帳號:guest(18.117.161.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅羽華
作者(外文):Lo, Yu-Hua
論文名稱(中文):複製蛋白DNA解旋酶的結構與功能探討揭示其易位模式及DNA解旋機制
論文名稱(外文):Structural and functional studies of a replicative helicase GkDnaC reveal an insight into translocation and unwinding mechanism
指導教授(中文):孫玉珠
蕭傳鐙
指導教授(外文):Sun, Yuh-Ju
Hsiao, Chwan-Deng
口試委員(中文):孫玉珠
蕭傳鐙
李弘文
袁小琀
黃晟洋
口試委員(外文):Sun, Yuh-Ju
Hsiao, Chwan-Deng
Li, Hung-Wen
Yuan, Hanna S.
Huang, Cheng-Yang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:948227
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:80
中文關鍵詞:DnaC 解旋酶複製叉解旋機製
外文關鍵詞:DnaC helicasereplication forkunwinding mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. The fundamental reaction of replicative hexameric helicase is the unwinding of duplex DNA. However, our understanding of how helicase unwinds remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and in a single-stranded DNA (ssDNA) bound form. The GkDnaC–ssDNA complex structure reveals that three symmetrical basic grooves on the interior surface of the hexamer individually encircle ssDNA. The ssDNA-binding pockets in this structure are directed toward the N-terminal domain collar of the hexameric ring, thus orienting the ssDNA toward the DnaG primase to facilitate the synthesis of short RNA primers. These findings provide insights into the mechanism of ssDNA binding and provide a working model to establish a novel mechanism for DNA translocation at the replication fork. In addition, several key residues responsible for DNA-binding may play a role in DNA translocation during the unwinding process. We also studied these GkDnaC mutants by helicase assays, ATPase assays and single-molecule tethered particle motion (smTPM) experiments. The results demonstrated that the helicase activities of these GkDnaC mutants are 2~4 fold higher that of the wide-type protein. However, the enhancement of helicase activity from mutant proteins is not contributed by the efficiency of ATP hydrolysis, but by the helicase/ssDNA interaction. It implies that losing partial interaction with ssDNA leads to faster DNA translocation. We also studied whether accessory proteins affect helicase behaves at the junction. Taken together, our results reveal an insight into DNA unwinding mechanism.
1 Abstract in Chinese………………………………….....………..…………………..1
2 Abstract……………………………......……………...……………………………....2
3 Introduction…………………………………………..……………..…………………3
4 Materials and methods
4.1 Cloning and mutagenesis ...................………..…………………...……………6
4.2 Gel-filtration chromatography…………………….………………………….…...7
4.3 Crystallization, data collection and structure determination……………......7
4.4 Surface Plasmon Resonance (SPR)…………………………………….................8
4.5 ATP hydrolysis assay…………………………………………………....................9
4.6 EMSA helicase assay………………………………………………...…................10
4.7 Single molecule Tethered Particle Motion (smTPM)
4.7.1 DNA substrates design……………………………………………..…………….10
4.7.2 Helicase unwinding experiments……………………………………………….11 4.7.3 Imaging acquisition and analysis…………………............…….……………12
4.7.4 Bootstrap estimation for Unwinding rates…………………………………...12
5 Results
5.1 Crystal structure of GkDnaC and its complex with ssDNA…………....……13
5.2 Characteristics of GkDnaC bound to ssDNA……….....…..…………….…….14
5.3 Mutagenesis studies of GkDnaC–ssDNA interaction sites by SPR.............15
5.4 The role of flanked DNA binding loop I.…....……..….…...........................16
5.5 GkDnaC form a stable complex with GkDnaI…………………...………....…16
5.6 GkDnaI facilitates ssDNA binding when in complex with GkDnaC………..17
5.7 Helicase activity alters as helicase loses partial DNA-binding interaction....................................................................................................18
5.8 Roles of primosomal proteins in helicase unwinding…………............…...20
5.9 Helicase unwinding process monitored by smTPM…………….......……….21
5.10 ATP dependence of GkDnaC unwinding rate.……...…………..................22
5.11 The strength of Helicase-DNA interaction is correlated with DNA unwinding rates……………………………….........……………………………..……..22
5.12 Primase accelerates the unwinding rate of GkDnaC helicase..…………...23
6 Discussion
6.1 Nucleotide-binding site neighboring with DNA-interaction site..…..……25
6.2 Structural comparison of GkDnaC with papillomavirus E1 helicase…..…..25
6.3 A model for ssDNA binding in the N-terminal region during DNA translocation................................................................................................26
6.4 Helicase translocation and unwinding mechanism……........……………....27
7 Figures………………………………………...……………………........................30
8 Tables………………………………….....................……...……………………….69
9 Reference………………...………………….......................…………................75
1. Benkovic, S.J., Valentine, A.M. and Salinas, F. (2001) Replisome-mediated DNA replication. Annu. Rev. Biochem., 70, 181-208.
2. Baker, T.A. and Bell, S.P. (1998) Polymerases and the replisome: machines within machines. Cell, 92, 295-305.
3. Patel, S.S. and Picha, K.M. (2000) Structure and function of hexameric helicases. Annu. Rev. Biochem., 69, 651-697.
4. Tougu, K., Peng, H. and Marians, K.J. (1994) Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J. Biol. Chem., 269, 4675-4682.
5. Frick, D.N. and Richardson, C.C. (2001) DNA primases. Annu. Rev. Biochem., 70, 39-80.
6. Keck, J.L., Roche, D.D., Lynch, A.S. and Berger, J.M. (2000) Structure of the RNA polymerase domain of E. coli primase. Science, 287, 2482-2486.
7. Singleton, M.R., Dillingham, M.S. and Wigley, D.B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem., 76, 23-50.
8. Zechner, E.L., Wu, C.A. and Marians, K.J. (1992) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size. J. Biol. Chem., 267, 4054-4063.
9. Wu, C.A., Zechner, E.L., Hughes, A.J., Jr., Franden, M.A., McHenry, C.S. and Marians, K.J. (1992) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. J Biol Chem, 267, 4064-4073.
10. Donmez, I. and Patel, S.S. (2006) Mechanisms of a ring shaped helicase. Nucleic Acids Res., 34, 4216-4224.
11. Bird, L.E., Pan, H., Soultanas, P. and Wigley, D.B. (2000) Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry, 39, 171-182.
12. Berger, J.M. (2008) Nucleic acid helicases and translocases. Cell, 134, 888.
13. Singleton, M.R., Dillingham, M. and Wigley, D.B. (2007) Structure and Mechanism of Helicases and Nucleic Acid Translocases. Annu Rev Biochem, 76, 23-50.
14. Patel, S.S. and Picha, K.M. (2000) Structure and function of hexameric helicases. Annu Rev Biochem, 69, 651-697.
15. Delagoutte, E. and von Hippel, P.H. (2001) Molecular Mechanisms of the Functional Coupling of the Helicase (gp41) and Polymerase (gp43) of Bacteriophage T4 within the DNA Replication Fork. Biochemistry, 40, 4459-4477.
16. Lohman, T.M. and Bjornson, K.P. (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem, 65, 169-214.
17. Singleton, M.R. and Wigley, D.B. (2002) Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol, 184, 1819-1826.
18. Betterton, M.D. and Julicher, F. (2005) Opening of nucleic-acid double strands by helicases: Active versus passive opening. Phy Rev E, 71, 11904-11911.
19. Manosas, M., Xi, X.G., Bensimon, D. and Croquette, V. (2010) Active and passive mechanisms of helicases. Nucleic Acids Res, 38, 5518-5526.
20. Johnson, D.S., Bai, L., Smith, B.Y., Patel, S.S. and Wang, M.D. (2007) Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase. Cell, 129, 1299-1309.
21. Lionnet, T., Spiering, M.M., Benkovic, S.J., Bensimon, D. and Croquette, V. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc Natl Acad Sci USA, 104, 19790-19795.
22. Patrick M. Schaeffer, M.J.H.a.N.E.D. (2005) Protein-Protein Interaction in the Eubacterial replisome IUBMB Life, 57, 8.
23. Velten, M., McGovern, S., Marsin, S., Ehrlich, S.D., Noirot, P. and Polard, P. (2003) A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol. Cell, 11, 1009-1020.
24. Soultanas, P. (2002) A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res., 30, 966-974.
25. Bailey, S., Eliason, W.K. and Steitz, T.A. (2007) Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science, 318, 459-463.
26. Wang, G., Klein, M.G., Tokonzaba, E., Zhang, Y., Holden, L.G. and Chen, X.S. (2008) The structure of a DnaB-family replicative helicase and its interactions with primase. Nat. Struct. Mol. Biol., 15, 94-100.
27. Singleton, M.R., Sawaya, M.R., Ellenberger, T. and Wigley, D.B. (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell, 101, 589-600.
28. Enemark, E.J. and Joshua-Tor, L. (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature, 442, 270-275.
29. Bailey, S., Eliason, W.K. and Steitz, T.A. (2007) The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res., 35, 4728-4736.
30. Ahnert, P. and Patel, S.S. (1997) Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5'- and 3'-tails of the forked DNA substrate. J. Biol. Chem., 272, 32267-32273.
31. LeBowitz, J.H. and McMacken, R. (1986) The Escherichia coli dnaB replication protein is a DNA helicase. J. Biol. Chem., 261, 4738-4748.
32. Hingorani, M.M. and Patel, S.S. (1993) Interactions of bacteriophage T7 DNA primase/helicase protein with single-stranded and double-stranded DNAs. Biochemistry, 32, 12478-12487.
33. Arai, K. and Kornberg, A. (1981) Mechanism of dnaB protein action. III. Allosteric role of ATP in the alteration of DNA structure by dnaB protein in priming replication. J. Biol. Chem., 256, 5260-5266.
34. Arai, K. and Kornberg, A. (1981) Mechanism of dnaB protein action. II. ATP hydrolysis by dnaB protein dependent on single- or double-stranded DNA. J. Biol. Chem., 256, 5253-5259.
35. Liu, C.C. and Alberts, B.M. (1981) Characterization of the DNA-dependent GTPase activity of T4 gene 41 protein, an essential component of the T4 bacteriophage DNA replication apparatus. J. Biol. Chem., 256, 2813-2820.
36. Otwinowski, Z., Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-327.
37. Terwilliger, T.C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr., 55, 849-861.
38. Terwilliger, T.C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr., 59, 38-44.
39. McRee, D.E. (1999) XtalView/Xfit -A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 125, 156-165.
40. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S. et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr., 54, 905-921.
41. Vagin, A., Teplyakov, A. . (1997) MOLREP: an automated program for molecular replacement. J. Appl. Cryst. , 30, 1022-1025.
42. Brueckner, F., Hennecke, U., Carell, T. and Cramer, P. (2007) CPD damage recognition by transcribing RNA polymerase II. Science, 315, 859-862.
43. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D. and Kornberg, R.D. (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell, 127, 941-954.
44. Bao, Y., White, C.L. and Luger, K. (2006) Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure. J. Mol. Biol., 361, 617-624.
45. Laskowski, R.A., MacArthur, M. W., Moss, D. S., Thornton, J. M. . (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26, 283-291.
46. DeLano, W.L. (2002) The pyMOL User's Manual. Delano Scientific, San Carlos, CA.
47. Spies, M., Dillingham, M.S. and Kowalczykowski, S.C. (2005) Translocation by the RecB Motor Is an Absolute Requirement for Χ-Recognition and RecA Protein Loading by RecBCD Enzyme. J Biol Chem, 280, 37078-37087.
48. Datta, K., Neumann, R.D. and Winters, T.A. (2003) A protocol for separation and isolation of small and/or large DNA fragments with high yield using CL4B Sepharose. Anal biochem, 317, 284-287.
49. Chu, J.-F., Chang, T.-C. and Li, H.-W. (2010) Single-Molecule TPM Studies on the Conversion of Human Telomeric DNA. Biophys J, 98, 1608-1616.
50. Konieczny, I. (2003) Strategies for helicase recruitment and loading in bacteria. EMBO Rep., 4, 37-41.
51. Egelman, E.H., Yu, X., Wild, R., Hingorani, M.M. and Patel, S.S. (1995) Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl. Acad. Sci. USA, 92, 3869-3873.
52. Kaplan, D.L. and O'Donnell, M. (2002) DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell, 10, 647-657.
53. Bujalowski, W. and Jezewska, M.J. (1995) Interactions of Escherichia coli primary replicative helicase DnaB protein with single-stranded DNA. The nucleic acid does not wrap around the protein hexamer. Biochemistry, 34, 8513-8519.
54. Jezewska, M.J., Rajendran, S. and Bujalowski, W. (1998) Functional and structural heterogeneity of the DNA binding site of the Escherichia coli primary replicative helicase DnaB protein. J. Biol. Chem., 273, 9058-9069.
55. Jezewska, M.J., Kim, U.S. and Bujalowski, W. (1996) Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer. Biochemistry, 35, 2129-2145.
56. Notarnicola, S.M., Park, K., Griffith, J.D. and Richardson, C.C. (1995) A domain of the gene 4 helicase/primase of bacteriophage T7 required for the formation of an active hexamer. J. Biol. Chem., 270, 20215-20224.
57. Washington, M.T., Rosenberg, A.H., Griffin, K., Studier, F.W. and Patel, S.S. (1996) Biochemical analysis of mutant T7 primase/helicase proteins defective in DNA binding, nucleotide hydrolysis, and the coupling of hydrolysis with DNA unwinding. J. Biol. Chem., 271, 26825-26834.
58. Story, R.M. and Steitz, T.A. (1992) Structure of the recA protein-ADP complex. Nature, 355, 374-376.
59. Lo, Y.-H., Tsai, K.-L., Sun, Y.-J., Chen, W.-T., Huang, C.-Y. and Hsiao, C.-D. (2009) The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res, 37, 804-814.
60. Farge, G.r., Holmlund, T., Khvorostova, J., Rofougaran, R., Hofer, A. and Falkenberg, M. (2008) The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. Nucleic Acids Res, 36, 393–403.
61. Marrione, P.E. and Cox, M.M. (1995) RuvB Protein-Mediated ATP Hydrolysis: Functional Asymmetry in the RuvB Hexamer. Biochemistry, 34, 9809-9818.
62. Bird, L.E., Pan, H., Soultanas, P. and Wigley, D.B. (2000) Mapping Protein-Protein Interactions within a Stable Complex of DNA Primase and DnaB Helicase from Bacillus stearothermophilus. Biochemistry, 39, 171-182.
63. Tsai, K.-L., Lo, Y.-H., Sun, Y.-J. and Hsiao, C.-D. (2009) Molecular Interplay between the Replicative Helicase DnaC and Its Loader Protein DnaI from Geobacillus kaustophilus. J Mol Biol, 393, 1056-1069.
64. Bailey, S., Eliason, W.K. and Steitz, T.A. (2007) Structure of Hexameric DnaB Helicase and Its Complex with a Domain of DnaG Primase. Science, 318, 459-463.
65. Soultanas, P. (2002) A functional interaction between the putative primosomal protein DnaI and main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res, 30, 966-974.
66. Frick, D.N. and Richardson, C.C. (2001) DNA Primases. Annu Rev Biochem, 70, 39-80.
67. Allen, G.C.J. and Kornberg, A. (1991) Fine Balance in the Regulation of DnaB Helicase by DnaC Protein in Replication in Escherichia coli. J Biol Chem, 266, 22096-22101.
68. Marrione, P.E. and Cox, M.M. (1996) Allosteric Effects of RuvA Protein, ATP, and DNA on RuvB Protein-Mediated ATP Hydrolysis. Biochemistry, 35, 11228-11238.
69. Yodh, J.G., Schlierf, M. and Ha, T. (2010) Insight intohelicasemechanismand function revealed through single-molecule approaches. Q Rev Biophys 43, 185-217.
70. Ribeck, N., Kaplan, D.L., Bruck, I. and Saleh, O.A. (2010) DnaB Helicase Activity Is Modulated by DNA Geometry and Force. Biophys J, 99, 2170-2179.
71. Fan, H.-F. and Li, H.-W. (2009) Studying RecBCD helicase translocation along chi-DNA using tethered particle motion with a stretching force. Biophys J, 96, 1875-1883.
72. Wahle, E., Lasken, R.S. and Kornberg, A. (1989) The dnaB-dnaC replication protein complex of Escherichia coli. II. Role of the complex in mobilizing dnaB functions. J Biol Chem, 264, 2469-2475.
73. Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J., 1, 945-951.
74. Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 277, 333-338.
75. Ilyina, T.V., Gorbalenya, A.E. and Koonin, E.V. (1992) Organization and evolution of bacterial and bacteriophage primase-helicase systems. J. Mol. Evol., 34, 351-357.
76. Picha, K.M. and Patel, S.S. (1998) Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding. J. Biol. Chem., 273, 27315-27319.
77. Matson, S.W. and Richardson, C.C. (1985) Nucleotide-dependent binding of the gene 4 protein of bacteriophage T7 to single-stranded DNA. J. Biol. Chem., 260, 2281-2287.
78. Yong, Y. and Romano, L.J. (1995) Nucleotide and DNA-induced conformational changes in the bacteriophage T7 gene 4 protein. J. Biol. Chem., 270, 24509-24517.
79. Jezewska, M.J. and Bujalowski, W. (1996) Global conformational transitions in Escherichia coli primary replicative helicase DnaB protein induced by ATP, ADP, and single-stranded DNA binding. Multiple conformational states of the helicase hexamer. J. Biol. Chem., 271, 4261-4265.
80. Biswas, E.E. and Biswas, S.B. (1999) Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochemistry, 38, 10919-10928.
81. Patel, S.S. and Donmez, I. (2006) Mechanisms of Helicases. J Biol Chem, 281, 18265-18268.
82. Donmez, I. and Patel, S.S. (2006) SURVEY AND SUMMARY: Mechanisms of a ring shaped helicase. Nucleic Acids Res, 34, 4216-4224.
83. Wong, I. and Lohman, T.M. (1992) Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase-DNA binding. Science, 256, 350-355.
84. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. and Wigley, D.B. (1999) Crystal Structures of Complexes of PcrA DNA Helicase with a DNA Substrate Indicate an Inchworm Mechanism. Cell, 97, 75-84.
85. Levin, M.K., Gurjar, M. and Patel, S.S. (2005) A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase. Nat Struct Mol Biol, 12, 429-435.
86. Thomsen, N.D. and Berger, J.M. (2009) Running in Reverse: The Structural Basis for Translocation Polarity in Hexameric Helicases. Cell, 139, 523-534.
87. Enemark, E.J. and Joshua-Tor, L. (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature, 442, 270-275.
88. Amaratunga, M. and Lohman, T.M. (1993) Escherichia coli Rep Helicase Unwinds DNA by an Active Mechanism. Biochemistry, 32, 6815-6820.
89. Geiselmann, J., Wang, Y., Seifried, S.E. and von Hippel, P.H. (1993) A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho. Proc Natl Acad Sci USA, 90, 7754-7758.
90. Leroy, J.L., Kochoyan, M., Huynh-Dinh, T. and Gukron, M. (1988) Characterization of Base-pair Opening in Deoxynucleotide Duplexes using Catalyzed Exchange of the Imino Proton. J Mol Biol, 200, 223-228.
91. Nonin, S., Leroy, J.-L. and GuCron, M. (1995) Terminal Base Pairs of Oligodeoxynucleotides: Imino Proton Exchange and Fraying. Biochemistry, 34, 10652-10659.
92. Tanner, N.A., Hamdan, S.M., Jergic, S., Schaeffer, P.M., Dixon, N.E. and Oijen, A.M.v. (2008) Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol, 15, 170 - 176.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *