帳號:guest(3.144.77.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧育杰
作者(外文):Lu, Yu-Chieh
論文名稱(中文):溶液相法合成奈米銀及半導體量子點之研究與應用
論文名稱(外文):Solution-based Synthesis and Applications of Nanosized Silver and Semiconductor Quantum Dots
指導教授(中文):周更生
指導教授(外文):Chou, Kan-Sen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:947604
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:222
中文關鍵詞:溶液相合成奈米銀銀絲透明導電塗層量子點螢光生物顯影近紅外光
相關次數:
  • 推薦推薦:0
  • 點閱點閱:336
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
The solution process was employed throughout this study to synthesis all the materials. With proper reductant, surfactant, precipitant and (-or) additive, nano-silver with various structures and semiconductor quantum dots as well can be successfully prepared.
In this work, water- and oil-based silver colloids were chemically synthesized by dextrose as reductant. In the presence of different surfactants silver colloidal particles with fine size and also narrow distribution can be prepared even under quite high concentration. The key is to prepare the insoluble silver salt as the precursor by reacting silver nitrate with urea and sodium hydroxide together in advance before final reduction reaction, by which we can techniquelly avoid the occurrence of instant reduction, and that hence give much time for surfactant molecules to adsorb onto the metal surface to help with well dispersion. By the similar approach Ag-Cu colloidal suspension can be obtained, and its conductive line has been experimentally demonstrated capable of restraining the electromigration. In addition, silver nanoparticles have the unique feature of surface plasmon resonance and are located on the single crystal silicon solar cell device by spin coating method, which has been showed the improvement of the energy conversion efficiency due to the enhanced absorption toward incident photons by silver. On the other hand, the far-infrared (FIR) radiation from a normal subtract can be effectively sheltered after coated with silver colloids on its surface, which shows the potential for silver colloids as an FIR stealth paint.
In the synthesis study on silver nanowires, the wires with quite large aspect ratio through an PVP polymer-mediated polyol process was fabricated. The key is to control the accumulation rate of silver ions in the system for the purpose of the formation of wires. During the process, the scale control of the product was achieved by tuning the concentration of either palladium or silver ions. Spreading the silver wires suspension by spraying method onto the transparent substrate can prepare a transparent conductive coating (TCC). The study shows that a coating with longer and thinner wires can give better transmittance performance due to lower deposition threshold for electrical conduction. Also, by following spray of the acrylic resin and then treating with proper baking and light-curing procedures can enhance the adhesive force of silver wires coating to substrate.
The nontoxic MPA capping ZnSe quantum dots (QDs) aqueous solution has been prepared by solution process. By tuning the process parameters the reasonable photoluminescence (PL) performance can be obtained. Hydrothermal treatment upon the above solution has been proved capable of help with the growth of QDs to obtain the property of longer excitation wavelength more than 350nm at least, which can pass through the object lens of a normal luminescence microscopy more effectively and hence make it easier to directly observe by human eyes. The following capping molecules replacement by MPS can form a net structure among the QDs to keep from agglomeration to help with stabilization for longer time. Further, in the Mn2+ doping ZnS QDs study, since Mn2+ ion solved in the ZnS lattice gives an PL center within the band gap of ZnS, tuning the composition to alter the relative intensity of bimodal PL peaks can obtain the multiple colors of PL. Also, by the means of doping route, CdPbS composite QDs with near infrared (NIR) emission wavelength around 830nm has been synthesized. The NIR emission was attributed to the defects in the heterogeneous interface during the preparation. NIR emission not only penetrates tissue more effectively but can avoid the disturbance of autoluminescence from the biological molecules. By coprecipitation method along with the proper processing means, the composition distribution inside the QDs that shows a well correlation with the PL intensity can be tunable.
1. 前言
2. 文獻回顧
2.1. 多結構形態金屬銀之合成
2.1.1. 球狀銀
2.1.2. 絲狀銀
2.2. 雙金屬合金微粒之合成
2.3. 金屬核殼結構粒子
2.4. 金屬奈米點於基板之佈位
2.5. 電遷移行為
2.6. 金屬塗料在遠紅外線遮蔽應用
2.7. 奈米金屬絲做為導電透明膜應用
2.8. 奈米半導體微粒於分子監控顯影應用
2.8.1. 奈米半導體微粒簡介
2.8.2. 分子監控顯影應用
2.8.3. 紅外線螢光發射量子點
3. 實驗方法
3.1. 實驗藥品與儀器
3.1.1. 藥品與耗材
3.1.2. 實驗儀器
3.2. 先前研究心得
3.3. 多重結構銀粒子合成機制與特性分析
3.3.1. 水溶性球狀銀製程
3.3.2. 油溶性球狀銀製程
3.3.3. 絲狀銀製程
3.4. 銀銅複合微粒製程
3.4.1. 銀銅膠體的製備
3.4.2. 線路繪製及電遷移測試
3.5. 二氧化矽-銀核殼結構粒子合成與特性分析
3.6. 金屬塗料的製備與遠紅外線性質檢測
3.6.1. 塗料製備
3.6.2. 薄膜之塗佈程序
3.6.3. 發射率量測
3.6.4. 附著性和腐蝕性測試
3.7. 奈米銀改善太陽電池效能
3.8. 透明導電薄膜製備流程
3.9. 添加銀絲於鎳鐵電池之製程
3.9.1. 銀絲/奈米鐵電極之製作
3.9.2. 銀絲/奈米鐵電極之電量測試
3.10. 近可見光激發無毒性量子點製備
3.11. 多種螢光顏色量子點製備
3.12. 近紅外光發射量子點製備
4. 結果與討論
4.1. 多重結構金屬粒子合成機制與特性分析
4.1.1. 水溶性球狀奈米銀
4.1.2. 油溶性球狀銀
4.1.3. 絲狀銀
4.1.4. 結論
4.2. 銀銅複合微粒製程
4.2.1. 銀銅複合微粒的製備與分析
4.2.2. 線路繪製及電遷移測試
4.2.3. 結論
4.3. 二氧化矽-銀核殼結構粒子合成與特性分析
4.3.1. 二氧化矽-銀核殼粒子製備
4.3.2. 二氧化矽-銀核殼結構粒子做為銀粒子佈位
4.3.3. 結論
4.4. 金屬塗料的製備與遠紅外線性質檢測
4.4.1. 由金屬填料及無機黏著劑組成之塗層發射率
4.4.2. 分離塗佈之程序
4.4.3. 附著性和腐蝕測試
4.4.4. 結論
4.5 奈米銀改善太陽電池效能
4.6. 銀絲/奈米鐵電極之電量測試
4.7. 奈米金屬絲做為導電透明膜
4.7.1. 銀絲塗層分析
4.7.2. 透明導電膜製膜程序
4.7.3. 結論
4.8. 近可見光激發量子點製備
4.8.1. 製程設計與性質檢測
4.8.2. 包覆劑配基的取代
4.8.3. 結論
4.9. 多種顏色螢光量子點製備
4.10. 近紅外光發射量子點製備
5. 總結
6. 參考文獻
7. 附錄
7.1. 個人研究經歷
7.1.1. 學歷
7.1.2. 海外研究經歷
7.2. 個人著作
7.2.1. 期刊論文
7.2.2. 會議論文
7.2.3. 專利
7.2.4. 其他著作
7.3. 硝酸鎘之毒性安全資料
Panigrahi, S., S. Kundu, S. Ghosh, S. Nath, and T. Pal, “General Method of Synthesis for Metal Nanoparticles,” J. Nanoparticle Res., 6(4), 411 (2004)
Nersisyan, H.H., J.H. Lee, H.T. Son, C.W. Won, and D.Y. Maeng, “A New and Effective Chemical Reduction Method for Preparation of Nanosized Silver Powder and Colloid Dispersion,” Mater. Res. Bull., 38, 949 (2003)
Chou, K.S., and C.C. Chen. "Fabrication and characterization of silver core and porous silica shell nanocomposite particles," Micropor. Mesopor. Mater., 98, 208 (2007)
Panigrahi, S., S. Kundu, S. Ghosh, S. Nath, and T. Pal, “General Method of Synthesis for Metal Nanoparticles,” J. Nanoparticle Res., 6(4), 411 (2004)
Silvert, P.Y., R.H. Urbina, and K.T. Elhsissen, “Preparation of Colloidal Silver Dispersions by the Polyol Process,” J. Mater. Chem., 7, 293 (1997)
Zhang, W., X. Qiao, J. Chen, and H. Wang, “Preparation of Silver Nanoparticles in Water-in-oil AOT Reverse Micelles,” J. Colloid and Inter. Sci., 302, 370 (2006)
Xu, J., X. Han, H. Liu, and Y. Hu, “Synthesis and Optical Properties of Silver Nanoparticles Stabilized by Gemini Surfactant,” Colloids and Surf. A: Physicochem. Eng. Asp., 273, 179 (2006)
Egorova, E.M., and A.A. Revina, “Synthesis of Metallic Nanoparticles in Reverse Micelles in the Presence of Quercetin,” Colloids and Surf. A: Physicochem. Eng. Asp., 168, 87 (2006)
Lee, H.H., K.S. Chou, and K.C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology., 16, 779 (2005)
Sun, T., and K. Seff, “Silver clusters and chemistry in zeolites,” Chem. Rev., 94, 857 (1994)
Matejka, P., B. Vlckova, J. Vohlidal, P. Pancoska, and V. Baumruk, “The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid: a surface-enhanced Raman scattering study,” J. Phys. Chem., 96 (3), 1361 (1992)
Wang, W., S. Efrima, and O. Regev, “Directing oleate stabilized nanosized silver colloids into organic phases,” Langmuir, 14, 602 (1998)
Nagasawa, H., M. Maruyama, T. Komatsu, S. Isoda, and T. Kobayashi, “Physical characteristics of stabilized silver nanoparticles formed using a new thermal-decomposition method,” Phys. Stat. Sol. (a), 191(1), 67 (2002)
Lin, X.Z., X. Teng, and H. Yang, “Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor,” Langmuir, 19, 10081 (2003)
Meguro, K., M. Torizuka, and K. Esumi, “The preparation of organo colloidal precious metal particles,” Bull. Chem. Soc. Jpn., 61, 341(1988)
Kumar, A., H. Joshi, R. Pasricha, A.B. Mandale, and M. Sastry, “ Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules,” J. Colloid Interface Sci., 264(2), 396 (2003)
Braun, E., Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature, 102, 9985 (1998)
Sloan, J., D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, and M.L.H. Green, “Capillarity and silver nanowire formation observed in single walled carbon nanotubes,” Chem. Commun., 699 (1999)
Ju, W., X. Zhang, and S. Wu, “Wet Chemical Synthesis of Ag Nanowires Array at Room Temperature,” Chem. Lett., 34(3), 510 (2005)
Huang, M.H., A. Choudrey, and P. Yang, “Ag nanowire formation within mesoporous silica,” Chem. Commun., 1063 (2000)
Cepak, V.M., and C.R. Martin, “Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents,” J. Phys. Chem. B, 102, 9985 (1998)
Jana, N.R., L. Gearheart, and C.J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun., 618 (2001)
Zhou Y., S.H. Yu, C.Y. Wang, X.G. Li, Y.R. Zhu, and Z.Y. Chen, “A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites,” Adv. Mater., 11, 850 (1999)
Barbic, M., J.J. Mock, D.R. Smith, and S. Schultz, “Single crystal silver nanowires prepared by the metal amplification method,” J. Appl. Phys., 91(11), 9341 (2002)
Wang, Z., J. Liu, X. Chen, J. Wan, and Y. Qian, “A Simple Hydrothermal Route to Large-Scale Synthesis of Uniform Silver Nanowires,” Chem. Eur. J., 11, 160 (2005)
Chen, Z.Y., Y. Zhou, S.H. Yu, X.P. Cui, and C.Y. Wang, “Formation of silver nanowires by a novel solid-liquid phase arc discharge method,” Chem. Mater., 11(3), 545 (1999)
Wiley, B., Y. Sun, B. Mayers, and Y. Xia, “Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver,” Chem. Eur. J., 11, 454 (2005)
Sun, Y., B. Mayers, T. Herricks, and Y. Xia, “Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence,” Nano Lett., 3, 955 (2003)
Sun, Y., B. Gates, B. Mayers, and Y. Xia, “Crystalline Silver Nanowires by Soft Solution Processing,” Nano Lett., 12(2), 165 (2002)
Sun, Y., and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Adv. Mater., 14, 833 (2002)
Chen, C., L. Wang, G. Jiang, J. Zhou, X. Chen, H. Yu, and Q. Yang, “Study on the synthesis of silver nanowires with adjustable diameters through the polyol process,” Nanotechnology, 17, 3933(2006)
Toshima, N., “Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer,” Pure Appl. Chem., 72(1-2), 317 (2000)
Sangregorio, C., M. Galeotti, U. Bardi, and P. Baglioni, “Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles,” Langmuir, 12, 5800 (1996)
Gwak , J. H., S.J. Kim, and M. Lee, “Sol-Gel Preparation of AuCu and Au4Cu Nanocluster Alloys in Silica Thin Films,” J. Phys. Chem. B, 102, 7699 (1998)
伍安義, “以化學還原法合成奈米銀-銅粒子及其特性分析研究,” 清華大學碩士論文 (2006)
Chen, D. H., and C.J. Chen, “Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions,” J. Mater. Chem., 12, 1557 (2002)
Ohsaki, H., Y. Tachibana, and K. Moriwaki, “Properties of antireflective coatings and its design and production technologies,” Tokyo: Gijyutu-Joho-Kyokai, 184 (2001)
Ohsaki, H., and Y. Tachibana, “Low resistance AR stack including silver layer,” Thin Solid Films, 442, 153 (2003)
Averitt, R.D., D. Sarkar, and N.J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett., 78, 4217 (1997)
Oldenburg, S.J., R.D. Averitt, S.L. Westcott, and N.J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett., 288, 243 (1998)
Ling, G., J. He, and L. Huang, “Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique,” J. Mater. Sci., 39, 2955 (2004)
Cassagneau, T., and F. Caruso, “Contiguous Silver Nanopartilce Coatings on Dielectric Spheres,” Adv. Mater., 14(10), 732 (2002)
Buncick, M.C., R.J. Warmack, and T.L. Ferrell, “Optical absorbance of silver ellipsoidal particles,” J. Opt. Soc. Am. B, 4(6), 927 (1987)
Abe, K., T. Hanada, Y. Yoshida, N. Nakamoto, T. Yamaguchi, and K. Yase, “Two-dimensional array of silver nanoparticles,” Thin Solid Films, 327-329, 524 (1998)
Chou, K.S., K.C. Huang, and H.H. Lee, “Inkjet printing of nanosized silver colloids,” Nanotechnology, 16, 2436 (2005)
Yudasaka, M., R. Kikuchi, T. Matsui, Y. Ohki, S. Yushimura, and E. Ota, “Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition,” Appl. Phys. Lett., 67(17), 2477 (1995)
DiGiacomo, G., P. Peressini, and R. Rutledge, “Diffusion coefficient and electromigration velocity of copper in thin silver films,” J. Appl. Phys., 45(4) 1626 (1974)
Tu, K.N., “Recent advances on electromigration in very-large-scale-integration of interconnects,” J. Appl. Phys., 94(9), 5451 (2003)
Ho, P.S., and T. Kwok, “Electromigration in Metals,” Rep. Prog. Phys., 52, 301 (1989)
Padhi, D., and G. Dixit, “Effect of electron flow direction on model parameters of electromigration-induced failure of copper interconnects,” J. Appl. Phys., 94(10), 6463 (2003)
Mizubayashi, H., K. Goto, T. Ebisawa, and H. Tanimoto, “Anelasticity study on electromigration effect in Cu thin films,” Mater. Sci. Eng. A, 442, 342 (2006)
Manepalli, R., F. Stepniak, S.A. Bidstrup-Allen, and P.A. Kohl, “Silver Metallization for Advanced Interconnects,” IEEE Transactions on Advanced Packaging, 22(1), 4 (1999)
Hauder, M., W. Hansch, J. Gstottner, and D. Schmitt-Landsiedel, “Ag metallization with high electromigration resistance for ULSI ,” Solid-State Electronics, 47, 1227 (2003)
Hau-Riege, C.S., “An introduction to Cu electromigration,” Microelectronics Reliability, 44, 195 (2004)
Tsou, Chi-Chun, Chinese J. Microcirculation, 7(4), 39 (1997)
Sebastian, J., and R.V. Jasra, “Sorption of Nitrogen, Oxygen, and Argon in Silver-Exchanged Zeolites,” Ind. Eng. Chem. Res., 44(21), 8014 (2005)
Pilling, M.J., A.A. Fonseca, M.J. Cousins, K.C. Waugh, M. Surman, and P. Gardner, “Combined far infrared RAIRS and XPS studies of TiCl4 adsorption and reaction on Mg films,” Surf. Sci., 587(1-2), 78 (2005)
Suzuki, Y., H. Seki, T. Inamura, T. Tanabe, T. Wadayama, and A. Hatta, “Thickness dependence of infra-red absorption enhancement for methanol on evaporated silver films,” Surf. Sci., 427-428, 136 (1999)
Hsieh, M.C., Y.K. Fang, P.M. Wu, and W.D. Wang, “Crystal SiGeC far infrared sensor with temperature isolation improvement structure,” Electronics Lett., 39(8), 656 (2003)
Cole, B.E., R.E. Higashi, and R.A. Wood, “Monolithic two-dimensional arrays of micromachined microstructuresfor infrared applications,” Proc. IEEE, 86(8), 1679 (1998)
Licciulli, A., A. Maffezzoli, D. Diso, M. Mazzer, G. Toresello, and S. Tundo, “Porous Garnet Coatings Tailoring the Emissivity of Thermostructural Materials,” J. Sol-gel Sci. Tech., 32, 247 (2004)
Rousseau, B., M. Chabin, P. Echegut, A. Sin, F. Weiss, and P. Odier, “High emissivity of a rough PrNiO coating,” Appl. Phys. Lett., 79(22), 3633 (2001)
胡傳炘,隱身塗層技術,化學工業出版社,材料科學與工程出版中心,北京(2004)
Granqvist, C.G., “Solar Energy Materials,” Adv. Mater., 15(21), 1789 (2003)
Bartek, M., J.H. Correia, and R.F. Wolffenbuttel, “Silver-based reflective coatings for micromachined optical filters,” J. Micromech. Microeng., 9, 162 (1999)
Forrest, S.R., “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, 428, 911 (2004)
Park, S.M., T Ikegami, and K. Ebihara, “Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition,” Jap. J. Appl. Phys. 44(11) 8027 (2005)
Fortunato, E., V. Assunção , A. Goncalves , A. Marques ,H. Águas , L. Pereira, I. Ferreira,P. Vilarinho, and R. Martin, “High quality conductive gallium-doped zinc oxide films deposited at room temperature,” Thin Solid Films, 451-452, 443 (2004)
De, S., P.E. Lyons,S. Sorrel, E.M. Doherty,P.J. King , W.J. Blau, P.N. Nirmalraj, J.J. Boland, V. Scardaci,J. Joimel, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano , 3, 714 (2009)
Gruner, G., “Carbon nanotube films for transparent and plastic electronics,” J. Mater. Chem., 16, 3533 (2006)
Kaempgen, M., G.S. Duesberg, and S. Roth,” Transparent carbon nanotube coatings,” Appl. Surf. Sci., 252 ,425 (2005)
Zhang, M., S. Fang, A.A. Zakhidov , S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, and R.H. Baughman, “Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,” Sci., 309, 1215 (2005)
Wu, Z.,Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, and A.G. Rinzler, “Organic solar cells with carbon nanotubes replacing InO: Sn as the transparent electrode,” Sci., 305, 1273 (2005)
Lee, J.Y., S.T. Connor, Y. Cui , and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett., 8(2), 689 (2008)
Penn, S.G., L. He, and M.J. Natan, “Nanoparticles for Bioanalysis”, Curr. Opin. Chem. Bio., 7, 1 (2003)
Brongersma , M.L., “Nanoshells, Gifts in a Gold Wrapper”, Nat. Mater., 2, (2003)
Bruchez , M., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels”, Sci, 281, 2013 (1998)
Warren, C.W., and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection”, Sci, 281, 2016(1998)
Li, H., W.Y. Shih, and W.H. Shih, “Synthesis and Characterization of Aqueous Carboxyl-Capped CdS Quantum Dots for Bioapplications,” Ind. Eng. Chem. Res., 46, 2013 (2007)
Li, H., W.Y. Shih, and W.H. Shih, “Non-Heavy Metal ZnS Quantum Dots with Bright Blue Photoluminescence by a One-Step Aqueous Synthesis,” Nanotechnology, 18, 205604 (2007)
Li, H., W.Y. Shih, and W.H. Shih, “Stable aqueous ZnS quantum dots using (3-mercaptopropyl) trimethoxysilane as capping molecule,” Nanotechnology, 18, 495605 (2007)
Sharma, P., S. Brown, G. Walter, S. Santra, and B. Moudgil, “Nanoparticles for bioimaging,” Adv. Colloid Inter. Sci., 123-126, 471 (2006)
Kale A., N. Shepherd, W. Glass, D. DeVito, M. Davidson, and P.H. Holloway, “Infrared emission from zinc sulfide:Rare-earth doped thin films. “ J. Appli, Phy., 94(5), 3147 (2003).
Komuro, S., T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi , “1.54 μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett., 76(26), 3935 (2000)
Enrichi , F., E. Trave, and M. Bersani, “Acid Synthesis of Luminescent Amine-functionalized or Erbium-doped Silica Spheres for Biological Applications”, J. Fluoressc., 18, 507 (2008)
Avdonin, A.N., G.N. Ivanova, G.V. Kolibaba, D.D. Nedeoglo, N.D. Nedeoglo, and V.P. Sirkeli , “Infrared luminescence of gold-doped ZnSe crystals,” J. Optoelectron. Adv. Mater., 7(2), 837 (2005)
Takeoka, S., M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices.” Phy. Preview B, 58(12), 7921 (1998)
Machol, J.L.,F.W. Wise, R.C. Patel, and D.B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B, 48, 2819(1993)
Zhao, X., I. Gorelikov,S. Musikhin, S. Cauchi, V. Sukhovatkin, E.H. Sargent, and E. Kumacheva, “Synthesis and optical properties of thiol-stabilized PbS nanocrystals,” Langmuir, 21(3), 1086 (2005)
Choudhury, K.R., Y. Sahoo, S. Jang, and P.N. Prasad, “Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength,” Adv. Funct. Mater., 15(5), 751(2005)
Hines, M.A., and G.D. Scholes., “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater., 15(21), 1844 (2003)
Hyun, B.R., H. Chen, D.A. Rey, F.W. Wise, and C.A. Batt, “Near-infrared fluorescence imaging with water-soluble lead salt quantum dots,” J. Phys. Chem. B , 111, 5726 (2007)
Fritz, K.P., S. Guenes, J. Luther, S. Kumar, N.S. Sariciftci, and G.D. Scholes , J. Photochem. Photobio. A:Che, 195(1), 39 (2008)
陳貞志, “單一粒徑分佈二氧化矽膠體和銀-二氧化矽核殼結構奈米粒子的製備及應用,” 清華大學博士論文 (2007)
鹽水噴霧試驗裝置, 工業技術研究院系統與航太技術發展中心提供
CNS 8886/Z8026: Neutral salt spray (fog) test (ASTM B 117).
Schaadt, D.M., B. Feng, and E.T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86 063106 (2005)
Derkacs, D., S.H. Lim, P. Matheu, W. Mar, and E.T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89 093103 (2006)
Huang, K.C., and K.S. Chou, “Microstructure changes to iron nanoparticles during discharge/charge cycles,” Electrochem. Commun., 9, 1907 (2007)
http://www.olympusamerica.com/seg_section/uis2/seg_uis2_uplsapo_40x.asp
Murase , N., and M. Gao, “Preparation and photoluminescence of water-dispersible ZnSe nanocrystals,” Mater. Lett.,58, 3898 (2004)
Li, C. L., K. Nishikawa, M. Ando, H. Enomoto and N. Murase, “Significant improvement in photoluminescence of ZnSe(S) alloyed quantum dots prepared in high pH solution,” Colloids Surf. A, 294, 33 (2007)
Deshpande, A. C., S. B. Singh, M. K. Abyaneh, R. Pasricha, and S. K. Kulkarni, “Low temperature synthesis of ZnSe nanoparticles,” Mater. Lett., 62, 3803 (2008)
Gong, H., Z. Lin, G. Zhai, K. Liu, Z. Wang, X. Huo, J. Li, H. Huang, and M. Wang, “Preparation of mercaptoacetic acid-capped ZnSe core-shell nanocrystals by hydrothermal method,” Ceram. Int., 34 1085 (2008)
Li, C.L., K. Nishikawa, M. Ando, H. Enomoto, and N. Murase, “Highly luminescent water-soluble ZnSe nanocrystals and their incorporation in a glass matrix,” Colloids Surf. A, 294, 33-39 (2007)
Lan, G.Y., Y.W. Lin, Y.F. Huang, and H.T. Chang, “Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution,” J. Mater. Chem., 17, 2661 (2007)
Xiong,S., S. Huang, A. Tang, and F. Teng, “Synthesis and luminescence properties of water-dispersible ZnSe nanocrystals,” Mater. Lett., 61, 5091 (2007)
Murase, N., and M. Gao, “Preparation and photoluminescence of water dispersible ZnSe nanocrystals,” Mater. Lett., 58, 3898 (2004)
Shavel, A., N. Gaponik, and A. Eychmüller, “Efficient UV-Blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals,” J. Phys. Chem. B, 108, 5905 (2004)
Chung, J., S. Lee, and D.J. Jang, “ZnS nanoparticle treatment to enhance its luminescence, shape, and stability,” Mol. Cryst. Liq. Cryst., 377, 85 (2002)
Dabbousi, B.O., J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B, 101(46), 9463 (1997)
Larson, H.W., “The Effect of Urea on Glucose Determination by the Formose Reaction,” J. Bio. Chem., 151 (1932)
Warner, R.C., “The Kinetics of the Hydrolysis of Urea and of Arginine,” J. Bio. Chem., 705 (1942)
Chou, K.S., Y.C. Lu, and H.H. Lee, “Effect of Alkaline Ion on the Mechanism and Kinetics of Chemical Reduction of Silver,” Mater. Chem. Phys., 94(2-3), 429 (2005)
Lakhwani, S., and M.N. Rahaman, “Adsorption of Polyvinylpyrrolidone (PVP) and Its Effect on the Consolidation of Suspensions of Nanocrystalline CeO2 Particles,” J. Mater. Sci., 34, 3909 (1999)
Lee, H.H., K.S. Chou, and Z.W. Shih, “Effect of Nano-sized Silver Particles on the Resistivity of Polymeric Conductive Adhesives,” Int. J. Adhes. Adhes., 25, 437 (2005)
盧育杰, “葡萄糖還原系統下製備奈米銀及其反應動力學之研究,” 清華大學碩士論文 (2005)
Ducamp-Sanguesa, C., R. Herrera-Urbina, and M. Figlarz, “Synthesis and characterization of fine and monodisperse silver particles of uniform shape,” J. Solid State Chem., 100, 272 (1992)
LaMer, V.K., and R.H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J. Am. Chem. Soc., 72, 4847 (1950)
Gou, L., M. Chipara, and J.M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater., 19, 1755 (2007)
Reyes-Gasga, J., “On the structure of nanorods and nanowires with pentagonal cross-sections,” J. Cryst. Growth, 286, 162 (2006)
Ni. C., R.A. Hassan, and E.W. Kaler, “Structural Characteristics and Growth of Pentagonal Silver Nanorods Prepared by a Surfactant Method,” Langmuir , 21, 3334 (2005)
Lu, Y.C., K.S. Chou, and M. Nogami, “Process window for the synthesis of Ag wires through polyol process,” Mater. Chem. Phys., 116, 1 (2009)
Liz-Marzán, L.M., “Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles,” Langmuir, 22, 32 (2006)
Jin, R., Y. Gao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zhang, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms,” Sci., 294, 1901 (2001)
Wang, Z., J. Liu, X. Chen, J. Wan, and Y. Qian, “A Simple Hydrothermal Route to Large-Scale Synthesis of Uniform Silver Nanowires,” Chem. Eur. J., 11, 160 (2005)
Miguez, H., C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO spheres,” Appl. Phys. Lett., 71(9), 1148 (1997)
Bauer, W., H. Ortel, and M. Rink, Proc. 8th International Symposium on 268 Temperature and Thermal Measurements in Industry and Science, Berlin, 269 Germany, June 19–20, p. 301 (2001)
吳民耀和劉威志, “表面電漿子理論與模擬,” 物理雙月刊(二八卷二期)2006年4月
Ng. M.-Y., and W.-C. Liu, J. Korean Phys. Soc., 47, S135 (2005)
Kaempgen, M., G.S. Duesberg, and S. Roth, Appl. Surf. Sci,. 252, 425 (2005)
http://www.hoffland.net/src/tks/3.xml
Aldana, J., Y. Wang, and X. Peng, “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols,” J. Am. Chem. Soc., 123, 8844 (2001)
Brus, L.E., “The size dependence of the lowest excited electronic state,” J. Chem. Phys., 80, 4403 (1984)
Wang, X.Y., L.H. Qu, J. Zhang, X.G. Peng, and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots” Nano Lett., 3(8), 1103 (2003)
Mei, B.C., J. Wang, Q. Qiu, T. Heckler, A. Petrou, and T. J. Mountziaris, “Dilution effects on the photoluminescence of ZnSe quantum-dot dispersions,” Appl. Phys. Lett., 93, 083114 (2008)
Pradhan, N., D.M. Battaglia, Y. Liu, and X. Pang, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett., 7(2), 312 (2007)
Bethke, P.M., and P.B. Barton, Am. Mineralog., 56, 2034 (1971)
Zhou, H.S., H. Sasahara, I. Honma, H. Komiyama, and J.W. Haus, “Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties,” Chem. Mater., 6(9), 1534 (1994)
Susa, N., H. Watanable, and M. Wada, “Photoluminescence spectra of gas-evaporated CdS microcrystals,” Jpn. J. Appl. Phys., 15, 2365 (1976)
Haus, J.W., H.S. Zhou, I. Honma, and H. Komiyama, “Quantum confinement in semiconductor heterostructure nanometer-size particles,” Phy. Rev. B , 47(3), 1359 (1993)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *