帳號:guest(18.217.6.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韋竹鴻
作者(外文):Wei, Chu-Hung
論文名稱(中文):鈷催化共軛烯酮與炔類之不對稱還原偶合及[3+2]環化反應
論文名稱(外文):Cobalt-Catalyzed Asymmetric Reductive Coupling and [3+2] Reductive Cycloaddition of Alkynes with Enones
指導教授(中文):鄭建鴻
指導教授(外文):Cheng, Chien-Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:9523828
出版年(民國):99
畢業學年度:99
語文別:中文
論文頁數:265
中文關鍵詞:不對稱催化還原偶合反應[3+2]還原環化加成反應
相關次數:
  • 推薦推薦:0
  • 點閱點閱:343
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,首先在CoI2/(R)-BINAP)/Zn/ZnI2催化系統下,以1,4-dioxane為溶劑、H2O為質子的來源,在室溫下反應24小時,將炔類(1a-1g)及環共軛烯酮(2a-2d)順利的進行分子間不對稱還原偶合反應,並且得到一系列具有高鏡像、立體、位向選擇率的多取代烯類衍生物。接著藉由產物2.3a、2.3f絕對結構的鑑定,更進一步的了解手性配位基在反應中間體中所造成的立體效應對於產物絕對結構的影響。
此外,分別在CoBr2/dppe/Mn/ZnCl2/CH3CN以及CoI2/BINAP/Zn/ZnI2/1,4-dioxane的催化系統下,不額外添加H2O為質子來源,在40oC下反應24小時,可將炔類(1a-1l)以及環共軛烯酮(2a-2e)順利的進行分子間[3+2]還原環化加成反應,並且得到一系列具有高立體選擇率之[2.2.1]及[3.2.1]雙碳環醇衍生物。此分子間[3+2]還原環化加成反應拓展炔類與共軛烯酮,在過渡金屬催化下新的反應類型。並且利用同位素實驗更進一步的了解反應機構。
最後我們延續上述分子間[3+2]還原環化加成反應,利用CoI2/(R,R′,S,S′)-Duanphos/Zn/ZnI2催化系統下,以1,4-dioxane為溶劑,在室溫下反應24小時,將炔類(1a-1i)以及環共軛烯酮(2a-2e)順利進行不對稱分子間[3+2]還原環化加成反應,並且得到一系列具有高鏡像及立體選擇率的[2.2.1]及[3.2.1]雙碳環醇衍生物。藉由產物3.3a絕對結構的鑑定,使得我們更進一步的了解手性配位基在反應機構中的影響。此外我們根據炔類與環共軛烯酮類化合物分別進行不對稱還原偶合反應以及不對稱[3+2]還原環化加成反應的結果,進一步探討此兩種反應的互相關係。

In the thesis, a CoI2/(R)-BINAP, Zn, ZnI2 and H2O system efficiently catalyzed the intermolecular asymmetric reductive coupling of alkynes (1a-1g) with cyclic enones (2a-2d) at room temperature for 24 hour to afford highly enantioselective β-substituted cyclic enones. The reaction proceeds with highly regio- and stereoselectivity. In addition, by identify the absolute configuration of products 2.3a and 2.3f, a possible mechanism that involves the formation of cobaltacyclopentene intermediate from alkyne and cyclic enone is proposed.
In addition, two different catalyzing system: CoBr2/dppe, Mn, ZnCl2, CH3CN and CoI2/BINAP, Zn, ZnI2, 1,4-dioxane, efficiently catalyzed the intermolecular reductive [3+2] cycloaddition of alkynes (1a-1l) with cyclic enones (2a-2e) at 40oC for 24 hour to afford highly stereoselective bicyclo[2.2.1]hept-2-en-1-ol and bicyclo[3.2.1]oct-6-en-1-ol derivatives respectively. This reaction also expanded a new reaction type of alkynes and enones in transition metal catalyzed reaction. We utilized the isotope experiment to further understand the mechanism.
. Finally, we developed a new system: CoI2/(R,R′,S,S′)-Duanphos, Zn, ZnI2, 1,4-dioxane, efficiently catalyzed the intermolecular asymmetric reductive [3+2] cycloaddition of alkynes (1a-1i) with cyclic enones (2a-2e) at room temperature for 24 hour to afford highly enantio- and stereoselective bicyclo[2.2.1]hept-2-en-1-ol and bicyclo[3.2.1]oct-6-
en-1-ol derivatives. In addition, by identify the absolute configuration of products 3.3a, a possible mechanism that involves the formation of cobaltacyclopentene intermediate from alkyne and cyclic enone is proposed. We discussed the result depend on alkyne and enones by asymmetric reductive coupling and asymmetric reductive [3+2] cycloaddition experiment, and further investigate the interdependent between these two reactions
目錄
摘要 ------------------------------------------------------------- I
第一章、緒論 ------------------------------------------------------------- 1
參考文獻 -------------------------------------------------------- 14
第二章、鈷金屬錯合物催化共軛烯酮及炔類之不對稱還原偶合反應
前言 ----------------------------------------------------------- 18
結果與討論 -------------------------------------------------- 25
立體結構鑑定 NOE 實驗 --------------------------------- 41
絕對結構之鑑定 ----------------------------------------------- 42
反應機構 ----------------------------------------------------- 46
結論 ----------------------------------------------------------- 53
實驗部份與光譜資料 -------------------------------------- 53
參考文獻 ----------------------------------------------------- 71
第三章、鈷金屬錯合物催化共軛烯酮及炔類之[3+2]還原環化加成反

前言 ----------------------------------------------------------- 75
結果與討論 -------------------------------------------------- 86
立體結構鑑定 NOE 實驗 --------------------------------- 102
反應機構 -------------------------------------------------------- 103
結論 -------------------------------------------------------------- 107
實驗部份與光譜資料 ---------------------------------------- 108
參考文獻 ------------------------------------------------------- 118
第四章、鈷金屬錯合物催化共軛烯酮及炔類之不對稱[3+2]還原環化
加成反應
前言 ------------------------------------------------------------- 121
結果與討論 -------------------------------------------------- 126
絕對結構之鑑定 ----------------------------------------------- 138
反應機構 ----------------------------------------------------- 139
結論 ----------------------------------------------------------- 150
實驗部份與光譜資料 -------------------------------------- 151
參考文獻 ----------------------------------------------------- 157
附錄
X-ray 晶體數據、1H 及13C NMR 光譜以及HPLC 分析圖譜- 159
Chapter 1
(1) (a) Hayashi, T.; Kumada, M. In Asymmetric Synthesis, Chiral Catalysis; Morrison, J. D., Ed.; Academic Press, Inc.: London, 1985; Vol. 5, Chapter 5, p 148.(b) Ojima, I. Catalytic Asymmetric Synthesis II; Wiley-VCH: New York, 2000. (c) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999; Vols. 1-3. (d) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994. (e) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992. (f) Schmalz, H.-G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 1.5. (g) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.(h) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (i) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945. (j) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
(2) (a) Knowles, W. S.; Sabacky, M. J. Chem. Commun. 1968, 1445. (b) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. (c) Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1966, 5239. (d) Miyashita, A.; Takaya, H.; Souchi, T.; Noyori, R. Tetrahedron 1984, 40, 1245. (e) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. (f) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, M.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629. (g) Akutagawa, S. in Organic Synthesis in Japan: Past, Present, and Future (Eds.: Noyori, R.; Hiraoka, T.; Mori, K.; Murahashi, S.; Onoda, T.; Suzuki, K.; Yonemitsu, O.), Tokyo Kagaku Dozin, Tokyo, 1992, p. 75 (h) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174. (i) Noyori, R. ; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 7117. (j) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. (k) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (l) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (m) Hentges, S. G; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 4263. (n) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968. (o) Jacobsen, E. N.; Marko, I.; France M. B.; Svendsen, J. S.; Sharpless, K. B. J. Am. Chem. Soc. 1989, 111, 737. (p) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino, Y. J. Org. Chem. 1991, 56, 4585.
(3) (a) Wong, Y. C.; Parthasarathy, K.; Cheng, C .H. J. Am. Chem. Soc. 2009, 131, 18252. (b) Jeganmohan, M.; Cheng, C. H. Chem. Eur. J. 2008, 14, 10876. (c) Montgomery, J.; Sormunen, G. J. Topp Curr. Chem. 2007, 279, 1. (d) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929. (e) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441. (f) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394. (g) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (h) Montgomery, J. Acc. Chem. Res. 2000, 33, 467.
(4) Trost, B. M. Science 1991, 254, 1471.
(5) For asymmetric reductive coupling of alkynes: Ni: (a) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (b) Moslin, R.-M.; Miller, K.-M.; Jamison, T. F. Chem. Commun. 2007, 4441. (c) Miller, K.-M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442. (d) Yang,-Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 14052. (e) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (f) Chaulagain, M. R.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 9568. (g) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (h) Miller, K. M.; Jamison, T. F. Org. Lett. 2005, 7, 3077. (i) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076. (j) Zhou, C. -Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955. Rh and Ir: (k) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (l) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (m) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394. (n) Jang, H.-Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174.
(6) Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: Chichester, 2000, 238.
(7) (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(8) Suzuki, K.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1996, 118, 8729.
(9) (a) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030. (b) Herath, A.; Thompson, B. B.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 8712.
(10) Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 4166.
(11) (a) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds; Academic Press: New York and London, 1972; Vol. II. (b) Faulkner, D. J. Nat. Prod. Rep., 1989, 5, 613. (c) Straus, S.; Glass, C. K. Med. Res. Rev., 2001, 21, 185.
(12) (a) Barluenga, J.; Fernández-Rodríquez, M. A.; Aguilar, E.; Fernández-Marí, F.; Salinas, A.; Olano, B. Chem. Eur. J. 2001, 7, 3533. (b) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (c) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778. (d) Hodgson, D. M.; Labande, A. H.; Pierard Francois, Y. T. M.; Esposito Castro, M. A. J. Org. Chem. 2003, 68, 6153. (e) Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279. (f) Sibi, M.; Levi, S. M.; Craig, P. J. Am. Chem. Soc. 2005, 127, 8276. (g) Daidouji, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2005, 7, 1051. (h) Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 11958. (i) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwoerer, U. J. Am. Chem. Soc. 2006, 128, 13328. (j) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988. (k) Trost, B. M.; Silverman, S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398. (l) Marquand, P. L.; Tam, W. Angew. Chem., Int. Ed. 2008, 47, 2926. (m) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q. Liu, W.; Zhang, J.-K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467.


Chapter 2

(1) (a) Lipshutz, B. H.; Sengupta, S. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1992; Vol. 41, pp 135-631. (b) KametanLa, T.; Suzuki, T.; Sato, E.; Nishimura, M.; Unnob, K. J. Chem. Soc., Chem. Commun., 1982, 1201 (c) Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305, 495 (d) Yoshimura, F.; Sasaki, M.; Hattori, I.; Komatsu, K.; Sakai, M.; Tanino, K.; Miyashita, M. Chem. Eur. J. 2009, 15, 6626
(2) (a) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17 1630. (b) Kanai, M.; Koga, K.; Tomioka, K. J. Chem. Soc., Chem. Commun. 1993, 16, 1248. (c) Harada, T.; Imanaka, S.; Ohyama, Y.; Matsuda, Y.; Oku, A. Tetrahedron Lett. 1992, 33, 5807. (d) Roush, W. R.; Murphy, M. J. Org. Chem. 1992, 57, 6622. (e) Leonard, J.; Ryan, G. Tetrahedron Lett. 1987, 28, 2525. (f) Alexakis, A.; Commercon, A.; Coulentianos, C.; Normant, J. F. Tetrahedron 1984, 40, 715. (g) Roush, W. R.; Lesur, B. M. Tetrahedron Lett. 1983, 24, 2231.
(3) (a) Lee, K, -S.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455. (b) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2007, 129, 4908. (c) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T. Org. Lett. 2007, 9, 4643. (d) Sanada, T.; Kato, T.; Mitani, M.; Mori, A. Adv. Synth. Catal. 2006, 348, 51. (e) Plotkin, S.; Bergdahl, M. Org. Lett. 2004, 6, 107. (f) Ishiyama, T.; Takagi, J.; Kamon, A.; Miyaura, N. J. Organomet. Chem. 2003, 687, 284. (g) Lipshutz, B. H.; Wood, M. R. J. Am. Chem. Soc. 1994, 116, 11689. (h) El-Batta, A.; Hage, T. R.; Plotkin, S.; Bergdahl, M. Org. Lett. 2004, 6, 107. (i) Yanagi, T.; Sasaki, H.; Suzuki, A; Miyaura, N. Syn. Commun. 1996, 26, 2503. (i) Wipf, P.; Smitrovich, J. H. J. Org. Chem. 1991, 56, 6494. (j) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440. (k) Loots, M. J.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 8045.
(4) (a) Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.; Cheng, C.-H.; J. Am. Chem. Soc. 2007, 129, 12032. (b) Herath, A.; Thompson, B. B.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 8712. (c) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030. (d) Jang, H.-Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174. (e) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (f) Montgomery, J.; Amarasinghe, K. K. D.; Chowdhury, S. K.; Oblinger, E.; Seo, J.; Savchenko, A. V. Pure Appl. Chem. 2002, 74, 129. (g) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H.; J. Am. Chem. Soc. 2002, 124, 9696. (h) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (i) Ikeda, S.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712. (j) Li, W.; Chen, N.; Montgomery, J. Angew. Chem., Int. Ed. 2010, 49, 8712.
(5) (a) Van, D. A. R.; Miller, K. M.; Jamison, T. F.; Fleming, M. J.; Lautens, M. Org. Synth. 2007, 84, 111. (b) Trenkle, J. D.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48, 5366. (c) Sparling, B. A.; Simpson, G. L.; Jamison, T. F. Tetrahedron 2009, 65, 3270. (d) Sa-Ei, K.; Montgomery, J. Tetrahedron 2009, 65, 6707. (e) O'Brien, K. C.; Colby, E. A.; Jamison, T. F. Tetrahedron 2005, 61, 6243. (f) Moslin, R. M.; Jamison, T. F. J. Org. Chem. 2007, 72, 9736. (g) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076. (h) Han, S. B.; Kong, J. R.; Krische, M. J. Org. Lett. 2008, 10, 4133. (i) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297. (j) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 998. (k) Cho, C.-W.; Krische, M. J. Org. Lett. 2006, 8, 891. (l) Chan, J.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 10682.
(6) (a)Hong, Y.-T.; Cho, C.-W.; Skucas, E.; Krische, M. J. Org. Lett. 2007, 9, 3745. (b) Cho, C.-W.; Krische, M. J. Org. Lett. 2006, 8, 3873. (c) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2005, 128, 718. (d) Miller, K. M.; Colby, E. A.; Woodin, K. S.; Jamison, T. F. Adv. Synth. Catal. 2005, 347, 1533. (e) Miller, K. M.; Jamison, T. F. Org. Lett. 2005, 7, 3077. (f) Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron Asymmetry 2003, 14, 3619. (g) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2002, 68, 156. (h) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448.
(7) (a) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (b) Moslin, R.-M.; Miller, K.-M.; Jamison, T. F. Chem. Commun. 2007, 4441. (c) Miller, K.-M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442. (d) Yang,-Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 14052. (e) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (f) Chaulagain, M. R.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 9568. (g) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (h) Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955.
(8) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.
(9) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
(10) Grutters, M. M. P.; Müller, C.; Vogt, D. J. Am. Chem. Soc. 2006, 128, 7414.
(11) (a) Eisenbrauannd, E. J.; Mcelvain, S. M. J. Am. Chem. Soc. 1955, 77, 3383. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 1998, 120, 5579.
(12) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
(13) (a) Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000. 33, 1143. (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew., Chem., Int. Ed. 2005, 44, 4611. (c) Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Cryst. 2008, 41, 96.
(14) (a) Posner, G. H.; Frye, L. L.; Hulce, M. Tetrahedron 1984, 40, 1401. (b) Taber D. F.; Raman, K.; J. Am. Chem. Soc. 1983, 105, 5935. (c) Posner G. H.; Hulce, M. Tetrahedron Lett. 1994, 25, 379. (d) Lemière, G. L.; Dommisse, R. A.; Lepoivre, J. A.; Alderweireldt, F. C.; Hiemstra, H.; Wynberg, H.; Jones, J. B.; Toone, E. J. J. Am. Chem. Soc. 1987, 109, 1363.

Chapter 3
(a) Welker, M. E. Chem. Rev. 1992, 92, 97. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(2) (a) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds; Academic Press: New York and London, 1972; Vol. II. (b) Polymers: Kuntz, I. Encycl. Polym. Sci. Eng. 1985, 4, 537. (c) Faulkner, D. J. Nat. Prod. Rep. 1989, 5, 613. (d) Hartley, R. C.; Caldwell, S. T.; J. Chem. Soc. Perkin Trans. 1 2000, 477. (e) Straus, S.; Glass, C. K. Med. Res. Rev. 2001, 21, 185. (f) Prostaglandins: Prostaglandins, Leukotrienes and Essential Fatty Acids (Eds.: Horrobin, D. F.; Manku, M. S.; Sirois, P.; Borgeat, P.), Churchill Livingston, Edinburgh, 2002. (g) Carbasugars: Rassu, G.; Auzzas, L.; Pinna, L.; Battistini, L.; Curti, C. Stud. Nat. Prod. Chem. 2003, 29, 449.
(3) (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (b) Gulías, M.; García, R.; Delgado, A.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2006, 128, 384. (c) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350. (d) Wender, P. A.; Paxton, T. J. Williams, T. J.; J. Am. Chem. Soc. 2006, 128, 14814. (e) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348. (f) Rubin, M.; Rubina M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117. (g) Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 7178. (h) Chen, W.; Cao, J.; Huang, X. Org. Lett. 2008, 10, 5337. (i) Jiao, L.; Lin, M.; Yu, Z.-X. Chem. Commun. 2010, 46, 1059.
(4) (a) Krespan, C. G. J. Org. Chem. 1975, 40, 261. (e) King, R. B.; Harmon, C. A. Inorg. Chem. 1976, 15, 879. (f) Gesing, E. R. F.; Tane, J. P.; Vollhardt, K. P. C. Angew Chem., Int. Ed. 1980, 19, 1023. (g) Ojima, I.; Kass, D. F.; Zhu, J. Organometallics 1996, 15, 5191. (h) Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3, 1217.
(5) (a) Pirrung, M. C.; Zhang, J. Tetrahedron Lett. 1992, 33, 5987. (b) Davies, H. M. L.; Hu, B. B. J. Org. Chem. 1992, 57, 3186. (c) Hoffmann, M.; Buchert, M.; Reissig, H.-U. Angew. Chem., Int. Ed. 1997, 36, 283. (d) Davies, H. M. L. Aldrichim. Acta 1997, 30, 105. (e) Barluenga, J.; Tomas, M.; Ballesteros, A.; Santamaria, J.; Brillet, C.; Garcia-Granda, S.; Pinera-Nicolas, A.; Vazquez, J. T. J. Am. Chem. Soc. 1999, 121, 4516. (f) Davies, H. M. L.; Kong, N.; Churchill. M. R. J. Org. Chem. 1998, 63, 6586. (g) Davies, H. M. L. Eur. J. Org. Chem. 1999, 2459. (h) Davies, H. M. L.; Xiang, B.; Kong, N.; Stafford, D. G. J. Am. Chem. Soc. 2001, 123, 7461.
(6) (a) Emerson, G. F.; Ehrlich. K.; Giering. W. P.; Lauterbur, P. C. J. Am. Chem. Soc. 1966, 88, 3172. (b) Day, A. C.; Powell, J. T. Chem. Commun. 1968, 1241. (c) Kagan, J.; Lin, W.-L.; Cohen, S. M.; Schwartz, R. N. J. Organomet. Chem. 1975, 90, 67. (d) Becker, Y.; Eisenstadt, A.; Shvo, Y. Tetrahedron 1976, 32, 2123. (e) Donaldson, W. A.; Hossain, M. A.; Cushnie, C. D. J. Org. Chem. 1995, 60, 1611. (f) Barnes, S. G.; Green, M. J. Chem. Soc., Chem. Commun. 1980, 267
(7) (a) Trost, B.M. Pure Appl. Chem. 1988, 60, 1615. (b).Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396. (c) Trost, B. M.; Crawley, M. L. Chem. Eur. J. 2004, 10, 2237. (d) Trost, B. M.; McDougall, P. J. Org. Lett. 2009, 11, 3782. (e) Trost, B. M.; McDougall, P. J.; Hartmann, O.; Wathen, P. T. J. Am. Chem. Soc. 2008, 130, 14960. (f) Trost, B. M.; Silverman, S. M. J. Am. Chem. Soc. 2010, 132, 8238. (g) Trost, B. M.; Silverman, S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398. (h) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwoerer, U. J. Am. Chem. Soc. 2006, 128, 13328.
(8) (a) Trost, B. M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109, 3483. (b) Trost, B. M.; Seoane, P. R. J. Am. Chem. Soc. 1987, 109, 615. (c) Hedley, S. J.; Moran, W. J.; Price, D. A.; Harrity, J. P. A. J. Org. Chem. 2003, 68, 4286. (d) Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330. (e) Shintani, R.; Park, S.; Duan, W.-L.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 5901. (f) Trost, B. M.; McDougall, P. J.; Hartmann, O.; Wathen, P. T. J. Am. Chem. Soc. 2008, 130, 14960. (g) Trost, B. M.; McDougall, P. J. Org. Lett. 2009, 11, 3782.
(9) (a) Wang, J. C.; Ng, S. S.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 3682. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. (c) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (d) Voituriez, A.; Panossian, A.; Fleury-Brégeot, N.; Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030. (e) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q.; Liu, W.; Zhang, J.-K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467.
(10) (a) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030. (b) Herath, A.; Thompson, B.B.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 8712. (c) Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 4166. (d) Schomaker, J. M.; Toste, F. D.; Bergman, R. G. Org. Lett., 2009, 11, 3698.
(11) Chang, H.-T.; Jayanth, T. T; Wang, C. C.; Cheng, C.-H. J. Am. Chem. Soc., 2007, 129, 12032.
(12) Li, W.; Chen, N.; Montgomery, J. Angew. Chem., Int. Ed. 2010, 49, 8712.

Chapter 4

(1) (a) Welker, M. E. Chem. Rev. 1992, 92, 97. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(2) (a) Barluenga, J.; Fernández-Rodríquez, M. A.; Aguilar, E.; Fernández-Marí, F.; Salinas, A.; Olano, B. Chem. Eur. J. 2001, 7, 3533. (b) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (c) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778. (d) Hodgson, D. M.; Labande, A. H.; Pierard Francois, Y. T. M.; Esposito Castro, M. A. J. Org. Chem. 2003, 68, 6153. (e) Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279. (f) Sibi, M.; Levi, S. M.; Craig, P. J. Am. Chem. Soc. 2005, 127, 8276. (g) Daidouji, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2005, 7, 1051. (h) Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 11958. (i) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwoerer, U. J. Am. Chem. Soc. 2006, 128, 13328. (j) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988. (k) Trost, B. M.; Silverman, S. M.; Stambuli, J. P. J. Am. Chem. Soc. 2007, 129, 12398. (l) Marquand, P. L.; Tam, W. Angew. Chem., Int. Ed. 2008, 47, 2926. (m) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q. Liu, W.; Zhang, J.-K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467.
(3) Trost, B. M.; McDougall, P. J.; Hartmann, O.; Wathen, P. T. J. Am. Chem. Soc. 2008, 130, 14960.
(4) Ishida, K.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 8842.
(5) (a) Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000. 33, 1143. (b) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611. (c) Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Cryst. 2008, 41, 96.
(6) (a) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030. (b) Herath, A.; Thompson, B. B.; Montgomery, J. J. Am. Chem. Soc. 2007, 129, 8712. (c) Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 4166. (d) Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6775. (e) Montgomery, J.; Amarasinghe, K. K. D.; Chowdhury, S. K.;Oblinger, E.; Seo, J.; Savchenko, A. V. Pure Appl. Chem. 2002, 74, 129.
(7) Zigterman, J. L.; Woo, J. C. S.; Walker, S. D.; Tedrow, J. S.; Borths, C. J.; Bunel, E. E.; Faul, M. M. J. Org. Chem. 2007, 72, 8870.
(8) (a) Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.; Cheng, C.-H.; J. Am. Chem. Soc. 2007, 129, 12032. (b) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H.; J. Am. Chem. Soc. 2002, 124, 9696.
(9) Brookhart, M.; White, P. S.; DiRenzo, G. M. J. Am. Chem. Soc. 1996, 118, 6225.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 苯駢咪唑與吲哚配位基銥錯合物之合成及其在有機電致發光元件上之應用
2. 鈀錯化合物催化1,2-雙烯之加成反應與應用及以鈷錯化合物為催化劑之偶合環化反應
3. 苯駢菲衍生物暨蒽菎衍生物在有機電致發光元件上之應用
4. 胺基苯蔥酮衍生物在有機電致發光二極體的應用暨白光元件的製作
5. 鈷金屬錯合物催化烯-烯基及烯-炔基之還原偶合反應及其在環酯、環醯系列化合物的合成應用
6. 含聯三伸苯及蒎之有機物合成暨在有機電激發光元件上之應用
7. 鎳金屬錯合物催化1,2-雙烯之加成反應與7-氧庚二烯及其衍生物之開環偶合反應及以鈷金屬錯合物為催化劑之環化加成反應
8. Nickel and Iridium Catalyzed Synthesis of Isoquinoline, Quinolines, Arylalkynes and Flavanones
9. 過度金屬催化有機合成反應:鎳與鈷金屬錯合物於偶合、環化及製備雜環反應上的應用
10. 高亮度磷光新穎銥金屬錯合物□合成探究以及有機發光二極體應用
11. 鈀金屬錯合物催化親核試劑與親電子試劑至不飽和碳-碳鍵上之加成反應
12. 鎳與鈷金屬錯合物催化偶合及環化反應之研究
13. 新型咪唑銥錯合物之合成及其在有機電致發光元件上的應用
14. 鎳與鈷金屬錯合物催化有機硼試劑與共軛烯類及炔類的加成與環化反應
15. 鎳金屬錯合物在苯炔、異氰酸酯及1,2-二碘苯衍生物的耦合與合環反應上之應用
 
* *