帳號:guest(3.145.141.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳威全
作者(外文):Chen, Wei-Chuan
論文名稱(中文):膠原蛋白二型支架及硫酸軟骨素對於幹細胞進行軟骨分化之效應
論文名稱(外文):The Chondrogenesis Effects of Type II Collagen Scaffold and Chondroitin Sulfate C by Culture of Mesenchymal Stem Cells
指導教授(中文):朱ㄧ民
指導教授(外文):Chu, I-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:947626
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:111
中文關鍵詞:軟骨組織type II collagen支架間葉幹細胞硫酸軟骨素
外文關鍵詞:cartilage defecttype II collagen scaffoldmesenchymal stem cellschondroitin sulfate C
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本篇論文主要有兩個研究目的,一為探討幹細胞在 type II collagen支架(COL II scaffold),對軟骨體內修復上的效應; 二是對於多種不同型態之chondroitin sulfate C (CSC),對幹細胞(MSCs)誘導分化為軟骨細胞(chondrocytes)的效應及CSC-COL II支架對軟骨組織修復的效應。
在第一部分,在三週的誘導之後,先以in vitro狀態下判斷細胞是否具有分化為軟骨細胞的能力,將含有兔子骨髓細胞(rabbit bone marrow stem cells, RBMSCs)之type II collagen支架,再以含有TGF- β3生長因子的培養基進行分化培養。由軟骨分化相關基因的表現、H&E stain 及Alcian Blue stain的結果可以說明,RBMSCs可以被誘導分化為chondrocyte-like細胞。次之探討type II collagen支架軟骨體內修復上的效應。將培養有RBMSCs之type II collagen支架植入此受損軟骨組織中,評估修復的狀況。八週後觀察兔子的關節修復情形可以發現,於外觀上可以看到,受損的部位已經被type II collagen支架填滿。由H&E stain, Alcian Blue stain組織染色及type II collagen, aggrecan免疫組織染色的結果,可以進一步說明修復的組織中,已佈滿具有lacuna結構的軟骨細胞。於二十四週後的結果顯示,外觀已和一般組織相同,由H&E stain可以看出修復的部位,與正常組織很類似。
接著探討CSC對軟骨修復情形的影響。首先比較CSC(free CSC)或oligosaccharide CSC (free oligosaccharide CSC)添加於培養基中培養臍帶血間葉幹細胞(umbilical cord blood-derived MSCs, UMSCs)或將UMSCs培養於經genipin交聯之CSC-COL II支架(crosslinked CSC),進行軟骨分化的效應。根據組織染色、基因表現及ECM分泌的結果顯示,UMSCs培養於free CSC, free oligosaccharides CSC及crosslinked CSC 支架,都可以被誘導成chondrocytes。以不同CSCs濃度交聯的crosslinked CSC 支架,發現35 ug 的CSC交聯至支架時(T+CCR,H35),對UMSCs的軟骨分化表現最好。此外低分子量之free oligosaccharide CSC很明顯的相較於高分子量的free CSC更能提升軟骨分化基因的表現,及刺激ECM的分泌累積。進一步將CSC-COL II支架植入紐西蘭白兔體內進行評估。將RBMSC-laden的COL II 支架(T+)或CSC-COL II支架(T+CCR,H35)植入,除利用組織染色評估外,並進一步以Q-PCR約略評估其修復的狀況。研究結果顯示,四週後觀察兔子的關節修復情形可以發現,外觀上T+CCR,H35組與T+組相同,軟骨缺損均被修復。四週的組織染色的結果指出T+CCR,H35組已呈現具有lacuna結構的軟骨細胞,T+組則支架尚未完解分解,說明CSC的確在軟骨修復方面有正面的效應。
Two major research topics were discussed in this thesis. One is evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold (COL II scaffold); the other is to discuss the effects of chondrogenesis by culture of mesenchymal stem cells with various types of chondroitin sulfate C (CSC). Moreover, the defect repair potential of CSC-COL II scaffold was also evaluated this thesis.
In the first section, after 3-week of in vitro induction, chondrocytic behavior, including marker genes expression and specific extracellular matrix (ECM) secretion, was observed. In the in vivo evaluation experiment, the scaffolds containing RBMSCs without prior induction were autologous implanted into the articular cartilage defects made by subchondral drilling. The rabbits were sacrificed after eight and twenty four weeks. Eight weeks later, chondrocyte-like cells with lacuna structure and corresponding ECM were found in the repaired sites with¬out apparent inflammation. After twenty four weeks, we could easily find cartilage structure the same with normal cartilage in the repair site. In conclusion, it was shown that the scaffolds in combination of in vivo condi¬tions can induce RBMSCs into chondrocytes in repaired area and would be a possible method for articular cartilage repair in clinic and cartilage tissue engineering.
In the second section, we studied the effects of chondroitin sulfate C (CSC) on the differentiation of human mesenchymal stem cells (MSCs) toward the chondrocyte lineage. The MSCs were either cultured on type II collagen scaffolds with CSC addition in the medium (free CSC) or with free oligosaccharide CSC. Special attention was given to the effects of MSCs cultured on CSC crosslinked type II scaffolds (crosslinked CSC). According to the analyses of histology stain, gene expression and ECM secretion, our results showed that MSCs cultured with free CSC, free oligosaccharides CSC and on the crosslinked CSC scaffolds all would be induced into chondrocytes. We also found crosslinked CSC scaffold had the good response for chondrogenesis when 35 ug of CSC was crosslinked to COL II scaffold (T+CCR,H35). Moreover, free oligosaccharide CSC presented in the microenvironment could significantly up-regulate MSC chondrogenesis gene expression and stimulate cartilage ECM accumulation more than free CSC with high molecular weight after 3-week induction. Thus, we believed that crosslinked CSC in the scaffold would play the similar roles with free oligosaccharide CSC in the medium. The defect repair potential of CSC-COL II scaffold (T+CCR,H35) was also evaluated by rabbit model. Our results showed that T+CCR,H35 scaffold showed better repair ability on cartilage defect than T+ scaffold by histological and immunohistological staining and the recovered cells in the T+CCR,H35 scaffold had lacuna structure. At the meanwhile, T+CCR,H35 scaffold revealed the type II collagen fibers in the defect site. Furthermore, the generated cells in the T+CCR,H35 scaffold on the repair site showed the higher COL II and aggrecan gene expression and lower type I collagen gene expression compared to the cells in the T+ scaffold after twenty-four week transplantation. Thus, we believed that T+CCR,H35 scaffold would be a potential candidate for cartilage defect repair by tissue engineering approach.
誌謝…………………………………………………………………………………….I
摘要…………………………………………………………………………………...II
目錄………………………………………………………………………………....VII
圖目錄………………………………………………………………………………...X
表目錄……………………………………………………………………………....XII
第一章 研究動機……………………………………………………………………..1
第二章 文獻回顧……………………………………………………………………..3
2.1 軟骨組織的損傷………………………………………………………………….3
2.2 Osteoarthritis概述………………………………………………………………...3
2.3 軟骨組織的治療方式…………………………………………………………….4
2.4 組織工程概述…………………………………………………………………….8
2.5軟骨組織工程……………………………………………………………………13
2.5.1應用於軟骨組織工程的天然高分子材料...…………………………………13
2.5.2膠原蛋白二型支架簡介……………………………………………………...18
2.5.3應用於軟骨組織工程中的細胞……………………………………………...24
2.6 Chondroitin Sulfate對幹細胞誘導分化為軟骨細胞的應用……………………26
第三章 研究方法與材料……………………………………………………………31
3.1 Type II collagen純化…………………………………………………………….31
3.2 COL II支架製備………...……………………………………………………….31
3.3 3D支架培養……………………………………………………………………..32
3.4 臍帶血MSCs培養…….………………………………………….......................33
3.5 兔子骨髓MSCs的萃取與培養 (Rabbit bone marrow derived MSCs,
RBMSCs)……………………………………………………………………….34
3.6 In vivo defect修復評估實驗………………………………………………….…35
3.7 Chondrocytes與UMSCs共培養…………………………….……………….….37
3.8 Oligosaccharide CSC的製備……………………………………………….……37
3.9 DNA與glycosaminoglycans (GAGs)含量分析……..……….………………….38
3.10 Type II collagen的定量分析…………………………………………………...39
3.11 組織與免疫組織化學染色………………………………….…………………39
3.12 RNA 抽取與cDNA 合成……………………………….….………………….41
3.13 Quantifcation Real-Time PCR (Q-PCR)………………………………………..43
3.14統計學的分析…………………………………………………………………..43
第四章 結果與討論(一) COL II 支架in vivo修復軟骨組織之評估……..………48
4.1 結果……………………………………………………………………………...49
4.1.1 In vitro study……………………………………………………………………49
4.1.2 In vivo study…………………………………………………………………....52
4.1.3 UMSCs與chondrocytes共培養………………………………….…………...59
4.2 討論……………………………………………………………………………...64
4.2.1 In vitro study……………………………………………………………….…...64
4.2.2 In vivo study……………………………………………………………………65
第五章 結果與討論(二) CSC於UMSCs軟骨分化上的影響………………….….68
5.1 結果………………………………………………………………………….......69
5.1.1不同狀態的 CSC於UMSCs軟骨分化上的影響……………………………69
5.1.2 不同濃度CSC對UMSCs誘導分化為軟骨細胞之表現.................................73
5.1.3 Oligosaccharides CSC於UMSCs軟骨分化上的影響...........………………...77
5.1.4不同狀態的CSC對UMSCs分泌新生type II collagen定量分析…………….81
5.1.5不同狀態的CSC於UMSCs軟骨分化上的組織染色分析.........…………......83
5.1.6 Type II collagen-CSC軟骨體內修復………………………………………….87
5.2 討論……………………………………………………………………………...94
5.2.1 In vitro study-CSCs在MSCs軟骨分化上的效應……………………………94
5.2.2 In vivo study- CSC-COL II支架……………………………………………….96
第六章 結論與未來展望……………………………………………………………99
第七章 參考文獻………………………………………………………………..…102
宋信文, 梁晃千. 建造人類的身體工房 組織工程. 科學發展. 2003;362:6-11.
呂博文. 低免疫性生醫材料 膠原蛋白. 科學發展. 2004;380:6-11.
姚少凌. 造血幹細胞體外增殖培養技術與應用 清華大學化工所博士論文 2003
黃瑞彬. 無血清組成物於關節軟骨組織工程效應之探討 清華大學化工所碩士論
文 2007
Ahmed N, Dreier R, Göpferich A, Grifka J, Grässel S. Soluble signalling factors
derived from differentiated cartilage tissue affect chondrogenic
differentiation of rat adult marrow stromal cells. Cell Physiol. Biochem.
2007;20:665-78.
Baldwin AD, Kiick KL. Polysaccharide-modified synthetic polymeric biomaterials.
Biopolymers. 2010;94:128-140.
Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction.
Transpl. Immunol. 2004;12:367–377.
Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of
mesenchymal stem cells from bone marrow: differentiation-dependent gene
expression of matrix components. Exp. Cell Res. 2001;268:189-200.
Bentley G, Minas T. Treating joint damage in young people. BMJ.
2000;320:1585-1588.
Bassleer C, Henrotin Y, Franchimont P. In-vitro evaluation of drugs proposed as
chondroprotective agents. Int J Tissue React. 1992;14:231-241.
Bloom FE. Breakthroughs. Science 1999;286:2267.
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of
deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med.1994;331:889-895.
Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair
regeneration, and transplantation. Instr. Course Lect. 1998;47:487-504.
Caterson EJ, Nesti LJ, Li WJ, Danielson KG, Albert TJ, Vaccaro AR, and Tuan RS
Three-dimensional cartilage formation by bone marrow-derived cells
seeded in polylactide/alginate amalgam. J. Bio¬med. Mater. Res.,
2001;257:394-403.
Cattini L, Facchini A, Borzì RM. A role for chemokines in the induction of
chondrocyte phenotype modulation. Arthritis Rheum. 2004;50:112-122.
Chan, P.S., Caron, J.P., and Orth, M.W.: Effect of glucosamine and chondroitin
sulfate on regulation of gene expression of proteolytic enzymes and their
inhibitors in interleukinn-1-challenged bovine articular cartilage explants.
Am. J. Vet. Res. 2005:66:1870-1876.
Chang KY, Cheng LW, Ho GH, Huang YP, and Lee YD. Fabrication and
characterization of poly-(gamma-glutamic acid)-graft-chondroitin
sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
Acta. Biomater. 2009:5:1937-1947.
Chang Y, Tsai CC, Liang HC and Sung HW. Reconstruction of the right ventricular
outflow tract with a bovine jugular vein graft fixed with a naturally
occurring crosslinking agent (genipin) in a canine model. J. Thorac.
Cardiovasc. Surg., 2001;122:1208-1218.
Chen J, Wang C, Lü S, Wu J, Guo X, Duan C, Dong L, Song Y, Zhang J, Jing D, Wu
L, Ding J, Li D. In vivo chondrogenesis of adult bone marrow-derived
autologous mesenchymal stem cells. Cell Tissue Res. 2005;319:429-438.
Chen YL, Lee HP, Chan HY, Sung LY, Chen HC, and Hu YC. Composite
chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage Tissue Eng. 2007:14: 2294-2305.
Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair
Regen. 1999;7:79-89.
Chow, G., Knudson, C.B., and Knudson, W.: Human hyaluronidase-2 is localized
intracellularly in articular chondrocytes and other cultured cell lines.
Osteoarthritis Cartilage. 14(12), 1312-1314 (2006).
Conte A, Volpi N, Palmieri L, Bahous I, Ronca G. Biochemical and pharmacokinetic
aspects of oral treatment with chondroitin sulfate. Arzneimittelforschung.
1995;45:918-925.
Cordoba F, Nimni ME. Chondroitin sulfate and other sulfate containing
chondroprotective agents may exhibit their effects by overcoming a
deficiency of sulfur amino acids. Osteoarthritis Cartilage.
2003;11:228-230.
Dare EV, Griffith M, Poitras P, Kaupp JA, Waldman, SD, Carlsson DJ, Dervin G,
Mayoux C, Hincke MT. Genipin cross-linked fibrin hydrogels for in vitro
human articularcartilage tissue-engineered regeneration. cells Tissues
Organs. 2009;190:313-325.
Davies LC, Blain EJ, Caterson B, and Duance VC. Chondroitin sulphate impedes the
migration of a sub-population of articular cartilage chondrocytes.
Osteoarthritis Cartilage. 2008;16:855-964.
Derfoul A, Miyoshi AD, Freeman DE, Tuan RS. Glucosamine promotes chondrogenic
phenotype in both chondrocytes and mesenchymal stem cells and inhibits
MMP-13 expression and matrix degradation. Osteoarthritis Cartilage.
2007;15:646-55.
Dudics V, Kunstár A, Kovács J, Lakatos T, Géher P, Gömör B, Monostori E, Uher F.
Chondrogenic potential of mesenchymal stem cells from patients with
rheumatoid arthritis and osteoarthritis: measurements in a microculture
system. Cells Tissues Organs. 2009;189:307-316.
Facca S, Gillet P, Stoltz JF, Netter P, Mainard D, Voegel JC, Benkirane-Jessel N.
Three-dimensional sprayed active biological gels and cells for tissue
engineering application. Biomed. Mater. Eng. 2008;18:231-235.
Gan L, Kandel RA. In vitro cartilage tissue formation by Co-culture of primary and
passaged chondrocytes. Tissue Eng. 2007 ;13(4):831-42.
Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for
post-traumatic osteochondral defects of the knee. J Bone Joint Surg. Br.
1997;79:1008-1013
Goldring SR, Dayer JM, Krane SM. Rheumatoid synovial cell hormone responses
modulated by cell–cell interactions. Inflammation 1984;8: 107–121.
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs.
Biomaterials 2006;27:3675–3683.
Grassel S, Ahmed N. Influence of cellular microenvironment and paracrine signals on
chondrogenic differentiation. Front. Biosci. 2007;12:4946-4956.
Grimaud E, Heymann D, Rédini F. Recent advances in TGF-beta effects on
chondrocyte metabolism. Potential therapeutic roles of TGF-beta in
cartilage disorders. Cytokine Growth Factor Rev. 2002;13:241-257
Gross A, Aubin P, Cheah H, Davis A, Ghazavi M. A fresh osteochondral allograft
alternative. Journal Arthroplasty. 2002;17:50-53.
Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R.. Cartilage regeneration using
mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate
hybrid scaffold. Biomaterials. 2006;27:4573-4580.
Hangody L, Feczkó P, Bartha L, Bodó G, Kish G. Mosaicplasty for the treatment of
articular defects of the knee and ankle. Clin. Orthop. Relat. Res. 2001; 391 Suppl: S328-336.
Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L. Autologous
osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg. Am. 2004;86-A Suppl 1:65-72.
Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering.
J. Tissue Eng. Regen. Med. 2007;1:170-178.
Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic
lineage in vitro. Stem Cells. 2004;22:1152-1167.
Hubbard M. Articular debridement versus washout for degeneration of the medial
femoral condyle. A five-year study. J Bone Joint Surg. Br.
1996;78:217-219.
Huskisson EC. Glucosamine and chondroitin for osteoarthritis. J. Int. Med. Res.
2008;36:1161-79.
Hunter W. Of the structure and disease of articulating cartilages. 1743. Clin. Orthop.
Relat. Res. 1995;317:3-6.
Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J. Enhanced
chondrogenic differentiation of murine embryonic stem cells in hydrogels
with glucosamine. Biomaterials. 2006;27: 6015- 6023.
Ishii I, Mizuta H, Sei A, Hirose J, Kudo S, Hiraki Y. Healing of full-thickness defects
of the articular cartilage in rabbits using fibroblast growth factor-2 and a
fibrin sealant. J Bone Joint Surg. Br. 2007;89:693-700.
Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-shaped, nanofiber
scaffold-based car¬tilage engineering using human mesenchymal stem cells
and bioreactor. J. Surg. Res. 2008;149:47-56.
Jiang J, Nicoll SB, Lu HH. Co-culture of osteoblasts and chondrocytes modulates
cellular differentiation in vitro. Biochem. Biophys. Res. Commun.
2005;338:762-770.
Jin CZ, Park SR, Choi BH, Park K, Min BH. In vivo cartilage tissue engineering
using a cell-derived extracellular matrix scaffold. Artif. Organs.
2007;31:183-92.
Johnson L. Arthroscopic abrasion arthroplasty historical and pathologic perspective:
Present status. Arthroscopy. 1986;2:54-69.
Junji I, Lars E, Yosuke S, Mitsuo O. Clinical application of scaffolds for cartilage
tissue engineering. Knee Surg. Sports Traumatol. Arthrosc. 2009;17:561-577.
Karzel K, Lee KJ. [Effect of hexosamine derivatives on mesenchymal metabolic
processes of in vitro cultured fetal bone explants]. Z Rheumatol.
1982;41:212-218.
Kamiya N, Watanabe H, Habuchi H, Takagi H, Shinomura T, Shimizu K, Kimata KJ,
Versican/PG-M regulates chondrogenesis as an extracellular matrix
molecule crucial for mesenchymal condensation. J. Biol. Chem.
2006;281:2390-2400.
Kinneberg KR, Nirmalanandhan VS, Juncosa-Melvin N, Powell HM, Boyce ST,
Shearn JT, Butler DL. Chondroitin-6-sulfate incorporation and mechanical
stimulation increase MSC-collagen sponge construct stiffness. J. Orthop. Res. 2010;28:1092-1099.
Ko CS, Huang JP, Huang CW, Chu IM. Type II collagen-chondroitin
sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue
engineering. J. Biosci. Bioeng. 2009;107:177-182.
Kosher RA, Lash JW, Minor RR. Environmental enhancement of in vitro
chondrogenesis. Dev. Biol. 1973;35:210–20.
Kramer J, Bohrnsen F, Schlenke P, Rohwedel J. Stem cell-derived chondrocytes for
regenerative medicine. Transplant. Proc. 2006;38:762-765.
Kubo M, Ando K, Mimura T, Matsusue Y, and Mori K. Chondroitin sulfate for the
treatment of hip and knee osteoarthritis: Current status and future trends.
Life Sci. 2009:85: 477-483.
Legendre F, Baugé C, Roche R, Saurel AS, Pujol JP. Chondroitin sulfate modulation
of matrix and inflammatory gene expression in IL-1beta-stimulated
chondrocytes-study in hypoxic alginate bead cultures. Osteoarthritis
Cartilage. 2008;16:105-14.
Li X, Lee JP, Balian G, Greg AD. Modulation of chondrocytic properties of
fat-derived mesen¬chymal cells in co-cultures with nucleus pulposus.
Connect Tissue Res., 2005;46:75-82.
Lin YJ, Yen CN, Hu YC, Wu YC, Liao CJ, Chu IM. Chondrocytes culture in
three-dimensional porous alginate scaffolds enhanced cell proliferation,
matrix synthesis and gene expression. J. Biomed. Mater. Res. A.
2009;88:23-33.
Liu X, Zhou GD, Lü XJ, Liu TY, Zhang WJ, Liu W, Cao YL. Potential of
chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes
on biodegradable scaffold: in vivo experiment with pigs and mice.
Zhonghua Yi Xue Za Zhi. 2007;87:1929-1933.
Lippiello L. Glucosamine and chondroitin sulfate: biological response modifiers of
chondrocytes under simulated conditions of joint stress. Osteoarthritis
Cartilage 2003;11:335-342.
Lübke C, Ringe J, Krenn V, Fernahl G, Pelz S, Kreusch-Brinker R, Sittinger M,
Paulitschke M. Growth characterization of neo porcine cartilage pellets and
their use in an interactive culture model. Osteoarthritis Cartilage.
2005;13:478–487.
Magnusson P. Technique of debridement of the knee joint for arthritis. Surg. Clin.
North. Am. 1946;26:226-249.
Manton KJ, Leong DF, Cool SM, Nurcombe V. Disruption of heparan and chondroitin
sulfate signaling enhances mesenchymal stem cell-derived osteogenic
differentiation via bone morphogenetic protein signaling pathways. Stem
Cells. 2007;25(11):2845-54.
Malpeli M, Randazzo N, Cancedda R, Dozin B. Serum-free growth medium sustains
commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng. 2004;10:145-155.
Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint
Surg. Am. 1982;64:460-466.
Mazzetti I, Magagnoli G, Paoletti S, Uguccioni M, Olivotto E, Vitellozzi R, Wieland
HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis - an
untreatable disease? Nat. Rev. Drug Discov. 2005;4:331-344.
National Science Foundation Workshop on Tissue Engineering. Lake Tahoe, CA.
1988.
Nerem RM, Sambanis A. Tissue Engineering: From Biology to Biological
Substitutes. Tissue Eng. 1995;1:3-13.
Nevo Z, Horwitz AL, Dorfman A. Synthesis of chondromucoprotein by chondrocytes
in suspension culture. Dev. Biol. 1972;28:219–28.
Outerbridge HK, Outerbridge AR, Outerbridge RE. The use of a lateral patellar
autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg. Am. 1995;77:65-72.
Park JS, Yang HJ, Woo DG, Yang HN, Na K, Park KH. Chondrogenic differentiation
of mesenchymal stem cells embedded in a scaffold by long-term release of
TGF-b3 complexed with chondroitin sulfate. J. Biomed. Mater. Res. A.
2010;92:806-16.
Pridie K. A method of resurfacing knee joints. J. Bone. Joint Surg. Br.
1959;41:618-619.
Renard E, Chadjichristos C, Kypriotou M, Beauchef G, Bordat P, Dompmartin A,
Widom RL, Boumediene K, Pujol JP, Galéra P. Chondroitin sulphate
decreases collagen synthesis in normal and scleroderma fibroblasts through
a Smad-independent TGF-beta pathway--implication of C-Krox and Sp1. J.
Cell Mo.l Med. 2008;12:2836-2847.
Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland
JA. Intervertebral disc cell-mediated mesenchymal stem cell differentiation.
Stem Cells. 2006;24:707-716.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE.
Subchondral bone osteoblasts induce phenotypic changes in human
osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2005;13:988-997.
Sandya S, Sudhakaran PR Effect of glycosaminoglycans on matrix metalloproteinases
in type II collagen-induced experimental arthritis. Exp. Biol. Med.
2007;232:629-637.
Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth
factor and platelet derived growth factor on in vivo cartilage healing and
repair. Osteoarthritis Cartilage. 2006;14:403-412
Shah MR, Kaplan KM, Meislin RJ, Bosco JA, 3rd. Articular cartilage restoration of
the knee. Bull. NYU. Hosp. Jt. Dis. 2007;65:51-60.
Shen B, Wei A, Tao H, Diwan AD, Ma DD. BMP-2 Enhances TGF-beta3-Mediated
Chondrogenic Differentiation of Human Bone Marrow Multipotent
Mesenchymal Stromal Cells in Alginate Bead Culture. Tissue Eng. Part A.
2009;15:1311-1320.
Simánek V, Kren V, Ulrichová J, Gallo J. The efficacy of glucosamine and
chondroitin sulfate in the treatment of osteoarthritis: are these saccharides
drugs or nutraceuticals? Biomed. Papers. 2005:149: 51-56.
Spalazzi JP, Dionisio KL, Jiang J, Lu HH. Osteoblast and chondrocyte interactions
during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 2003;22:27-34
Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral
defects: surgical technique, rehabilitation, and outcomes. J. Knee Surg.
2002;15(3):170-176.
Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular
cartilage. Biomaterials. 2000;21:431-440.
Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T. Cartilage repair
using hyaluronan hydrogel-encapsulated human embryonic stem
cell-derived chondrogenic cells. Biomaterials. 2010;31:6968-6980.
Tuan RS Biology of developmental and regenerative skeletogenesis. Clin. Orthop.
Relat. Res. 2004;427 Suppl: S105–117.
Uygun BE, Stojsih SE, Matthew HW. Effects of immobilized glycosaminoglycans on
the proliferation and differentiation of mesenchymal stem cells. Tissue Eng.
Part A. 2009;15:3499-3512.
Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, and Elisseeff J.
Chondroitin sulfate based niches for chondrogenic differentiation of
mesenchymal stem cells. Matrix Biol. 2008:27:12-21.
Verbruggen G. Chondroprotective drugs in degenerative joint diseases. Rheumatology
(Oxford). 2006;45(2):129-38.
Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P,
Guicheux J, Noël D. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Arch. Physiol. Biochem. 2009;115:218-226.
Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a
crucial combination of cells, biomaterials and biofactors. Trends
Biotechnol. 2009;27:307-314.
Wang PY, Chow HH, Lai JY, Liu HL, Tsai WB. Dynamic compression modulates
chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin
scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater. 2009;91:143-52.
Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro
chondrogenesis of bone marrow-derived mesenchymal stem cells in a
photopolymerizing hydrogel. Tissue Eng. 2001;9:679-688.
Wu CH, Ko CS, Huang JW, Huang HJ, Chu IM. Effects of exogenous
glycosaminoglycans on human chondrocytes cultivated on type II collagen
scaffolds. J. Mater. Sci. Mater. Med. 2010;21:725-729.
Wu YN, Yang Z, Hui JH, Ouyang HW, Lee EH. Cartilaginous ECM
component-modification of the micro-bead culture system for chondrogenic
differentiation of mesenchymal stem cells. Biomaterials.
2007;28:4056-4067
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *