyu, J. Kwak, W. S Jeon, Y. Byun, H. S. Lee, D. Kim, C. Lee, and K. Char, Adv. Funct. Mater. 2009, 19, 420.
[89] Y. Wanga, Y. Hua , X. Wub, L. Zhang, Q. Hou, F. Guan, N. Zhang, S. Yin, X. Cheng, Org. Electron. 2008, 9, 692.
[90] S. Hamwi, J. Meyer, T. Winkler, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 253307.
[91] 林金住,博士論文,國立清華大學化學研究所,民國九十六年。
[92] 陳金鑫、黃孝文,OLED夢幻顯示器--材料與元件,五南出版社,民國九十六年。
[93] D. Tanaka, Y. Agata, T. Takeda, S. Watanabe, J. Kido, Jpn. J. Appl. Phys. 2007, 46, L117.
[94] Z. Jiang, X. Xu, Z. Zhang, C. Yang, Z. Liu, Y. Tao, J. Qin, D. Ma, J. Mater. Chem. 2009, 19, 7661.
[95] (a) D. Neher, Macromol. Rapid Commun. 2001, 22, 1365; (b) U. Scherf, E. J. W. List, Adv. Mater. 2002, 14, 477.
[96] P. A. Vecchi, A. B. Padmaperuma, H. Qiao, L. S. Sapochak, P. E. Burrows, Org. Lett. 2006, 8, 4211.
[97] M. F. Wu, S. J. Yeh, C. T. Chen, H. Murayama, T. Tsuboi, W. S. Li, I. Chao, S. W. Liu, J. K. Wang, Adv. Funct. Mater. 2007, 17, 1887.
[98] T. Tsuboi, S. W. Liu, M. F. Wu, C. T. Chen, Org. Electron. 2009, 10, 1372.
[99] S. J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691.
[100] S. J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189.
[101] F. M. Hsu, C. H. Chien, P. I. Shih, C.F. Shu, Chem. Mater. 2009, 21, 1017.
[102] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, H. C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
[103] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
[104] F. Huang, P. I. Shih, M. S. Liu, C. F. Shu, A. K. Y. Jen, Appl. Phys. Lett. 2008, 93, 243302.
[105] S. C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, S. Sharma, P. L. Burn, I. D. W. Samuel, Adv. Mater. 2005, 15, 1451.
[106] X. Zhang, C. Jiang, Y. Mo, Y. Xu, H. Shi, Y. Cao, Appl. Phys. Lett. 2006, 88, 051116.
[107] S. C. Lo, R. N. Bera, R. E. Harding, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2008, 18, 3080.
[108] C. Huang, C. G. Zhen, S. P. Su, K. P. Loh, Z. K. Chen, Org. Lett. 2005, 7, 391.
[109] H. J. Bolink, E. Barea, R. D. Costa, E. Coronado, S. Sudhakar, C. Zhen, A. Sellinger, Org. Electron. 2008, 9, 155.
[110] M. C. Gather, A. Kohnen, A. Falcou, H. Becker, K. Meerholz, Adv. Funct. Mater. 2007, 17, 191.
[111] Q. Niu, Y. Shao, W. Xu, L. Wang, S. Han, N. Liu, J. Peng, Y. Cao, J. Wang, Org. Electron. 2008, 9, 95.
[112] C. S. K. Mak, A. Hayer, S. I. Pascu, S. E. Watkins, A. B. Holmes, A. Kohler, R. H. Friend, J. Mater. Chem. 2005, 25, 4708.
[113] R. Ragni, E. A. Plummer, K. Brunner, J. W. Hofstraat, F.Babudri, G. M. Farinola, F. Naso, L. D. Cola, J. Mater. Chem. 2005, 16, 1161.
[114] Y. Y. Lyu, Y. Byun, O. Kwon, E. Han, W. S. Jeon, R. R. Das, K. Char, J. Phys. Chem. B 2006, 110, 10303.
[115] 賴一銘,碩士論文,國立清華大學材料科學與工程研究所,民國九十八年。
[116] 徐茂峰,博士論文,國立清華大學材料科學與工程研究所,民國九十八年。
[117] J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu, Y. C. Kim, Chem. Mater. 2004, 16, 688.
[118] F. Wang, Z. J. Chen, Q. H. Gong, K. W. Wu, X. S. Wang, B. W. Zhang, F. Q. Tang, Appl. Phys. Lett. 1999, 75, 3243.
[119] J. W. Park, M. H. Ullah, S. S. Park, C. S. Ha, J. Mater Sci:Mater Electron. 2007, 18, S393.
[120] R. Stanionyte, G. Buika, J. V. Grazulevicius, S. Grigalevicius, Polym Int. 2008, 57, 1036.
[121] S. Grigalevicius, G. Blazys, J. Ostrauskaite, J. V. Grazulevicius, V. Gaidelis, V. Jankauskas, Synth. Met. 2002, 128, 127.
[122] (a) Y. G. Hsu, K. H. Lin, I. L. Chiang, Mater. Sci. Eng. 2001, B87, 31; (b) Y. G. Hsu, C. P. Wang, J. of Polymer Research 2003, 10, 201.
[123] H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, Y. Taga, J. Luminescence 2000, 87-9, 1177.
[124] (a) J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys. 2007, 84, 6859; (b) S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A. 1999, 68, 447.
[125] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 1999, 86, 1688.
[126] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, H. C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
[127] 吳明軒,博士論文,國立清華大學材料科學與工程研究所,民國九十九年。
[128] S. R. Forrest, D. D. C. Bradley and M. E. Thompson, Adv. Mater. 2003, 15, 1043.
[129] Commission International de L’Eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
[130] J. H. Jou, W. B. Wang, S. Z. Chen, J. J. Shyue, M. F. Hsu, C. W. Lin, S. M. Shen, C. J. Wang, C. P. Liu, C. T. Chen, M. F. Wu, S. W. Liu, J. Mater. Chem., 2010, 20, 8411.
[131] (a) N. C. Giebink, S. R. Forrest, Phys. Rev. B. 2008, 77, 235215; (b) M. A. Baldo, S. R. Forrest, Phys. Rev. B. 2008, 62, 10967; (c) J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, C. Chang, Appl. Phys. Lett. 2008, 92, 223504.
[132] J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, M. K. Leung, Chem. Phys. Lett. 2005, 416, 234.
[133] (a) B. Y. Yu, Y. Y. Chen, W. B. Wang, M. F. Hsu, S. P. Tsai, W. C. Lin, Y. C. Lin, J. H. Jou, C. W. Chu, J. J. Shyue, Anal. Chem. 2008, 80, 3412; (b) Y. Y. Chen, B. Y. Yu, M. F. Hsu, W. B. Wang, W. C. Lin, Y. C. Lin, J. H. Jou, J. J. Shyue, Anal. Chem. 2008, 80, 501.
[134] Y. Y. Noh, C. L. Lee, J. J. Kim, K. Yase, J. Chem. Phys. 2003, 118, 2853.
[135] (a) A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater. 2004, 16, 4556; (b) G. Hughes, M. R. Bryce, J. Mater. Chem. 2005, 15, 94.
[136] B. Y. Yu, C. Y. Liu, W. C. Lin, W. B. Wang, I. M. Lia, S. Z. Chen, S. H. Lee, C. H. Kuo, W. L. Kao, Y. W. You, C. P. Liu, H. Y. Chang, J. H. Jou, J. J. Shyue, Acs Nano 2010, 4, 2547.
[137] J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M. Lai, P. H. Wu, C. C. Chen, C. P. Liu, S. M. Shen, ACS Nano 2010, 4, 4054,.
[138] (a) J. J. Shyue, Y. Tang, M. R. D. Guire, J. Mater. Chem. 2005, 15, 323; (b) H. Shin, M. Agarwal, M. R. D. Guire, A. H. Heuer, Acta Mater. 1998, 46, 801.
[139] Y. C. Tsai, J. H. Jou, Appl. Phys. Lett. 2006, 89, 243521.
[140] X. Zhang, F. Wei, X. Liu, W. Zhu, X. Jiang, Z. Zhang, Displays. 2007, 28, 150.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *