帳號:guest(3.140.185.147)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂昇益
作者(外文):Lu, Sheng-Yi
論文名稱(中文):以原子層沈積法製作二氧化鈦包覆奈米碳管複合材之光催化特性研究
論文名稱(外文):Photocatalysis of Titanium Dioxide/Carbon Nanotubes Composites by Atomic Layer Deposition
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:947538
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:61
中文關鍵詞:二氧化鈦奈米碳管光催化
外文關鍵詞:Titanium dioxidecarbon nanotubephotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
The works presented in this thesis discuss the red-shift enhanced photocatalysis of TiO2-coated carbon nanotubes by atomic layer deposition. The controllable thickness and uniform TiO¬2 layer is characterized, and the thermal treated composites lead to carbon diffusion into oxygen lattices which results in the efficient photocatalysis at visible light. The recyclable composite filters are also fabricated by atomic layer deposition. The filters are recyclable after the organic degradation without any wastage. The greater photocatalysis of composite filter is attributed to the high specific surface area resulting from the high aspect ratio of CNTs and the interactions between TiO2/CNTs interface.

Chapter 1 introduces the background of carbon nanotube and titanium dioxide, including the structure, physical properties and photocatalysis of TiO2/CNTs composites.

Chapter 2 describes the experimental setups and characterization techniques employed in this thesis.

Chapter 3 discusses the photocatalysis of TiO2/MWCNTs composites including the degradation rate of organic substances and the recyclable composite filter.

Chapter 4 concludes the experimental results.
Abstract-------------------------------------------------------------------------------------------I
摘要(Abstract in Chinese)--------------------------------------------------------------------II
Acknowledgement----------------------------------------------------------------------------III
Contents-----------------------------------------------------------------------------------------IV
Figure Captions-------------------------------------------------------------------------------VI
Table List---------------------------------------------------------------------------------------IX

Chapter 1 Introduction------------------------------------------------------------------------1
1-1 Introduction of carbon nanotube----------------------------------------------------------1
1-1-1 Structure of carbon nanotubes-----------------------------------------------------1
1-1-2 Electrical properties of carbon nanotubes---------------------------------------4
1-1-3 Mechanical properties of carbon nanotubes-------------------------------------6
1-1-4 Surface energy of carbon nanotubes----------------------------------------------7
1-2 Introduction of titanium dioxide-----------------------------------------------------------9
1-2-1 Structure of titanium dioxide------------------------------------------------------9
1-2-2 Photocatalysis of titanium dioxide----------------------------------------------11
1-2-3 Photocatalysis of Titanium dioxide/carbon nanotubes composites---------14
1-3 Introduction of methylene blue----------------------------------------------------------19
1-3-1 Basic properties of methylene blue---------------------------------------------19
1-3-2 Degradation of methylene blue in water---------------------------------------19
1-4 Experimental motives---------------------------------------------------------------------20
Reference----------------------------------------------------------------------------------------22

Chapter 2 Experimental---------------------------------------------------------------------26
2-1 Atomic layer deposition-------------------------------------------------------------------26
2-1-1 Introduction of atomic layer deposition----------------------------------------26
2-1-2 Atomic layer deposition process of TiO2---------------------------------------26
2-2 Growth of MWCNTs----------------------------------------------------------------------27
2-3 Photo degradation calculation------------------------------------------------------------28
2-4 Characterization instruments-------------------------------------------------------------29
2-5 Experimental detail------------------------------------------------------------------------31
2-5-1 Photocatalysis of TiO2/MWCNTs-----------------------------------------------31
2-5-2 Photocatalysis of TiO2/MWCNTs/carbon cloth-------------------------------32
References---------------------------------------------------------------------------------------34
Chapter 3 Results and Discussion----------------------------------------------------------35
3-1 Photocatalysis of TiO2/MWCNTs-------------------------------------------------------35
3-1-1 Morphologies by SEM and TEM------------------------------------------------35
3-1-2 X-ray diffraction profile----------------------------------------------------------39
3-1-3 Photocatalysis examination------------------------------------------------------42
3-2 Photocatalysis of TiO2/MWCNTs/carbon cloth----------------------------------------50
3-2-1 Morphologies by SEM------------------------------------------------------------50
3-2-2 Photocatalysis examination------------------------------------------------------52
References---------------------------------------------------------------------------------------56
Chapter 4 Conclusion------------------------------------------------------------------------58
Future Work------------------------------------------------------------------------------------59
Publication List--------------------------------------------------------------------------------60

Figure Captions
Figure 1.1 (a) The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The chiral vector OA or Ch = na1 + ma2 is defined on the honeycomb lattice by unit vectors a1 and a2 and the chiral angle θ is defined with respect to the zigzag axis. Along the zigzag axis θ = 0°. The diagram is constructed for (n,m) = (4,2). (b) The pairs of integers (n,m) in the figure specify chiral vectors Ch for CNTs, including zigzag, armchair, and helical tubes. Below each pair of integers (n,m) is listed the number of distinct caps that can be joined continuously to the cylindrical carbon tube denoted by (n, m). The circled dots denote metallic tubes and the small dots are for semiconducting tubes…………………………………………..2
Figure 1.2 (a) Illustrations show C60 buckyball and other fullerenes. This shows that CNT can be derived from a cut-in-half buckyball by adding belt of carbon atoms. (b)-(d) Armchair, zigzag and helical CNT, respectively. (e) Chiral angle and vector (n,m) determine the diameter and length of the CNT. (f) The CNT bonding corresponds to the σ (sp2-hybridization) and π (2pz) bond…………………………….3
Figure 1.3 The semiconducting CNT…………………………………………………5
Figure 1.4 The metallic CNT………………………………………………………….5
Figure 1.5 Elastic properties of CNTs………………………………………………...7
Figure 1.6 (a) TEM images of a MWCNT prior to (left) and coated a monolayer of gold nanocrystals with lots of nuclei. (b) Transverse section of CNT in (a)………….8
Figure 1.7 TiO2 morphologies and lattice structures………………………………...10
Figure 1.8 Phase diagram of TiO2¬…………………………………………………...11
Figure 1.9 Main photocatalytic process occruing on TiO2…………………………..12
Figure 1.10 Band positions of several semiconductors in contact with aqueous electrolyte at pH 1. The lower edgeof the conduction band and upper edge of the valance are presented along with the band gap in electron volts. The energy scale is indicated in electron volts using either the normal hydrogen electrode (NHE) or the vacuum level as a reference. On the right side the standard potentials of several redox couples are presented against the standard hydrogen electrode potential……………13
Figure 1.11 SEM and TEM images of sol-gel made TiO2…………………………..17
Figure 1.12 The proposed mechanisms for the TiO2/CNT system enhancement of photocatalysis………………………………………………………………………...18
Figure 1.13 Molecular formula of methylene blue…………………………………..19
Figure 2.1 The standard absorption spectrum of MB for our work………………….28
Figure 2.2 Illustration of degradation examination setup in section 2-5-1………..…32
Figure 2.3 Illustration of degradation examination setup in section 2-5-2…………..33
Figure 3.1 SEM images of aligned MWCNTs array………………………………...36
Figure 3.2 SEM images of TiO2-coated MWCNTs array……………………………36
Figure 3.3 HRTEM images of 200 cycles-coated TiO2/MWCNT…………………..38
Figure 3.4 Comparison of HRTEM images of TiO2/MWCNT with different deposition cycles……………………………………………………………………..38
Figure 3.5 XRD profiles of TiO2/MWCNTs composites with different deposition cycles…………………………………………………………………………………40
Figure 3.6 The standard XRD profiles of TiO¬2……………………………………...41
Figure 3.7 Residual MB concentration (C/Co) percentages of P-25 and 800 cycles TiO2/MWCNTs composite vs. irradiation time………….……………………….…..45
Figure 3.8 UV-vis reflectance spectra of P-25 and as-made 800 cycles TiO2/MWCNTs composite…….……………………………………………………..45
Figure 3.9 Auger spectra of as-made 800 cycles TiO2/MWCNTs composite..……...46
Figure 3.10 Electron spectroscopy for chemical analysis (ESCA) profile for as-made 800 cycles TiO2/MWCNTs composite……………………………………….………47
Figure 3.11 Degradation rate of MB (for P-25 and TiO2/MWCNTs under UV or WL irradiation) presents as ln[C/Co] vs. irradiation time. The time period before 0 minute (dash line) corresponds to dark condition……………………………………….…...49
Figure 3.12 SEM images of 800 cycles TiO2/MWCNTs/C cloth sandwich structure.51
Figure 3.13 SEM images of 800 cycles TiO2/C cloth structure …………………….51
Figure 3.14 Filtration test setup……………………………………………………...53
Figure 3.15 Degradation of MB water solution (for C cloth, TiO2/C cloth and TiO2/MWCNTs/C cloth under UV or WL irradiation) by filtration test……………..54
Figure 3.16 SEM image of TiO2/MWCNTs/C cloth (sandwich structure) after filtrating and baking………………………………………………………………….55

Table list
Table 1.1 Basic properties of P-25 TiO2……………………………………………..14
Table 3.1 Distribution of TiO2 grain size with different deposition cycles………….42
Table 3.2 Variation of reaction rate constant (k) at different irradiation times (for P-25 and TiO2/MWCNTs under UV or WL irradiation)…………………………...………49
[1] S. Iijima, Nature (London), 354, 56 (1991)
[2] M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature 381, 678 (1996)
[3] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham and L. Forro, Phys. Rev. Lett. 82(5), 944 (1999)
[4] P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smally, Science 269, 1550 (1995)
[5] N. Hamada, S.-I. Swada and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)
[6] P. Calvert, Nature 357, 365 (1992)
[7] Yonglai Yang and Mool C. Gupta, Nano Lett. 5(11), 2131 (2006)
[8] N. Li, Y. Huang, F. Du, X. B. He, X. Lin, H. J. Gao, Y. F. Ma, F. F. Li, Y. S. Chen and P. C. Eklund, Nano Lett. 6(6), 1141 (2006)
[9] W. A. de Heer, A. Chatelaine and D. Ugarte, Science 270, 1179 (1995)
[10] B. I. Yakobson and R. E. Smalley, Am Sci 85, 324 (1997)
[11] M. S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon 33(7), 883 (1995)
[12] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smally, Nature 318, 162 (1985)
[13] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997)
[14] J. W. Mintmire, B. I. Dunlap and C. T. White, Phys. Rev. Lett. 68(5), 631 (1992)
[15] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)
[16] P. L. McEuen, M. Bockrath, D. H. Cobden, Y. G. Yoon and S. G. Louie, Phys. Rev. Lett. 83(24), 5098 (1999)
[17] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie and M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996)
[18] J. P. Lu, Phys. Rev. Lett. 79(7), 1297 (1997)
[19] E. Hernandez, C. Goze, P.Bernier and A. Rubio, Phys. Rev. Lett. 80(20), 4502 (1998)
[20] B. I. Yakobson, C. J. Brabec and Bernholc, Phys. Rev. Lett. 76(14), 2511 (1996)
[21] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Science 287, 637 (2000)
[22] T. Ozaki, Y. Iwasa and T. Mitani, Phys. Rev. Lett. 84(8), 1712 (2000)
[23] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. Treacy, Phys. Rev. B 58(20) 14013 (1998)
[24] R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995)
[25] A.Garg, J. Han and S. B. Sinnott, Phys. Rev. Lett. 81(11), 2260 (1998)
[26] D. Sricastava, M. Menon and K. Cho, Phys. Rev. Lett. 83(15), 2973 (1999)
[27] S. Iilima, C. Brabec, A. Maiti and J. Bernholc, J. Chem. Phys. 104, 2089 (1996)
[28] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science 283, 1513 (1999)
[29] J. M. Gere and S. P. Timoshenko, Mechanics of Materials 4th ed, Chapter 4 (ITP, PWS 1996)
[30] N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Loui, M. L. Cohen and A. Zettl, Nature 377, 135 (1995)
[31] C. Neinhuis and W. Barthlot, Annals of Botany 79, 667 (1997)
[32] R. Drstner, W. Barthlott, C. Neinhuis and P. Walzel, Langmuir 21, 956 (2005)
[33] C. Hummer, J. C. Rasaiah and J. P. Noworyta, Nature 414(8) 188 (2001)
[34] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley and K. K. Gleason, Nano Lett. 3(12) 1701 (2003)
[35] P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling and L. Bocquet, Phys. Rev. Lett. 97(15), 156104 (2006)
[36] S. Fullam, D. Cottell, H. Rensmo and D. Fitzmaurice, Adv. Mater. 12(19), 1430 (2000)
[37] E. Dujardin, T. W. Ebbesen, A. Krishnan and M. M. J. Treacy, Adv. Mater. 10(17), 1472 (1998)
[38] H. Liu, J. Zhai and L. Jiang, Soft Matter 2, 811 (2006)
[39] T. Sun, G. Wang, H. Lin, L. Feng, L. Jiang and D. Zhu, JACS 125, 14996 (2003)
[40] T. Kanyo, Z. Konya, A. Kukovecz, F. Berger, I. Dekany and I. Kiricsi, Langmuir 20, 1656 (2004)
[41] H. F. Kuo, D. H. Lien and W. K. Hsu, Appl. Phys. Lett. 89(4), 044109 (2006)
[42] Y. F. Li, I C. Hung, H. F. Kuo, S. H. Syue, W. K. Hsu, S. L. Kuo and S. C. Huang, J. Mater. Chem. 19(41), 7694 (2009)
[43] A. Fujishima and K. Honda, Nature 238, 37 (1972)
[44] R. P. S. Suri, J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram and M. E. Mullins, Water Environ. Res. 65(5) 665 (1993)
[45] R. R. Bacsa and J. Kiwi, Appl. Catal. B-Environ. 16, 19 (1998)
[46] A. L. Linsebigler, G. Lu and J. T. Yates Jr., Chem. Rev. 95, 735 (1995)
[47] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson Jr. and J. V. Smith, JACS 109(12), 3639 (1987)
[48] F. A. Grant, Rev. Mod. Phys. 31(3), 646 (1959)
[49] X. Nie, S. Zhuo, G. Maeng and K. Sohlberg, Inter. J. Photo. 2009, 294042 (2009)
[50] R. Ren, Z. Yang and L. L. Shaw, J. Mater. Sci. 35 6015 (2000)
[51] A. Fujishima and K. Honda, Nature (London) 238, 37 (1972)
[52] S. N. Frank and A. J. Bard, JACS 97(26), 7427 (1975)
[53] O. Carp, C. L. Huisman and A. Reller, Prog. Soli. Stat. Chem. 32, 33 (2004)
[54] A. Mills and S. L. Hunte, J. Photochem Photobiol A: Chem 108(1), 1 (1997)
[55] M. Gratzel, Nature 414, 338 (2001)
[56] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy, J. Appl. Phys. 75(4), 2042 (1994)
[57] K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater. 21, 2233 (2009)
[58] R. R. Bacsa and J. Kiwi, Appl. Catal. B: Environ. 16, 19 (1998)
[59] T. Ohno, K. Satukawa, K. Tokieda and M. Matsumura, J. Cataly. 203, 82 (2001)
[60] D. M. Antonelli and J. Y. Ying, Angew. Chem.-Inter. Ed. Eng. 34(18), 2014 (1995)
[61] B. B. Lakshmi, P. K. Dorhout and C. R. Martin, Chem. Mater. 9, 857 (1997)
[62] C. C. Wang and J. Y. Ying, Chem. Mater. 11, 3113 (1999)
[63] Y. Hamasaki, S. Ohkubo, K. Marukami, H. Sei and G. Nogami, J. Electrochem. Soc. 141(3), 660 (1994)
[64] N. L. Wu, S. Y. Wang and I. A. Rusakova, Science 285, 1375 (1999)
[65] S. Orlanducci, V. Sessa, M. L. Terranova, G. A. Battiston, S. Battiston and R. Gerbasi, Carbon 44, 2839 (2006)
[66] W. D. Wang, P. Serp, P. Kalck and J. L. Faria, J. Mol. Catal A: Chem. 235, 194 (2005)
[67] H. Yu, X. Quan, S. Chen and H. Zhao, J. Phys. Chem. C 111(35), 12987 (2007)
[68] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem Rev 95, 69 (1995)
[69] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Applied. Cataly. B: Enviro. 31, 145 (2001)
[70] L. Sun, J. Li, C. L. Wang, S. F. Li, H. B. Chen and C. J. Lin, Sol. Energ. Mat. Sol. C. 93, 1875 (2009)


[1] M. Ahonen, M. Pessa and T. Suntola, Thin Solid Films 65(3), 301 (1980)
[2] H. Humagai, M. Matsumoto, K. Toyoda, M. Obara and M. Suzuki, Thin Solid Films 263, 47 (1995)
[3] J. Aarik, A. Aidla, A. A. Kiisler, T. Unstare and V. Sammelselg, Thin Solid films 305, 270 (1997)
[4] V. Sammelselg, A. Rosental, A. Tarre, L. Niinisto, K. Heiskanen, K. Ilmonen L. S. Johansson and T. Uustare, Appl. Surf. Sci. 134, 78 (1998)
[5] J. Aarik, A. Aidla, H. Mandar and T. Unstare, Appli. Surf. Sci. 172, 148 (2001)
[6] J. Aarik, A. Aidla, H. Mandar, T. Unstare, M. Schuisky and A. Harsta, J. Cryst. Grow. 242, 189 (2002)
[7] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363, 605 (1993)
[8] J. Kong, M. Cassell and H. G. Dai, Chem Phys. Lett. 292, 567 (1998)
[9] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins and M. J. Heben, Chem. Phys. Lett. 316, 13 (2000)
[10] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, Chem. Phys. Lett. 303, 467 (1999)


[1] Z. L. Wang, Adv. Funct. Mater. 18, 3553 (2008)
[2] W. K. Hsu, H. Y. Chu, T. H. Chen, T. W. Cheng and W. L. Fang, Nanotechnology 19, 135304 (2008)
[3] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science 283, 1513 (1999)
[4] S. Orlanducci, V. Sessa, M. L. Terranova, G. A. Battiston, S. Battiston and R. Gerbasi, Carbon 44, 2839 (2006)
[5] X. Nie, S. Zhuo, G. Maeng and K. Sohlberg, Inter. J. Photo. 2009, 294042 (2009)
[6] A. Cao, C. Xu, J. Liang D. Wu and B. Wei, Chem. Phys. Lett. 344, 13 (2001)
[7] P. M. Ajayan, O. Stephan, P. Redlich and C. Colliex, Nature (London) 375, 564 (1995)
[8] A. House, H. Lachheb, M. Ksibi, E. Elaloui, C. Gullard and J. M. Herrmann, Appl. Catal. B 31, 145 (2001)
[9] T. L. Thompson and J. T. Yates Jr., Topics in Catalysis 35(3-4), 197 (2005)
[10] D. Eder and A. H. Windle, Adv. Mater. 20, 1787 (2008)
[11] D. M. King, X. H. Du, A. S. Cavanagh and A. W. Weimer, Nanotechnology 19, 445401 (2008)
[12] J. H. Park, S. W. Kim and A. J. Brad, Nano Lett. 6, 24 (2006)
[13] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001)
[14] Z. B. Wu, F. Dong, W. R. Zhao, H. Q. Wang, Y. Liu and B. H. Guan, Nanotechnology 20, 235701 (2009)
[15] P. B. Amama, K. Itoh and M. Murabayashi, Appl. Cata. B 37, 321 (2002)
[16] P. B. Amama, K. Itoh and M. Murabayashi, Appl. Cata. A 176, 165 (2001)
[17] J. A. Navio, G. Colon, M. I. Litter and G. N. Bianco, J. Mole. Cata. A 106, 267 (1996)
[18] S. Yin, Y. Iniue, S. Uchida, Y. Fujishiro and T. Sato, J. Mater. Res. 13(4) 844 (1998)
[19] S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito and T. Sato, J. Mater. Chem. 13, 2996 (2003)
[20] A. Kongkanand, R. M. Dominguez and P. V. Kamat, Nano Lett. 7(3), 676 (2007)
[21] K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater. 21, 2233 (2009)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *