帳號:guest(3.137.157.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡光磊
作者(外文):Tsai, Kuang-Lei
論文名稱(中文):蛋白質與核酸結合之結構與功能分析研究:(一)人類叉形頭轉錄因子FOXO3與核酸複合體之結構分析與研究 (二)複製解旋酶與解旋酶載體之結構與功能分析研究
論文名稱(外文):Structural and functional studies of the protein-DNA complex: (一)Structural study of human forkhead transcriptional factor FOXO3a bound to DNA (二)Structural and functional studies of replicative helicase and helicase loader
指導教授(中文):蕭傳鐙
孫玉珠
指導教授(外文):Hsiao, Chwan-Deng
Sun, Yuh-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:948243
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:98
中文關鍵詞:轉錄叉形頭核酸解旋酶載體
外文關鍵詞:transcriptionforkheadDNAhelicaseloader
相關次數:
  • 推薦推薦:0
  • 點閱點閱:616
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
人類叉形頭轉錄因子FOXO3與核酸複合體之結構分析與研究
摘 要
FOXO3a 是屬於FOXO轉錄因子家庭的一員。FOXO蛋白質參與許多訊息傳遞路徑,而且它們的轉錄活性是由許多後修飾機制來調控,包括磷酸化 (phosphorylation),乙醯化 (acetylation) 與泛素化 (ubiquitination)。因為這三種後修飾作用位置位於FOXO 轉路因子的核酸結合區域的C端,因此這三種後修飾作用可能可以改變與核酸作用的活性。為了要瞭解FOXO如何被調控,我們解出了解析度為2.7Å 的FOXO3a的核酸結合區域與13鹼基對含有FOXO專屬結合區域的核酸複合體的結構。根據位於C端的特殊結構特徵與生化和突變的探討,我們的結果可能可以解釋由磷酸化酶所引起的磷酸化和由以乙醯化酶所作用的乙醯化可以減弱與核酸結合的活性,因此減低FOXO的轉錄活性。另外我們證明一些胸腺嘧啶的甲基對於與FOXO3a的核酸結合區域的辨認是重要的。







複製解旋酶與解旋酶載體之結構與功能分析研究
摘 要
解旋酶載入因子 (helicase loading factor) 被認為在進行核酸複製時,負責把六套體環狀解旋酶傳送到複製叉 (replication fork)。然而如何將解旋酶傳送到核酸上的機制仍然不是很清楚。在枯草桿菌(Bacillus subtilis)中,蛋白質(DnaI)屬於AAA+ 家庭中的一員且負責將六套體解旋酶(DnaC) 傳送到核酸上。在這邊,我們研究嗜熱菌(Geobacillus kaustophilus) GkDnaC與GkDnaI的交互作用並發現在沒有ATP下,GkDnaI可以和GkDnaC形成以比例為6:6的穩定複合體。表面電漿共振分析(Surface Plasmon Resonance, SPR)指出GkDnaI加速GkDnaC傳送到單股核酸上並促進在有ATP下與核酸形成複合體。另外,GkDnaI的C端區域可以單獨與單股核酸作用而且此作用是可被核甘酸(nucleotides)來調控。我們解出解旋酶(GkDnaC)的晶體結構。發現此結構呈現出六套體解旋酶的構造,並在六套體中心形成一個通道. 我們也解出GkDnaI的C端區域與ADP的複合體的2.5Å的晶體結構。此結構除了呈現ADP與Walker A和Walker B 的作用關係,並且指出一個可能與單股核酸作用的帶正電區域。這些發現提供一些資訊對於瞭解解旋酶如何傳送到核酸上有重大助益。
Structural study of human forkhead transcriptional factor FOXO3a
bound to DNA
Abstract
FOXO3a is a transcription factor of the FOXO family. The FOXO proteins participate in multiple signaling pathways, and their transcriptional activity is regulated by several post-translational mechanisms, including phosphorylation, acetylation, and ubiquitination. Because these post-translational modification sites are located at the C-terminal basic region of the FOXO DNA-binding domain, it is possible that these post-translational modifications could alter the DNA-binding characteristics. To understand how FOXO-mediated transcriptional activity, we reported here the 2.7 Å crystal structure of the DNA-binding domain of FOXO3a (FOXO3a-DBD) bound to a 13-bp DNA duplex containing a FOXO consensus binding sequence (GTAAACA). Based on a unique structural feature in the C-terminal region and results from biochemical and mutational studies, our studies may explain how FOXO-DBD C-terminal phosphorylation by protein kinase B (PKB) or acetylation by cAMP-response element binding protein (CBP) can attenuate the DNA-binding activity and thereby reduce transcriptional activity of FOXO proteins. In addition, we demonstrate that the methyl groups of specific thymine bases within the consensus sequence are important for FOXO3a-DBD recognition of the consensus binding site.




Structural and functional studies of replicative helicase and helicase loader
Abstract
Helicase loading factors are thought to transfer the hexameric ring-shaped helicases onto the replication fork during DNA replication. However, the mechanism of helicase transfer onto DNA remains unclear. In Bacillus subtilis, the protein DnaI, which belongs to the AAA+ family of ATPases, is responsible for delivering the hexameric helicase DnaC onto DNA. Here we investigated the interaction between DnaC and DnaI from Geobacillus kaustophilus HTA426 (GkDnaC and GkDnaI) and determined that GkDnaI forms a stable complex with GkDnaC with an apparent stoichiometry of GkDnaC6-GkDnaI6 in the absence of ATP. Surface plasmon resonance analysis indicated that GkDnaI facilitates loading of GkDnaC onto single-stranded DNA (ssDNA) and supports complex formation with ssDNA in the presence of ATP. Additionally, the GkDnaI C-terminal AAA+ domain alone could bind ssDNA, and binding was modulated by nucleotides. We determined the crystal structure of GkDnaC and found that the GkDnaC proteins form a hexamer with a channel in the center. We also determined the crystal structure of the C-terminal AAA+ domain of GkDnaI in complex with ADP at 2.5 Å resolution. The structure not only delineates the binding of ADP in the expected Walker A and B motifs but also reveals a positively charged region that may be involved in ssDNA binding. These findings provide insight into the mechanism of replicative helicase loading onto ssDNA.
Contents
Abstract in Chinese…………………………………………….………............II
Abstract …………………………………………………..................................III
Abbreviations………………………………………………………………………..IV

Part I. Structural study of human forkhead transcriptional factor
FOXO3a bound to DNA
Chapter 1. Introduction……………………………………………………….... ..1
Chapter 2. Materials and Methods
2.1 Expression and purification of FOXO3a-DBD…………………………….... …4
2.2 Crystallization of protein-DNA complex…………………………….….….…. .4
2.3 Data collection and structure determination………………………….….….. ....5
2.4 Electrophoretic mobility shift assay……………………………………....….. ...6
2.5 Fluorescence anisotropy assay………………………………………………. …6
2.6 Steady-state fluorescence measurements……………………………………. …7

Chapter 3. Results
3.1 Overview of the complex structure……………………………………….…. …8
3.2 Major groove recognition within the consensus binding site…………….…. ….9
3.3 The FOXO3a-DBD C terminus forms a coil to interact with the DNA
major groove……………………………………………………………...….… 9
3.4 Interaction between wing 1 and DNA……………………………….……...... .11
3.5 Structural comparison with other FOX proteins………………………...….… .11
3.6 DNA conformation in the FOXO3a-DBD/DNA complex……………...….… .13
3.7 Mutational analyses of FOXO3a-DBD1…………………………………....... .13
3.8 FOXO protein recognizes an AT-rich consensus sequence……………….. .…16
3.9 The C-terminal coil of FOXO3a-DBD was stabilized in the presence of DNA………………………………………..………………………….…....… 16
Chapter 4. Discussion……………………………………………………..… 18
Chapter 5. Conclusion…………………………………………………… .…22
Part II. Structural and functional studies of replicative helicase and
helicase loader
Chapter 1. Introduction…………………………………………………… ……23
Chapter 2. Materials and Methods
2.1 Cloning of helicase and helicase loader ………………..…………………..… 26
2.2 Mutagenesis……………………………………………………………….... …27
2.3 Expression and purification……………………………………………...… .…27
2.4 Gel filtration chromatography………………………………………..……. .…29
2.5 GST pulldown assays……………………………………………………….… 29
2.6 Surface plasmon resonance……………………………………………….... …29
2.7 Crystallization, data collection and structure determination of GkDnaC…. .…31
2.8 Crystallization, data collection and structure determination of GkDnaIC… .….32
2.9 Sample preparation, data collection, and model reconstruction by electron microscopy of GkDnaC/GkDnaI …………………………………………... …33
Chapter 3. Results
3.1 Characterization of GkDnaI……………………………………………….….. .35
3.2 The GkDnaC helicase and GkDnaI form a stable complex in the absence of nucleotides………………………………………………………………….. …35
3.3 Stoichiometry of the GkDnaC/GkDnaI complex…………………………… …37
3.4 GkDnaI facilitates ssDNA binding when in complex with GkDnaC……….….37
3.5 The C-terminal domain of GkDnaI binds ssDNA………………………….…..39
3.6 Structure of the GkDnaC………………………………………………….…....39
3.7 Structure of the C-terminal AAA+ domain of GkDnaI…………………..….…41
3.8 Nucleotide binding site in GkDnaIC………………………………………...….42
3.9 Structural comparison of GkDnaIC with other helicase loader AAA+ ATPase domains…………………………………………………………………….….. 43
3.10 The potential GkDnaIC ssDNA binding region………………………….....…44
3.11 Preliminary EM analysis of GkDnaC/GkDnaI complex ……………………..46
Chapter 4. Discussion …………………………………………………..........… 48
Chapter 5. Conclusion…………………………………………………..…....…52
Figures and Tables………………………………………………………..…….… 53
References…………..……………………………………………………...… 89
References
Accili, D., and Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426.
Allen, G.C., Jr., and Kornberg, A. (1991). Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J Biol Chem 266, 22096-22101.
Anderson, M.J., Viars, C.S., Czekay, S., Cavenee, W.K., and Arden, K.C. (1998). Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47, 187-199.
Aoki, M., Jiang, H., and Vogt, P.K. (2004). Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci U S A 101, 13613-13617.
Arden, K.C. (2004). FoxO: linking new signaling pathways. Mol Cell 14, 416-418.
Bailey, S., Eliason, W.K., and Steitz, T.A. (2007). Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318, 459-463.
Baker, T.A., Funnell, B.E., and Kornberg, A. (1987). Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. J Biol Chem 262, 6877-6885.
Baker, T.A., Sekimizu, K., Funnell, B.E., and Kornberg, A. (1986). Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell 45, 53-64.
Barthel, A., Schmoll, D., and Unterman, T.G. (2005). FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16, 183-189.
Biswas, S.B., Flowers, S., and Biswas-Fiss, E.E. (2004). Quantitative analysis of nucleotide modulation of DNA binding by DnaC protein of Escherichia coli. Biochem J 379, 553-562.
Borkhardt, A., Repp, R., Haas, O.A., Leis, T., Harbott, J., Kreuder, J., Hammermann, J., Henn, T., and Lampert, F. (1997). Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14, 195-202.
Bramhill, D., and Kornberg, A. (1988a). Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52, 743-755.
Bramhill, D., and Kornberg, A. (1988b). A model for initiation at origins of DNA replication. Cell 54, 915-918.
Brownawell, A.M., Kops, G.J., Macara, I.G., and Burgering, B.M. (2001). Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol 21, 3534-3546.
Bruand, C., Ehrlich, S.D., and Janniere, L. (1995). Primosome assembly site in Bacillus subtilis. Embo J 14, 2642-2650.
Bruand, C., Farache, M., McGovern, S., Ehrlich, S.D., and Polard, P. (2001). DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Molecular microbiology 42, 245-255.
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J.V., Dalal, S.N., DeCaprio, J.A., Greenberg, M.E., and Yaffe, M.B. (2002). 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156, 817-828.
Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-921.
Burgering, B.M., and Kops, G.J. (2002). Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27, 352-360.
Cahill, C.M., Tzivion, G., Nasrin, N., Ogg, S., Dore, J., Ruvkun, G., and Alexander-Bridges, M. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276, 13402-13410.
Cichy, S.B., Uddin, S., Danilkovich, A., Guo, S., Klippel, A., and Unterman, T.G. (1998). Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin response sequence. J Biol Chem 273, 6482-6487.
Clark, K.L., Halay, E.D., Lai, E., and Burley, S.K. (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412-420.
Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M., Nakajima, T., and Fukamizu, A. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 101, 10042-10047.
Davey, M.J., Fang, L., McInerney, P., Georgescu, R.E., and O'Donnell, M. (2002). The DnaC helicase loader is a dual ATP/ADP switch protein. Embo J 21, 3148-3159.
DeLano, W.L. (2002). The PyMOL User's Manual. Delano Scientific, San Carlos, CA.
Erzberger, J.P., Mott, M.L., and Berger, J.M. (2006). Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nature structural & molecular biology 13, 676-683.
Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116, 190-199.
Fukuoka, M., Daitoku, H., Hatta, M., Matsuzaki, H., Umemura, S., and Fukamizu, A. (2003). Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med 12, 503-508.
Fuller, R.S., Funnell, B.E., and Kornberg, A. (1984). The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38, 889-900.
Funnell, B.E., Baker, T.A., and Kornberg, A. (1987). In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J Biol Chem 262, 10327-10334.
Furuyama, T., Nakazawa, T., Nakano, I., and Mori, N. (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349, 629-634.
Gajiwala, K.S., and Burley, S.K. (2000). Winged helix proteins. Curr Opin Struct Biol 10, 110-116.
Galili, N., Davis, R.J., Fredericks, W.J., Mukhopadhyay, S., Rauscher, F.J., 3rd, Emanuel, B.S., Rovera, G., and Barr, F.G. (1993). Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5, 230-235.
Granadino, B., Perez-Sanchez, C., and Rey-Campos, J. (2000). Current Genomics 1, 353-382.
Greer, E.L., and Brunet, A. (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410-7425.
Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997). Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335-345.
Hannenhalli, S., and Kaestner, K.H. (2009). The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10, 233-240.
Heller, R.C., and Marians, K.J. (2006). Replisome assembly and the direct restart of stalled replication forks. Nature reviews 7, 932-943.
Hromas, R., and Costa, R. (1995). The hepatocyte nuclear factor-3/forkhead transcription regulatory family in development, inflammation, and neoplasia. Crit Rev Oncol Hematol 20, 129-140.
Hu, M.C., Lee, D.F., Xia, W., Golfman, L.S., Ou-Yang, F., Yang, J.Y., Zou, Y., Bao, S., Hanada, N., Saso, H., et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225-237.
Huang, C.Y., Hsu, C.H., Sun, Y.J., Wu, H.N., and Hsiao, C.D. (2006a). Complexed crystal structure of replication restart primosome protein PriB reveals a novel single-stranded DNA-binding mode. Nucleic Acids Res 34, 3878-3886.
Huang, H., Regan, K.M., Lou, Z., Chen, J., and Tindall, D.J. (2006b). CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294-297.
Imai, Y., Ogasawara, N., Ishigo-Oka, D., Kadoya, R., Daito, T., and Moriya, S. (2000). Subcellular localization of Dna-initiation proteins of Bacillus subtilis: evidence that chromosome replication begins at either edge of the nucleoids. Molecular microbiology 36, 1037-1048.
Ioannou, C., Schaeffer, P.M., Dixon, N.E., and Soultanas, P. (2006). Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis. Nucleic Acids Res 34, 5247-5258.
Iyer, L.M., Leipe, D.D., Koonin, E.V., and Aravind, L. (2004). Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146, 11-31.
Jacobs, F.M., van der Heide, L.P., Wijchers, P.J., Burbach, J.P., Hoekman, M.F., and Smidt, M.P. (2003). FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278, 35959-35967.
Jin, C., and Liao, X. (1999). Backbone dynamics of a winged helix protein and its DNA complex at different temperatures: changes of internal motions in genesis upon binding to DNA. J Mol Biol 292, 641-651.
Jin, C., Marsden, I., Chen, X., and Liao, X. (1999). Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J Mol Biol 289, 683-690.
Kaufmann, E., and Knochel, W. (1996). Five years on the wings of fork head. Mech Dev 57, 3-20.
Kaufmann, E., Muller, D., and Knochel, W. (1995). DNA recognition site analysis of Xenopus winged helix proteins. J Mol Biol 248, 239-254.
Kobori, J.A., and Kornberg, A. (1982). The Escherichia coli dnaC gene product. III. Properties of the dnaB-dnaC protein complex. J Biol Chem 257, 13770-13775.
Konieczny, I. (2003). Strategies for helicase recruitment and loading in bacteria. EMBO reports 4, 37-41.
Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Coffer, P.J., Huang, T.T., Bos, J.L., Medema, R.H., and Burgering, B.M. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316-321.
Kops, G.J., de Ruiter, N.D., De Vries-Smits, A.M., Powell, D.R., Bos, J.L., and Burgering, B.M. (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630-634.
Ku, S.Y., Cornell, K.A., and Howell, P.L. (2007). Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog. BMC Struct Biol 7, 70.
Lai, E., Clark, K.L., Burley, S.K., and Darnell, J.E., Jr. (1993). Hepatocyte nuclear factor 3/fork head or "winged helix" proteins: a family of transcription factors of diverse biologic function. Proc Natl Acad Sci U S A 90, 10421-10423.
Lavery, R., and Sklenar, H. (1989). Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn 6, 655-667.
Learn, B.A., Um, S.J., Huang, L., and McMacken, R. (1997). Cryptic single-stranded-DNA binding activities of the phage lambda P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA. Proc Natl Acad Sci U S A 94, 1154-1159.
LeBowitz, J.H., and McMacken, R. (1986). The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261, 4738-4748.
Lo, Y.H., Tsai, K.L., Sun, Y.J., Chen, W.T., Huang, C.Y., and Hsiao, C.D. (2009). The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 37, 804-814.
Loscha KV, J.K., Ioannou C, Su XC, Hill FR, Otting G, Dixon NE, Liepinsh E. (2009). A novel zinc-binding fold in the helicase interaction domain of the Bacillus subtilis DnaI helicase loader. Nuclear Acids Research.
Marsin, S., McGovern, S., Ehrlich, S.D., Bruand, C., and Polard, P. (2001). Early steps of Bacillus subtilis primosome assembly. J Biol Chem 276, 45818-45825.
Marszalek, J., and Kaguni, J.M. (1994). DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J Biol Chem 269, 4883-4890.
Matsuzaki, H., Daitoku, H., Hatta, M., Aoyama, H., Yoshimochi, K., and Fukamizu, A. (2005). Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 102, 11278-11283.
McRee, D.E. (1999). XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125, 156-165.
Moriya, S., Imai, Y., Hassan, A.K., and Ogasawara, N. (1999). Regulation of initiation of Bacillus subtilis chromosome replication. Plasmid 41, 17-29.
Mott, M.L., Erzberger, J.P., Coons, M.M., and Berger, J.M. (2008). Structural synergy and molecular crosstalk between bacterial helicase loaders and replication initiators. Cell 135, 623-634.
Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563.
Myatt, S.S., and Lam, E.W. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7, 847-859.
Noirot-Gros, M.F., Dervyn, E., Wu, L.J., Mervelet, P., Errington, J., Ehrlich, S.D., and Noirot, P. (2002). An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 99, 8342-8347.
Obsil, T., Ghirlando, R., Anderson, D.E., Hickman, A.B., and Dyda, F. (2003). Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264-15272.
Obsilova, V., Vecer, J., Herman, P., Pabianova, A., Sulc, M., Teisinger, J., Boura, E., and Obsil, T. (2005). 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44, 11608-11617.
Otwinowski, Z.a.M., W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326.
Overdier, D.G., Porcella, A., and Costa, R.H. (1994). The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14, 2755-2766.
Pierrou, S., Hellqvist, M., Samuelsson, L., Enerback, S., and Carlsson, P. (1994). Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. Embo J 13, 5002-5012.
Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M., and Dimmeler, S. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115, 2382-2392.
Sandler, S.J., and Marians, K.J. (2000). Role of PriA in replication fork reactivation in Escherichia coli. Journal of bacteriology 182, 9-13.
Singleton, M.R., Dillingham, M.S., and Wigley, D.B. (2007). Structure and mechanism of helicases and nucleic acid translocases. Annual review of biochemistry 76, 23-50.
Soultanas, P. (2002). A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res 30, 966-974.
Stroud, J.C., Wu, Y., Bates, D.L., Han, A., Nowick, K., Paabo, S., Tong, H., and Chen, L. (2006). Structure of the forkhead domain of FOXP2 bound to DNA. Structure 14, 159-166.
Takaishi, H., Konishi, H., Matsuzaki, H., Ono, Y., Shirai, Y., Saito, N., Kitamura, T., Ogawa, W., Kasuga, M., Kikkawa, U., et al. (1999). Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci U S A 96, 11836-11841.
Takami, H., Takaki, Y., Chee, G.J., Nishi, S., Shimamura, S., Suzuki, H., Matsui, S., and Uchiyama, I. (2004). Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32, 6292-6303.
Teplyakov, A.V.a.A. (1997). MOLREP: an Automated Program for Molecular Replacement. J Appl Cryst 30, 1022-1025.
Tsai, K.L., Huang, C.Y., Chang, C.H., Sun, Y.J., Chuang, W.J., and Hsiao, C.D. (2006). Crystal Structure of the Human FOXK1a-DNA Complex and Its Implications on the Diverse Binding Specificity of Winged Helix/Forkhead Proteins. J Biol Chem 281, 17400-17409.
Vagin, A.a.T., A. (1997). MOLREP: an automated program for molecular replacement. J Appl Cryst 30, 1022-1025.
Van Der Heide, L.P., Hoekman, M.F., and Smidt, M.P. (2004). The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380, 297-309.
van der Horst, A., Tertoolen, L.G., de Vries-Smits, L.M., Frye, R.A., Medema, R.H., and Burgering, B.M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279, 28873-28879.
Velten, M., McGovern, S., Marsin, S., Ehrlich, S.D., Noirot, P., and Polard, P. (2003). A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol Cell 11, 1009-1020.
Wahle, E., Lasken, R.S., and Kornberg, A. (1989a). The dnaB-dnaC replication protein complex of Escherichia coli. I. Formation and properties. J Biol Chem 264, 2463-2468.
Wahle, E., Lasken, R.S., and Kornberg, A. (1989b). The dnaB-dnaC replication protein complex of Escherichia coli. II. Role of the complex in mobilizing dnaB functions. J Biol Chem 264, 2469-2475.
Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971.
Zhang, X., Gan, L., Pan, H., Guo, S., He, X., Olson, S.T., Mesecar, A., Adam, S., and Unterman, T.G. (2002). Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 277, 45276-45284.
Zhao, X., Gan, L., Pan, H., Kan, D., Majeski, M., Adam, S.A., and Unterman, T.G. (2004). Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J 378, 839-849.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *