帳號:guest(18.223.20.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯賢真
作者(外文):Ko, Hsien-Chen
論文名稱(中文):環境變化對量子點之電荷轉移的影響 及其螢光特性之研究
論文名稱(外文):Studies of Charge Transfer in Quantum Dots and Their Fluorescence Properties Due to Environmental Changes
指導教授(中文):倪其焜
林聖賢
指導教授(外文):Ni, Chi-Kun
Lin, Sheng Hsien
口試委員(中文):倪其焜
林聖賢
周家復
曹培熙
口試委員(外文):Ni, Chi-Kun
Lin, Sheng Hsien
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:9523852
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:108
中文關鍵詞:量子點單分子螢光光閃爍
相關次數:
  • 推薦推薦:0
  • 點閱點閱:284
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
The studies of charge transfer and fluorescence properties of single CdSe/ZnS quantum dots (QDs) in different environments are presented in this report. This report consists of two parts. In the first part we demonstrate diffusion-controlled electron transfer (DCET) model with regard to the blinking phenomenon and discussion several methods of blinking suppression of QDs. Recently, we observe that the blinking behavior of single QDs can be suppressed by embedding QDs in agarose gel. The absence of blinking suppression is not due to aggregation of QDs which was confirmed by antibunching experiments to demonstrate single-photon emission for the QD. Moreover, the long-time exponential bending tail from the power-law blinking statistics of single QDs could be significantly influenced by agarose gel concentration. We observed that an increase in gel concentrations accompanied with high bending rate. According to the DCET model of Tang and Marcus, the bending rate is related to the activation energy between the light and dark states of QDs. Since agarose gel has inherent negatively charged fibers, we suggested that the electron transfer rate between the light and dark states of QDs could be reduced or even blocked by changes in their electrostatic surrounding.
In the second part we show that the photoluminescence and charge transfer of CdSe/ZnS QDs are pH-dependent. We presented experimental results of QDs imbedded in agarose gel fibers at different pH, and we also provided theoretical analysis of both the blinking behavior of single-QDs as well as the fluorescence intensity time trace from an ensemble of QDs. The combined approach of single-particle and ensemble measurements to investigate pH-dependent fluorescence properties of QDs has not been used previously. This study allows us to elucidate the electron transfer processes of QDs from the light state to the dark state. We have also estimated from the experimental data from both single-particle and ensemble measurements the free energy gap and the reorganization energy for this system. The observation demonstrated that the activation energy for the charge transfer and the free energy gap between the light and the dark states increased with an increase in the concentration of H+ ions. Therefore, we proposed that the electron transfer in QDs in agarose gel occurs in the Marcus inverted regime.
Chapter 1 Introduction 1
1.1 General Introductin of Semiconductor Quantum Dots (QDs) 1
1.2 Single-QDs Fluorescence Blinking 7
1.2.1 Probability density of on/off events 7
1.2.2 Models for blinking behavior of QDs 11
Chapter 2 Experimental Methods and Apparatus 16
2.1 MicroTime 200 Microscope System 18
2.1.1 Confocal microscopy 18
2.2 TCSPC Techniques and TTTR Acquisition Modes 22
2.2.1 Fluorescence photon-antibunching 24
2.3 Single-QD and Ensemble Measurements 28
Chapter 3 Probing and Controlling Fluorescence Blinking of Single Semiconductor Nanoparticles 30
3.1 Introduciton 30
3.2 Modeling Photoluminescence of QDs 33
3.2.1 Diffusion-controlled electron transfer (DCET) model 34
3.2.2 Modeling ensemble-averaged fluorescence intensity time profile 41
3.3 QDs Blinking Suppression 46
3.3.1 Blinking suppression by encapsulating single QDs in agarose gel 46
3.3.2 Blinking suppression by reducing Augrer recobination 57
3.3.3 Blinking suppression by enhancing radiative decay Rates 59
3.3.4 Blinking suppression by reducing extra energy transfer processes 66
3.4 Summary 68
Chapter 4 Observation of Inverted Regime Electron Transfer in CdSe/ZnS QDs from pH-Sensitive Single-Particle and Ensemble Fluorescence Measurements 69
4.1 Introduction 69
4.2 Theoretical Section based on DCET Model 73
4.2.1 Intermittency of single QDs 74
4.2.2 Ensemble-averaged fluorescence intensity 78
4.3 Results and Discussion 80
4.4 Summary 96
Chapter 5 Conclusions 98
Publication List 102
References 104
Reference
1. Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. Nano Letters 2005, 5, 1039.
2. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
3. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Journal of the American Chemical Society 1993, 115, 8706.
4. Brus, L. E. Journal of Chemical Physics 1984, 80, 4403.
5. Kayanuma, Y. Physical Review B 1988, 38, 9797.
6. Mansur, H. S. Wires Nanomed Nanobi 2010, 2, 113.
7. Zamir, E.; Lommerse, P. H. M.; Kinkhabwala, A.; Grecco, H. E.; Bastiaens, P. I. H. Nature Methods 2010, 7, 295.
8. Norris, D. J.; Sacra, A.; Murray, C. B.; Bawendi, M. G. Physical Review Letters 1994, 72, 2612.
9. Sha, L.; Kai, Z.; Jui-Ming, Y.; Liwei, L.; Haw, Y. Nano Letters 2007, 3102.
10. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Journal of Physical Chemistry B 2001, 105, 8861.
11. Murphy, C. J. Analytical Chemistry 2002, 74, 520a.
12. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nature Materials 2005, 4, 435.
13. Parak, W. J.; Pellegrino, T.; Plank, C. Nanotechnology 2005, 16, R9.
14. http://www.invitrogen.com/.
15. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.
16. Gregory D. Scholes, M. J., and Sandeep Kumar J. Phys. Chem. C 2007, 111, 13777.
17. Kuno, M.; Fromm, D. P.; Hamann, H. F.; Gallagher, A.; Nesbitt, D. J. Journal of Chemical Physics 2000, 112, 3117.
18. Kuno, M.; Fromm, D. P.; Hamann, H. F.; Gallagher, A.; Nesbitt, D. J. Journal of Chemical Physics 2001, 115, 1028.
19. Wang, S.; Querner, C.; Emmons, T.; Drndic, M.; Crouch, C. H. Journal of Physical Chemistry B 2006, 110, 23221.
20. Efros, A. L.; Rosen, M. Physical Review Letters 1997, 78, 1110.
21. Kuno, M.; Fromm, D. P.; Johnson, S. T.; Gallagher, A.; Nesbitt, D. J. Physical Review B 2003, 67, 125304.
22. Tang, J.; Marcus, R. A. Physical Review Letters 2005, 95, 107401.
23. Tang, J.; Marcus, R. A. Journal of Chemical Physics 2005, 123, 054704.
24. Shimizu, K. T.; Neuhauser, R. G.; Leatherdale, C. A.; Empedocles, S. A.; Woo, W. K.; Bawendi, M. G. Physical Review B 2001, 63, 205316.
25. Knappenberger, K. L.; Wong, D. B.; Xu, W.; Schwartzberg, A. M.; Wolcott, A.; Zhang, J. Z.; Leone, S. R. Acs Nano 2008, 2, 2143.
26. Peterson, J. J.; Nesbitt, D. J. Nano Letters 2009, 9, 338.
27. Moerner, W. E. Journal of Physical Chemistry B 2002, 106, 910.
28. http://www.farmfak.uu.se/farm/farmfyskem-web/instrumentation/afm
29. http://www.picoquant.com/
30. Born, M.; Wolf, E. Principle of Optics. Cambridge University Press 1997.
31. Fore, S.; Laurence, T. A.; Hollars, C. W.; Huser, T. Ieee Journal of Selected Topics in Quantum Electronics 2007, 13, 996.
32. Brown, R. H.; Twiss, R. Q. Nature 1956, 177, 27.
33. Tinnefeld, P.; Muller, C.; Sauer, M. Chemical Physics Letters 2001, 345, 252.
34. Jacak L; Hawrylak P; Wojs A. Quantum Dots. Springer: Berlin, 1997.
35. Heiss W.D. Quantum Dots: A Doorway to Nanoscale Physics. Springer: Berlin, 2005.
36. Rotell, V. Nanoparticles: Building Blocks for Nanotechnology. Kluwer Academic: NY 2004.
37. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Physical Review Letters 1995, 75, 3728.
38. Krauss, T. D.; Brus, L. E. Physical Review Letters 1999, 83, 4840.
39. Empedocles, S. A.; Bawendi, M. G. Journal of Physical Chemistry B 1999, 103, 1826.
40. Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Physical Review Letters 2002, 89.117401.
41. Chung, I. H.; Bawendi, M. G. Physical Review B 2004, 70, 165304.
42. Verberk, R.; van Oijen, A. M.; Orrit, M. Physical Review B 2002, 66, 233202.
43. Flomenbom, O.; Klafter, J.; Szabo, A. Biophysical Journal 2005, 88, 3780.
44. Boguna, M.; Berezhkovskii, A. M.; Weiss, G. H. Physica a-Statistical Mechanics and Its Applications 2000, 282, 475.
45. Margolin, G.; Barkai, E. Journal of Chemical Physics 2004, 121, 1566.
46. Tang, J.; Marcus, R. A. Journal of Chemical Physics 2005, 123, 204511.
47. Tang, J. Journal of Chemical Physics 2008, 129, 084709.
48. J. Tang ; D. H. Lee; Y. C. Yeh; C. T. Yuan J. Chem. Phys. 2009, 131, 064506.
49. Brokmann, X.; Hermier, J. P.; Messin, G.; Desbiolles, P.; Bouchaud, J. P.; Dahan, M. Phys Rev Lett 2003, 90, 120601.
50. Maaloum, M.; Pernodet, N.; Tinland, B. Electrophoresis 1998, 19, 1606.
51. Stellwagen, N. C.; Gelfi, C.; Righetti, P. G. Biopolymers 2000, 54, 137.
52. Serwer, P.; Hayes, S. J. Electrophoresis 1982, 3, 76.
53. Serwer, P. Electrophoresis 1983, 4, 375.
54. Ko, H. C.; Yuan, C. T.; Lin, S. H.; Tang, J. Applied Physics Letters 2010, 96, 012104.
55. Zhao, J.; Nair, G.; Fisher, B. R.; Bawendi, M. G. Physical Review Letters 2010, 104, 157403.
56. Rosen, S.; Schwartz, O.; Oron, D. Physical Review Letters 2010, 104, 157404.
57. Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Science 2000, 287, 1011.
58. Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov, V. I. Physical Review Letters 2009, 102, 177404.
59. Garcia-Santamaria, F.; Chen, Y. F.; Vela, J.; Schaller, R. D.; Hollingsworth, J. A.; Klimov, V. I. Nano Letters 2009, 9, 3482.
60. Cragg, G. E.; Efros, A. L. Nano Lett 2010, 10, 313.
61. Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J. P.; Dubertret, B. Nature Materials 2008, 7, 659.
62. Spinicelli, P.; Buil, S.; Quelin, X.; Mahler, B.; Dubertret, B.; Hermier, J. P. Physical Review Letters 2009, 102, 136801.
63. Wang, X. Y.; Ren, X. F.; Kahen, K.; Hahn, M. A.; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krauss, T. D. Nature 2009, 459, 686.
64. Yuan, C. T.; Yu, P.; Ko, H. C.; Huang, J.; Tang, J. Acs Nano 2009, 3, 3051.
65. Wu, X. W.; Gong, M.; Dong, C. H.; Cui, J. M.; Yang, Y.; Sun, F. W.; Guo, G. C.; Han, Z. F. Optics Express 2010, 18, 6340.
66. Yuan, C. T.; Yu, P.; Tang, J. Applied Physics Letters 2009, 94, 243108.
67. Chen, Z. Y.; Berciaud, S.; Nuckolls, C.; Heinz, T. F.; Brus, L. E. Acs Nano 2010, 4, 2964.
68. Jones, M.; Lo, S. S.; Scholes, G. D. Proceedings of the National Academy of Sciences of the United States of America 2009, 106, 3011.
69. Jin, S. Y.; Hsiang, J. C.; Zhu, H. M.; Song, N. H.; Dickson, R. M.; Lian, T. Q. Chem Sci 2010, 1, 519.
70. Krooswyk, J. D.; Tyrakowski, C. M.; Snee, P. T. Journal of Physical Chemistry C 2010, 114, 21348.
71. Gao, X. H.; Chan, W. C. W.; Nie, S. M. Journal of Biomedical Optics 2002, 7, 532.
72. Tomasulo, M.; Yildiz, I.; Raymo, F. M. Journal of Physical Chemistry B 2006, 110, 3853.
73. Biju, V.; Makita, Y.; Sonoda, A.; Yokoyama, H.; Baba, Y.; Ishikawa, M. Journal of Physical Chemistry B 2005, 109, 13899.
74. Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Applied Physics Letters 2003, 83, 3555.
75. Muller, J.; Lupton, J. M.; Lagoudakis, P. G.; Schindler, F.; Koeppe, R.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Nano Letters 2005, 5, 2044.
76. Zhang, F.; Ali, Z.; Amin, F.; Feltz, A.; Oheim, M.; Parak, W. J. Chemphyschem 2010, 11, 730.
77. Liang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W. Analyst 2004, 129, 619.
78. Gattas-Asfura, K. A.; Leblanc, R. M. Chemical Communications 2003, 2684.
79. Ruedas-Rama, M. J.; Wang, X. J.; Hall, E. A. H. Chemical Communications 2007, 1544.
80. Dong, C. Q.; Qian, H. F.; Fang, N. H.; Ren, J. C. Journal of Physical Chemistry B 2006, 110, 11069.
81. Xie, H. Y.; Liang, H. G.; Zhang, Z. L.; Liu, Y.; He, Z. K.; Pang, D. W. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2004, 60, 2527.
82. Pouya, S.; Koochesfahani, M.; Snee, P.; Bawendi, M.; Nocera, D. Experiments in Fluids 2005, 39, 784.
83. Ni, W. H.; Chen, H. J.; Su, J.; Sun, Z. H.; Wang, J. F.; Wu, H. K. Journal of the American Chemical Society 2010, 132, 4806.
84. Xue, C.; Mirkin, C. A. Angewandte Chemie-International Edition 2007, 46, 2036.
85. Liu, Y. S.; Sun, Y. H.; Vernier, P. T.; Liang, C. H.; Chong, S. Y. C.; Gundersen, M. A. Journal of Physical Chemistry C 2007, 111, 2872.
86. Susha, A. S.; Javier, A. M.; Parak, W. J.; Rogach, A. L. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006, 281, 40.
87. Deng, Z. T.; Zhang, Y.; Yue, J. C.; Tang, F. Q.; Wei, Q. Journal of Physical Chemistry B 2007, 111, 12024.
88. Snee, P. T.; Somers, R. C.; Nair, G.; Zimmer, J. P.; Bawendi, M. G.; Nocera, D. G. Journal of the American Chemical Society 2006, 128, 13320.
89. Suzuki, M.; Husimi, Y.; Komatsu, H.; Suzuki, K.; Douglas, K. T. Journal of the American Chemical Society 2008, 130, 5720.
90. Chen, Y.; Thakar, R.; Snee, P. T. Journal of the American Chemical Society 2008, 130, 3744.
91. Biju, V.; Makita, Y.; Nagase, T.; Yamaoka, Y.; Yokoyama, H.; Baba, Y.; Ishikawa, M. J. Phy. Chem. B 2005, 109, 14350.
92. Fomenko, V.; Nesbitt, D. J. Nano Letters 2008, 8, 287.
93. Hohng, S.; Ha, T. Journal of the American Chemical Society 2004, 126, 1324.
94. Early, K. T.; McCarthy, K. D.; Hammer, N. I.; Odoi, M. Y.; Tangirala, R.; Emrick, T.; Barnes, M. D. Nanotechnology 2007, 18, 424027.
95. Matsumoto, Y.; Kanemoto, R.; Itoh, T.; Nakanishi, S.; Ishikawa, M.; Biju, V. Journal of Physical Chemistry C 2008, 112, 1345.
96. Ko, H. C.; Yuan, C. T.; Tang, J. Nano Reviews 2011, 2, 5895.
97. Williamson, A. J.; Zunger, A. Physical Review B 2000, 61, 1978.
98. Franceschetti, A.; Zunger, A. Physical Review B 2000, 62, 2614.
99. Frantsuzov, P. A.; Marcus, R. A. Physical Review B 2005, 72, 155321.
100. Crouch, C. H.; Sauter, O.; Wu, X. H.; Purcell, R.; Querner, C.; Drndic, M.; Pelton, M. Nano Letters 2010, 10, 1692.
101. Durisic, N.; Wiseman, P. W.; Grutter, P.; Heyes, C. D. Acs Nano 2009, 3, 1167.
102. Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. Journal of Physical Chemistry B 1997, 101, 9463.
103. Lounis, B.; Bechtel, H. A.; Gerion, D.; Alivisatos, P.; Moerner, W. E. Chemical Physics Letters 2000, 329, 399.
104. Scholes, G. D.; Jones, M.; Kumar, S. Journal of Physical Chemistry C 2007, 111, 13777.
105. Cui, S. C.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Journal of Physical Chemistry C 2010, 114, 1217.
106. Hwang, S. J.; Kim, M. S.; Han, J. K.; Lee, D. S.; Kim, B. S.; Choi, E. K.; Park, H. J.; Kim, A. S. Macromol Res 2007, 15, 437.
107. Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V. Nanotechnology 2010, 21, 285105.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *