帳號:guest(3.135.207.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪世瑋
作者(外文):Hung, Shih-Wei
論文名稱(中文):矽化鐵奈米結構的成長與特性研究
論文名稱(外文):Synthesis and Properties of the Iron Silicide Nanostructures
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):陳力俊
鄭晃忠
鄭紹良
李勝偉
吳文偉
口試委員(外文):Chen, Lih-Juann
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9531804
出版年(民國):100
畢業學年度:99
語文別:中文英文
論文頁數:99
中文關鍵詞:矽化鐵奈米線, 發光, 室溫鐵磁性, 磁阻
外文關鍵詞:iron silicide nanowires, luminescence, room temperature ferromagnetism, magnetoresistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
一維過渡金屬矽化物的奈米結構在電子以及光電元件的應用當中,由於許多物理特性優於傳統的塊狀材料,引起了科學界相當廣泛的研究興趣。本研究中,合成出自催化生長的鐵-矽奈米線,並針對其結構以及光、電、磁物理特性探討分析。
其中,利用一自發性的化學反應方法來合成鐵-矽奈米線,亦針對可能的生長機制以及影響奈米線生長的變因做討論。所合成出的β-FeSi2在物理性質方面的表現,除了在室溫下放出波長為1.5 □m的紅外光外,也觀察到室溫鐵磁性以及高磁阻變化的特性。這些性質皆顯示此材料在自旋電子的奈米元件中其潛在的應用性。
在另一方面,也合成出FeSi 的奈米線。除了發現其溫鐵磁性外,也將FeSi 奈米線應用在記憶體元件當中。元件的記憶體效應來自於在SiO2 中引入FeSi奈米線能提升記憶體元件捕獲電子電動的能力。此行為顯示了FeSi奈米線在非揮發性記憶體元件的應用價值。
One dimensional transition metal silicide nanostructures have attracted much attention for their potential applications in electronic and optoelectronics nanodevices as well as for their intriguing physical properties different from those of bulk materials. In the present research, we report the growth and structural characterization of the self-catalyzed iron silicide nanowires. In addition, the specific optical, electrical and magnetic properties of the nanowires were also investigated.
A spontaneous chemical reaction method was used for the fabrication of the iron silicide nanowires. The possible growth mechanism and the variables that affect the nanowire growth were also discussed. The as-synthesized β-FeSi2 nanowires exhibit photoluminescence at a wavelength of 1.54 μm, which is suitable for the Si-based optical communication, at room temperature. In addition, the room temperature ferromagnetism and high magnetoresistance performance indicates that β-FeSi2 nanowires are potentially applicable for spintronic nanodevices.
On the other hand, the room-temperature ferromagnetism of the as-grown FeSi nanowires compared to that of bulk FeSi at 4 K was found. The fabricated memory devices based on FeSi nanowires showed significant C-V hysteresis, exhibiting the memory effect. The strong memory effect can be accounted for by the presence of defects or dangling bonds on the surface of the FeSi nanowires embedded in SiO2 layer, which enhances the trapping density for non-volatile memory applications.
Contents…………………………………………………………………I
Acknowledgments………………………………………………………V
List of Acronyms and Abbreviations…………………………………VI
Abstract………………………………………………………………VIII

Chapter 1 Introduction
1.1 Nanotechnology………………………………………………………1
1.2 Nanostructures………………………………………………………3
1.2.1 One-Dimensional anostructures………………………………3
1.3 Synthesis Methods of One-Dimensional Nanostructure and Growth
Mechanisms…………………………………………………………..4
1.3.1 Vapor-Liquid-Solid Growth Mechanism………………………4
1.3.2 Vapor-Solid Growth Mechanism………………………………6
1.3.3 Oxide-Assisted Growth Mechanism…………………………6
1.3.4 Solution-Liquid-Solid Growth Mechanism……………………8
1.4 Iron Silicide and Its Applications ………………..………...……………….9
1.4.1 Phase Diagram of Fe-Si System………………………………9
1.4.2 Applications of Iron Silicide…………………………………10
1.4.3 Characteristics of β-FeSi2 Phase……………………………10
1.4.4 Characteristics of FeSi Phase………………………………12

Chapter 2 Experimental Procedures
2.1 The Growth of β-FeSi2 Nanowires…………………………………14
2.2 The Growth of FeSi Nanowires……………………………………14
2.3 Scanning Electron Microscope (SEM) Observation………………15
2.4 Energy Dispersion Spectrometer (EDS) Analysis…………………15
2.5 Preparation of samples for Transmission Electron Microscopy (TEM)
Observation…………………………………………………………16
2.6 Transmission Electron Microscope Observation…………………16
2.7 X-Ray Diffraction Analysis (XRD) ………………………………17
2.8 Photoluminescence (PL) Measurement……………………………17
2.9 Precise Locating of Nanowires and Measurement of the I-V
Characteristics………………………………………………………18
2.9.1 Chip Cleaning and Sample Preparation……………………18
2.9.2 Locating Positions of Nanowires……………………………18
2.9.3 Defining the Contact Electrodes and Side Gate electrodes…18
2.9.4 Photoresist Spin Coating and Soft Baking…………………19
2.9.5 Electron Beam Lithography…………………………………19
2.9.6 Development…………………………………………………19
2.9.7 Thermal Evaporation……………………………………20
2.9.8 Lift-Off Process………………………………………………20
2.10 Thermal Evaporation………………………………………………20

Chapter 3 Syntheses and Structure Characterization of Iron Silicide Nanostructures
3.1 Motivations…………………………………………………………………22
3.2 Experimental Procedures…………………………………………………22
3.2.1 Syntheses of β-FeSi2 Nanowires……………………………22
3.2.2 Syntheses of FeSi Nanowires………………………………23
3.3 Results and Discussion……………………………………………24
3.3.1 Syntheses and Structure Characterization of β-FeSi2
Nanowirs…..…………………………………………………24
3.3.1.1 Flux Effect on Nanowire Growth…………………….28
3.3.1.2 Temperature Effect on Nanowire Growth……………31
3.3.1.3 Substrate Effect on Nanowire Growth………………34
3.3.2 Syntheses and structure characterization of FeSi Nanowires..39

Chapter 4 Direct Growth of β-FeSi2 Nanowires with Infrared Emission, Ferromagnetism at Room Temperature and High Magnetoresistance
4.1 Motivation…………………………………………………………42
4.2 Experimental Procedures…………………………………………44
4.3 Results and Discussion……………………………………………46

Chapter 5 Orientation-Dependent Room-Temperature Ferromagnetism of FeSi Nanowires and Applications in Nonvolatile Memory Devices
5.1 Motivation…………………………………………………………58
5.2 Experimental Procedures…………………………………………60
5.3 Results and Discussion……………………………………………61

Chapter 6 Summary and Conclusions
6.1 Syntheses and Structure Characterization of Iron Silicide Nanostructures……………………………………………………73
6.2 Direct Growth of β-FeSi2 Nanowires with Infrared Emission, Ferromagnetism at Room Temperature and High
Magnetoresistance…………………………………………………74
6.3 Orientation-Dependent Room-Temperature Ferromagnetism of FeSi Nanowires and Applications in Nonvolatile Memory
Devices……………………………………………………………..75

Chapter 7 Future Prospects
7.1 The Bio-sensing Properties of the Iron Silicide Nanowires………..76
7.2 High Performance β-FeSi2/c-Si Heterojunction Photovoltaic cell…77
7.3 High Performance Fe-Si Nanowires Memory Devices……………78

References………………………………………………………………79
Publication List ………………………………………………………98
Chapter 1
1.1 N. Taniguchi, “On the Basic Concept of Nanotechnology,” Proc. Intl. Conf. Prod, PartⅡ, 1974, 18-23.
1.2 K. E. Drexler, “Engines of Creation: The Coming Era of Nanotechnology,” Doubleday, London, 1986.
1.3 P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 1999, 271, 933-934.
1.4 J. M. Krans, J. M. van Rutenbeek and L. J. de Jongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature, 1995, 375, 767-768.
1.5 E. Leobandung, L. Guo, Y. Wang and S. Y. Chou, “Observation of Quantum Effects and Coulomb Blockade in Silicon Quantum-Dot Transistors at Temperature over 100K,” Appl. Phys. Lett., 1995, 67, 938-940.
1.6 G. Markovich, C. P. Collier and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res., 1999, 32, 415-423.
1.7 J. A. McCleverty and T. J. Meyer, “Comprehensive Coordination Chemistry II: from Biology to Nanotechnology,” Elsevier Pergamon, Boston, 2004.
1.8 R. R. H. Coombs and D. W. Robinson, “Nanotechnology in Medicine and the Biosciences,” Gordon and Breach Publishers, 1996.
1.9 K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am., 1992, 266, 80-85.
1.10 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett., 2000, 85, 3476-3479.
1.11 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett., 2002, 81, 4458-4460.
1.12 J. H. Hah, S. Mayya, M. Hata, Y. K. Jang, H. W. Kim, M. Ryoo, S. G. Woo, H. K. Cho and J. T. Moon, “Converging Lithography by Combination of Electrostatic Layer by Layer Self-assembly and 193 nm Photolithography: Top-down Meets Bottom-up,” J. Vac. Sci. Technol. B., 2006, 24, 2209-2213.
1.13 G. Schmid and F. C. Lifeng, “Metal Clusters and Colloids,” Adv. Mater., 1998, 10, 515-526.
1.14 E. W. Wang, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 1997, 277, 1971-1975.
1.15 J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, 2000, 287, 1471-1473.
1.16 L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B, 1993, 47, 16631-16634.
1.17 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers,” Science, 2001, 292, 1897-1899.
1.18 Y. Wu and P. Yang, “Direct Observation of Vapor-liquid-solid Nanowire Growth,” J. Am. Chem. Soc., 2001, 123, 3165-3166.
1.19 M. H. Huang, Y. Wu, H. Feick, W. Weber and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater., 2001, 13, 113-116.
1.20 Y. Wu, R. Fan and P. Yang, “Block-by-block Growth of Single-crystalline Si/SiGe Superlattice Nanowires,” Nano Lett., 2002, 2, 83-86.
1.21 Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge,” Adv. Mater., 2000, 12, 746-750.
1.22 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 1998, 279, 208-211.
1.23 K. P. Musselman, A. Marin, A. Wisnet, C. Scheu, J. L. MacManus-Driscoll and L. Schmidt-Mende, “A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics,” Adv. Funct. Mater., 2011, 21, 573–582.
1.24 R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., 1964, 4, 89-90.
1.25 Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu and G. W. Yang, “ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement,” Chem. Phys. Lett., 2005, 403, 248-251.
1.26 M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han and A. Zettl, “Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires,” Appl. Phys. Lett., 2004, 85, 5670-5672.
1.27 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B., 1998, 58, R16024-R16026.
1.28 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-liquid-solid Growth of Crystalline III-V Semiconductors: an Analogy to Vapor-liquid-solid Growth,” Science, 1995, 270, 1791-1794.
1.29 T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, “Binary Alloy Phase Diagrams,” ASM International, Materials Park, Ohio, 1990.
1.30 S. S. Lau, J. S. -Y. Feng, J. O. Olowolafe and M. -A. Nicolet, “Iron Silicide Thin Film Formation at Low Temperatures,” Thin Solid Films, 1975, 22, 415-422.
1.31 N. R. Baldwin and D. G. Ivey, “Low Temperature Iron Thin Film-Silicon Reactions,” J. Mater. Sci., 1996, 31, 31-37.
1.32 N. E. Christensen, “Electronic-Structure of Beta-FeSi2,” Phys. Rev. B, 1990, 42, 7148-7153.
1.33 R. Eppenga, “Ab Initio Band-structure Calculation of the Semiconductor β-FeSi2,” J. Appl. Phys., 1990, 68, 3027-3029.
1.34 T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, “Ultimata Low-Loss Single Mode Fiber at 1.55 □m,” Electron. Lett., 1979, 15, 106-108.
1.35 J. Derrien, J. Chevrier, V. Le Thanh and J. E. Mahan, “Semiconducting Silicide Silicon Heterostructures-Growth, Properties and Applications,” Appl. Surf. Sci., 1992, 56-58, 382-393.
1.36 E. Groβ, M. Riffel and U. Stohrer, “Thermoelectric Generators Made of FeSi2 and HMS-Fabrication and Measurement,” J. Mater. Res., 1995, 10, 34-40.
1.37 D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, “A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5 μm,” Nature, 1997, 387, 686-688.
1.38 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Influence of Si Growth Temperature for Embedding β-FeSi2 and Resultant Strain in β-FeSi2 on Light Emission from p-Si/β-FeSi2 Particles/n-Si Light-Emitting Diodes,” Appl. Phys. Lett., 2001, 79, 1804-1806.
1.39 S. J. Clark, H. M. Al-Allak, S. Brand and R. A. Abram, “Structure and Electronic Properties of FeSi2,” Phys. Rev. B, 1998, 58, 10389-10393.
1.40 D. B. Migas and L. Miglio, “Band-gap Modifications of β-FeSi2 with Lattice Distortions Corresponding to the Epitaxial Relationships on Si (111),” Phys. Rev. B, 2000, 62, 11063-11070.
1.41 L. J. Chen, S. Y. Chen and H. C. Chen, Nanoscale Iron Disilicides,” Thin Solid Films, 2007, 515, 8140-8143.
1.42 Y. Maeda, Y. Terai, M. Itakura and N. Kuwano, “Photoluminescence Properties of Ion Beam Synthesized β-FeSi2,” Thin Solid Films, 2004, 461, 160-164.

Chapter 3
3.1 L. Ouyang, E. S. Thrall, M. M. Deshmukh and H. Park, “Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires,” Adv. Mater., 2006, 18, 1437-1440.
3.2 A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel and J. Song, “Synthesis and Properties of Single-Crystal FeSi Nanowires,” Nano Lett., 2006, 6, 1617-1621
3.3 S. Liang, R. Islam, D. J. Smith and P. A. Bennett, “Phase Transformation in FeSi2 Nanowires,” J. Cryst. Growth, 2006, 295, 166-171.
3.4 K. Yamamoto, H. Kohno, S. Takeda and S. Ichikawa, “Fabrication of Iron Silicide Nanowires from Nanowire Templates,” Appl. Phys. Lett., 2006, 89, 083107.
3.5 K. Seo, N. Bagkar, S. Kim, J. In, H. Yoon, Y. Jo and B. Kim, “Diffusion-Driven Crystal Structure Transformation: Synthesis of Heusler Alloy Fe3Si Nanowires,” Nano Lett., 2010, 10, 3643-3647.
3.6 N. R. Baldwin and D. G. Ivey, “Low Temperature Iron Thin Film-Silicon Reactions,” J. Mater. Sci., 1996, 31, 31-37.

Chapter 4
4.1 Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath and C. M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems,” Science, 2003, 302, 1377-1379.
4.2 L. J. Chen, “Silicon Nanowires: the Key Building Block for Future Electronic Devices,”J. Mater. Chem., 2007, 17, 4639-4643.
4.3 K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen and K. N. Tu, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321,1066-1069.
4.4 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, B. J. Hwang and L. J. Chen, “Direct Growth of High-Rate Capability and High Capacity Copper Sulfide Nanowire Array Cathodes for Lithium-Ion Batteries,” J. Mater. Chem., 2010, 20, 6638-6645.
4.5 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang and L. J. Chen, “Oriented Growth of Large-Scale Nickel Sulfide Nanowire Arrays via A General Solution Route for Lithium-Ion Battery Cathode Applications,” J. Mater. Chem., 2009, 19, 7277-7283.
4.6 W. Lu and C. M. Lieber, “Nanoelectronics from the Bottom Up,” Nat. Mater., 2007, 6, 841-850.
4.7 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, “Enhanced Thermoelectric Performance of Rough Silicon Nnanowires,” Nature, 2008, 451, 163-168.
4.8 Y. Wang, K. -K. Lew, T. -T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing and T. S. Mayer, “Use of Phosphine as an n-Type Dopant Source for Vapor-Liquid-Solid Growth of Silicon Nanowires,” Nano Lett., 2005, 5, 2139-2143.
4.9 E. C. Garnett, W. Liang and P. Yang, “Growth and Electrical Characteristics of Platinum-Nanoparticle-Catalyzed Silicon Nanowires,” Adv. Mater., 2007, 19, 2946-2950.
4.10 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G..Yu, J. Huang and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature, 2007, 449, 885-890.
4.11 Y. Wu, R. Fan and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett., 2002, 2, 83-86.
4.12 S. H. Oh, K. v. Benthem, S. I. Molina, A. Y. Borisevich, W. Luo, P. Werner, N. D. Zakharov, D. Kumar, S. T. Pantelides and S. J. Pennycook, “Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires,” Nano Lett., 2008, 8, 1016-1019.
4.13 B. –S. Kim, T. -W. Koo, J. -H. Lee, D. S. Kim, Y. C. Jung, S. W. Hwang, B. L. Choi, E. K. Lee, J. M. Kim and D. Whang, “Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires,” Nano Lett., 2009, 9, 864-869.
4.14 C. Dais, G. Mussler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak and D. Grützmacher, “Photoluminescence Studies of SiGe Quantum Dot Arrays Prepared by Templated Self-Assembly,” Europhys. Lett., 2008, 84, 67017.
4.15 D. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, “A Silicon/Iron-Disilicide Light-Emitting Diode Operating at A Wavelength of 1.5 μm,” Nature, 1997, 387,686-688.
4.16 Y. Maeda, “Luminescence Properties of β-FeSi2 and Its Application to Photonics,” Appl. Surf. Sci., 2008, 254, 6242-6247.
4.17 A. Imai, S. Kunimatsu, K. Akiyama, Y. Terai and Y. Maeda, “Submicron Dry-Etching Behavior of β-FeSi2 Thin Films Towards Fabrication of Photonic Crystals,” Thin Solid Films, 2007, 515, 8162-8165.
4.18 Y. Y. Maeda, K. P. Homewood, T. Suemasu, T. Sadoh, H. Udono and K. Yamaguchi, “Preface,” Thin Solid Films, 2004, 461, 1.
4.19 S. Chu, T. Hirohada, M. Kuwabara, H. Kan and T. Hiruma, “Time-Resolved 1.5 □m-Band Photoluminescence of Highly Oriented β-FeSi2 Films Prepared by Magnetron-Sputtering Deposition,” Jpn. J. Appl. Phys., 2004, 43, L127-L129.
4.20 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Influence of Si Growth Temperature for Embedding β-FeSi2 and Resultant Strain in β-FeSi2 on Light Emission from p-Si/β-FeSi2 Particles/n-Si Light-Emitting Diodes,” Appl. Phys. Lett., 2001, 79, 1804-1806.
4.21 S. Liang, R. Islam, D. J. Smith and P. A. Bennett, “Phase Transformation in FeSi2 Nanowires,” J. Cryst. Growth, 2006, 295, 166-171.
4.22 K. Yamamoto, H. Kohno, S. Takeda and S. Ichikawa, ” Fabrication of Iron Silicide Nanowires from Nanowire Templates,” Appl. Phys. Lett., 2006, 89, 083107.
4.23 N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young and Z. Fisk, “Magnetoresistance from Quantum Interference Effects in Ferromagnets,” Nature, 2000, 404, 581-584.
4.24 N. Manyala, Y. Sidis, J. F. Ditusa, G. Aeppli, D. P. Young and Z. Fisk, “Large Anomalous Hall Effect in a Silicon-Based Magnetic Semiconductor,” Nat. Mater. 2004, 3, 255-262.
4.25 P. Lengsfeld, S. Brehme, G. Ehlers, H. Lange, N. Stüsser, Y. Tomm and W. Fuhs, “Anomalous Hall Effect in β-FeSi2,” Phys. Rev. B, 1998, 58, 16154-16159.
4.26 C. M. Chang, Y. C. Chang, Y, A. Chung, C. Y. Lee and L. J. Chen, “Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor,” J. Phys. Chem. C, 2009, 113, 17720-17723.
4.27 B.S. Guiton, Q. Gu, A. L. Prieto, M. S. Gudiksen and H. Park, “Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections,” J. Am. Chem. Soc., 2002, 127, 498-499.
4.28 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 1998, 279, 208-211.
4.29 C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu, L. J. Chen and Z. L. Wang, “Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties,” Cryst. Growth Des., 2009, 9, 4514-4518.
4.30 S. J. Clark, H. M. Al-Allak, S. Brand and R. A. Abram, “Structure and Electronic Properties of FeSi2,” Phys. Rev. B, 1998, 58, 10389-10393.
4.31 D. B. Migas and L. Miglio, “Band-Gap Modifications of β-FeSi2 with Lattice Distortions Corresponding to the Epitaxial Relationships on Si (111),” Phys. Rev. B, 2000, 62, 11063-11070.
4.32 L. J. Chen, S. Y. Chen and H. C. Chen, “Nanoscale Iron Disilicides,” Thin Solid Films, 2007, 515, 8140-8143.
4.33 Y. Maeda, Y. Terai, M. Itakura and N. Kuwano, “Photoluminescence Properties of Ion Beam Synthesized β-FeSi2,” Thin Solid Films, 2004, 461, 160-164.
4.34 D. K. Lim, O. Kubo, Y. Shingaya, T. Nakayama, Y. H. Kim, J. Y. Lee, M. Aono, H. Lee, D. Lee and S. Kim, “Low Resistivity of Pt Silicide Nanowires Measured Using Double-Scanning-Probe Tunneling Microscope,” Appl. Phys. Lett., 2008, 92, 203114.
4.35 H. T. Lu, Y. L. Chueh, L. J. Chou and L. J. Chen, “Effects of As+-Implantation on the Formation of Iron Silicides in Fe Thin Films on (1 1 1) Si,” Appl. Surf. Sci., 2003, 212, 204-208.
4.36 O. Valassiades, C. A. Dimitriadis and J. H. Werner, “Galvanomagnetic Behavior of Semiconducting FeSi2 Films,” J. Appl. Phys., 1991, 70, 890-893.
4.37 K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee,Y. Jo, M. –H. Jung, J. Kim and B. Kim, “Magnetic Properties of Single-Crystalline CoSi Nanowires,” Nano Lett., 2007, 7, 1240-1245.
4.38 Y. L. Chueh, L. J. Chou, J. Song and Z. L. Wang, “Mechanical and Magnetic Properties of Ni-Doped Metallic TaSi2 Nanowires,” Nanotechnology, 2007, 18, 145604.
4.39 T. Kim, B. Naser, R. V. Chamberlin, M. V. Schilfgaarde, P. A. Bennett and J. P. Bird, “Large Hysteretic Magnetoresistance of Silicide Nanostructures,” Phys. Rev. B., 2007, 76, 184404.
4.40 A. L. Schmitt, J. M. Higgins and S. Jin, “Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-XCoXSi Alloy Nanowires,” Nano Lett., 2008, 8, 810-815.
4.41 Y. Song, A. L. Schmitt and S. Jin, “Spin-Dependent Tunneling Transport into CrO2 Nanorod Devices with Nonmagnetic Contacts,” Nano Lett., 2008, 8, 2356-2361.

Chapter 5
5.1 Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath and C. M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems,” Science, 2003, 302, 1377-1379.
5.2 K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen and K. N. Tu, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321,1066-1069.
5.3 Y. Huang, X. Duan, Y. Cui, L.Lauhon, K. –H. Kim and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science, 2001, 294, 1313-1317.
5.4 A. L. Schmitt, J. M. Higgins and S. Jin, “Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-XCoXSi Alloy Nanowires,” Nano Lett., 2008, 8, 810-815.
5.5 L. J. Chen, “Silicon Nanowires: the Key Building Block for Future Electronic Devices,” J. Mater. Chem., 2007, 17, 4639-4643.
5.6 Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen and K. N. Tu, “In-situ TEM Observation of Repeating Events of Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of Si,” Nano Lett., 2008, 8, 2194-2199.
5.7 Y. C. Chou, W. W. Wu, L. J. Chen and K. N. Tu, “Homogeneous Nucleation of Epitaxial CoSi2 and NiSi in Si Nanowires,” Nano Lett., 2009, 9, 2337-2342.
5.8 W. Lu and C. M. Lieber, “Nanoelectronics from the Bottom Up,” Nat. Mater., 2007, 6, 841-850.
5.9 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, “Enhanced Thermoelectric Performance of Rough Silicon Nnanowires,” Nature, 2008, 451, 163-168.
5.10 C. L. Hsin, W. Mai, Y. Gu, Y. Gao, C. T. Huang, Y. Liu, L. J. Chen and Z. L. Wang, “Elastic Properties and Buckling of Silicon Nanowires,” Adv. Mater., 2008, 20, 1-5.
5.11 Y. Wang, K. -K. Lew, T. -T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing and T. S. Mayer, “Use of Phosphine as an n-Type Dopant Source for Vapor−Liquid−Solid Growth of Silicon Nanowires,” Nano Lett., 2005, 5, 2139-2143.
5.12 E. C. Garnett, W. Liang, P. Yang, “Growth and Electrical Characteristics of Platinum-Nanoparticle-Catalyzed Silicon Nanowires,” Adv. Mater., 2007, 19, 2946-2950.
5.13 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature, 2007, 449, 885-889.
5.14 Y. Wu, R. Fan and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett., 2002, 2, 83-86.
5.15 S. H. Oh, K. v. Benthem, S. I. Molina, A. Y. Borisevich, W. Luo, P. Werner, N. D. Zakharov, D. Kumar, S. T. Pantelides and S. J. Pennycook, “Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires,” Nano Lett., 2008, 8, 1016-1019.
5.16 K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. –H. Jung, J. Kim and B. Kim, “Magnetic Properties of Single-Crystalline CoSi Nanowires,” Nano Lett., 2007, 7, 1240-1245.
5.17 G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi and J. L. Erskine, “Dynamics of Field-Driven Domain-Wall Propagation in Ferromagnetic Nanowires,” Nature Mater., 2005, 4, 741-744.
5.18 S. S. P. Parkin, M. Hayashi and L. Thomas, “Magnetic Domain-Wall Racetrack Memory,” Science, 2008, 320, 190-194.
5.19 S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe´and K. Chan, “A Silicon Nanocrystals Based Memory,” Appl. Phys. Lett., 1996, 68, 1377-1379.
5.20 Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication,” IEEE Trans. Electron Devices, 2002, 49, 1606-1613.
5.21 P. H. Yeh, C. H. Yu, L. J. Chen, H. H. Wu, P. T. Liu and T. C. Chang, “Low-Power Memory Device with NiSi2 Nanocrystals Embedded in Silicon Dioxide Layer,” Appl. Phys. Lett., 2005, 87, 193504.
5.22 X. B. Lu and J. Y. Dai, “Memory Effects of Carbon Nanotubes as Charge Storage Nodes for Floatinggate Memory Applications,” Appl. Phys. Lett., 2005, 88, 113104.
5.23 B. –Y. Tsui, P. –Y. Wang, T. –Y. Chen and J. –C. Cheng, “Multi-Gate Non-Volatile Memories with Nanowires as Charge Storage Material,” Microelectronics Reliability, 2010, 50, 603-606.
5.24 G. Aeppli and J. F. DiTusa, “Undoped and doped FeSi or How to Make A Heavy Fermion Metal with Three of the Most Common Elements,” Materials Science and Engineering B, 1999, 63,119-124.
5.25 S. Paschen, E. Felder, M. A. Chernikov, L. Degiorgi, H. Schwer and H. R. Ott, “Low-Temperature Transport, Thermodynamic, and Optical Properties of FeSi,” Phys. Rev. B, 1997, 56, 12916-12930.
5.26 M. Klein, D. Menzel, K. Doll, M. Neef, D. Zur, I. Jursic, J. Schoenes and F. Reinert, “Photoemission Spectroscopy Across the Semiconductor-to-metal Transition in FeSi,” New Journal of Physics, 2009, 11, 023026.
5.27 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 1998, 279, 208-211.
5.28 C. M. Chang, Y. C. Chang, Y. A. Chung, C. Y. Lee and L. J. Chen, “Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor,” Phys. Chem. C, 2009, 113, 17720-17723.
5.29 B. S. Guiton, Q. Gu, A. L. Prieto, M. S. Gudiksen and H. Park, “Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections,” J. Am. Chem. Soc., 2002, 127, 498-499.
5.30 T. Kim and J. P. Bird, “Electrical Signatures of Ferromagnetism in Epitaxial FeSi2 Nanowires,” Appl. Phys. Lett., 2010, 97, 263111.
5.31 N. Bagkar, K. Seo, H. Yoon, J. In, Y. Jo and B. Kim, “Vertically Aligned Single-Crystalline Ferromagnetic Ni3Co Nanowires,” Chem. Mater, 2010, 22, 1831-1835.
5.32 C. F. Bird and D. R. Bowler, “A Spin-Polarised First Principles Study of Short Dangling Bond Wires on Si (001),” Surf. Sci., 2003, 531, 351-355.
5.33 E. F. Sheka, E. A. Nikitina and V. A. Zayets, “Highspin Molecular Magnetism of Silicon Surfaces,” Surf. Sci., 2003, 532–535 , 754-758.
5.34 T. Kim, B. Naser, R. V. Chamberlin, M. V. Schilfgaarde, P. A. Bennett and J. P. Bird, “Large Hysteretic Magnetoresistance of Silicide Nanostructures,” Phys. Rev. B, 2007, 76, 184404.
5.35 E. Arushanov, M. Respaud, J. M. Broto, J. Leotin, S. Askenazy, Ch. Kloc, E. Bucher and K. Lisunov,“Band Parameters of FeSi Single Crystals Determined by Magnetic Measurements,” Phys. Rev. B, 1997, 55, 8056-8059.
5.36 Y. L. Chueh, L. J. Chou, J. Song and Z. L. Wang, “Mechanical and Magnetic Properties of Ni-Doped Metallic TaSi2 Nanowires,” Nanotechnology, 2007, 18, 145604.
5.37 L. Ouyang, E. S. Thrall, M. M. Deshmukh and H. Park, “Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires,” Adv. Mater. 2006, 18, 1437-1440.
5.38 X. Huang, L. Li, X. Luo, X. Zhu and G. Li, “Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays,” J. Phys. Chem. C, 2008, 112, 1468-1472.
5.39 Y. S. Jang and J. H. Yoon, “Memory Properties of Nickel Silicide Nanocrystal Layer for Possible Application to Nonvolatile Memory Devices,” IEEE Trans. Electron Devices, 2009, 56, 3236-3239.

Chapter 7
7.1 Y. Cui, Q. Wei, H. Park and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 2001, 293, 1289-1292.
7.2 G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang and C. M. Lieber, “Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays,” Nat. Biotechnol., 2005, 23, 1294-1301.
7.3 M. Curreli, C. Li, Y. Sun, B. Lei, M. A. Gundersen, M. E. Thompson and C. Zhou, “Selective Functionalization of In2O3 Nanowire Mat Devices for Biosensing Applications,” J. Am. Chem. Soc., 2005, 127, 6922-6923.
7.4 J. H. He, Y. Y. Zhang, J. Liu, D. Moore, G. Bao and Z. L. Wang, “ZnS/Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors,” J. Phys. Chem. C, 2007, 111, 12152- 12156.
7.5 I. Heller, A. M. Janssens, J. M nnik, E. D. Minot, S. G. Lemay and C. Dekker, “Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors,” Nano Lett., 2008, 8, 591-595.
7.6 A. B. Artyukhin, M. Stadermann, R. W. Friddle, P. Stroeve, O. Bakajin and A. Noy, “Controlled Electrostatic Gating of Carbon Nanotube FET Devices,” Nano Lett., 2006, 6, 2080-2085.
7.7 X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y. L. Chang and Q. Wang, “Carbon Nanotube DNA Sensor and Sensing Mechanism,” Nano Lett., 2006, 6, 1632-1636.
7.8 K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering and C. Dekker, “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors,” Nano Lett., 2003, 3, 727-730.
7.9 P. H. Yeh, Z. Li, Z. L. Wang, “Schottky-Gated Probe-Free ZnO Nanowire Biosensor,” Adv. Mater., 2009, 21, 4975-4978.
7.10 J. H. Ahn, S. J. Choi, J. W. Han, T. J. Park, S. Y. Lee, Y. K. Choi, “Double-Gate Nanowire Field Effect Transistor for a Biosensor,” Nano Lett., 2010, 10, 2934-2938.
7.11 M. C. Bost and J. E. Mahan, “Optical Properties of Semiconducting Iron Disilicide Thin Films,” J. Appl. Phys., 1985, 58, 2696-2703.
7.12 N. E. Christensen, “Electronic Structure of β-FeSi2,” Phys. Rev. B., 1990, 42, 7148-7153.
7.13 D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, “A Silicon/Iron-Disilicide Light Emitting Diode Operating at A Wavelength of 1.5mm,” Nature, 1997, 387, 686-688.
7.14 J. Yuan, H. Shen, L. Lu, H. Huang and X. He, “Effects of Emitter Parameters and Recombination Mechanisms on the Performance of β-FeSi2/C-Si Heterojunction Solar Cells,” Physica B, 2010, 405, 4565–4569.
7.15 M. Powalla and K. Herz, “Co-Evaporated Thin Films of Semiconducting β-FeSi2,” Appl. Surf. Sci., 1993, 65-66, 482.
7.16 S. Y. Ji, G. M. Lalev, J. F. Wang, J. W. Lim, J. H. Yoo, D. Shindo and M. Isshiki, “MBE Growth of β-FeSi2 Epitaxial Film on Hydrogen Terminated Si (111) Substrate,” J. Crys. Growth, 2005, 285, 284–294.
7.17 M. Tanaka, Y. KumagaiI, T. Suemasu and F. Hasegawa, “Reactive Deposition Epitaxial Growth of β-FeSi2 Layers on Si (100),” Appl. Surf. Sci., 1997, 117-l18, 303–307.
7.18 S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe´and K. Chan, “A Silicon Nanocrystals Based Memory,” Appl. Phys. Lett., 1996, 68, 1377-1379.
7.19 Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication,” IEEE Trans. Electron Devices, 2002, 49, 1606-1613.
7.20 B. –Y. Tsui, P. –Y. Wang, T. –Y. Chen and J. –C. Cheng, “Multi-Gate Non-Volatile Memories with Nanowires as Charge Storage Material,” Microelectronics Reliability, 2010, 50, 603-606.
7.21 J. Fu, N. Singh, K. D. Buddharaju, S. H. G. Teo, C. Shen, Y. Jiang, C. X. Zhu, M. B. Yu, G. Q. Lo, N. Balasubramanian, D. L. Kwong, E. Gnani and G. Baccarani, “Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell,” IEEE Electron Device Lett., 2008, 29, 518-521.
(此全文限內部瀏覽)
封面.目錄
中英文摘要
電子全文1
電子全文2
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *