帳號:guest(18.223.134.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王凱正
作者(外文):Wang, Kai-Jheng
論文名稱(中文):錫銀銅銲料與鈦/鎳(釩)/銅底層金屬之相關相變化、動力學與可靠度測試及錫銀銅銲料添加微量鎳之結構方向性
論文名稱(外文):Phase Transformation, Kinetics and Reliability Test of Sn3.0Ag0.5Cu Solder Joint with Ti/Ni(V)/Cu UBM and Orientation Imaging of Sn3.0Ag0.5Cu Solder Joint with Ni Doping
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9531814
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:159
中文關鍵詞:無鉛銲料電子構裝
外文關鍵詞:lead-free solderelectronic package
相關次數:
  • 推薦推薦:0
  • 點閱點閱:154
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
在覆晶接合技術(flip chip technology)中,銲料與凸塊下金屬層(under bump metallization)的材料選擇相當的重要,濺鍍的鈦╱鎳(釩)╱銅(Ti/Ni(V)/Cu)則是其中一種凸塊下金屬層的材料。由於,鎳具有磁性,會影響濺鍍的製程,因此在鎳中添加7 wt.%的釩可以去除磁性,避免濺鍍時磁性所造成的影響,因此鈦╱鎳(釩)╱銅凸塊下金屬層被廣泛使用於覆晶接合技術中。此外,鈦╱鎳(釩)╱銅凸塊下金屬層的消耗速率較慢且與生成的介金屬化合物(intermetallic compound)之界面能較低亦是此材料的優點。
本研究選用鈦╱鎳(釩)╱銅凸塊下金屬層與錫銀銅銲料進行回焊(reflow),並於不同溫度下進行熱處理,觀察其生成的介金屬化合物厚度與成份變化,並研判介金屬化合物之相轉變機制。
此外,鈦╱鎳(釩)╱銅凸塊下金屬層與銲料接合之後,可以觀察到一富錫區(Sn-patch)生成於鎳(釩)層中,藉由場發射電子微探儀(field emission electron probe microanalyzer)與穿透式電子顯微鏡(transmission electron microscope)的分析,可發現富錫區的成份與結構會隨熱處理時間改變,亦可觀察到富錫區並非一均勻成份之化合物。最後,提出富錫區的可能生成機制並與場發射電子微探儀與穿透式電子顯微鏡的分析結果相互印證。
在鈦╱鎳(釩)╱銅凸塊下金屬層與錫銀銅銲料接點中,除了介金屬化合物的生成會影響銲料接點的可靠度(reliability)外,富錫區的生成亦可能扮演相當重要的角色。利用推球測試(ball shear test)、拉球測試(ball pull test)與高速撞擊測試(high-speed impact test)來評估富錫區對銲料接點所造成的影響。在測試速度較慢的推球與拉球測試中,富錫區的生成對銲料接點的可靠度並未有太大影響。然而,在高速撞擊測試中,富錫區的生成明顯降低銲料接點的可靠度,並可評估生成多少的富錫區,銲料接點的強度會有明顯的變化。
因此,為了減少富錫區的生成,利用不同銅層厚度的鈦╱鎳(釩)╱銅凸塊下金屬層與錫銀銅銲料進行回焊與熱處理,達到控制富錫區的生成,並利用動力學的觀點分析銅層厚度與介金屬化合物及富錫區的關係。最後,將所得到界面反應的結果與機械測試的結果相互對照,評估最合適的銅層厚度,以減緩富錫區的生成。
另外,銲料的晶粒大小與方向性(orientation)是目前一個相當重要的可靠度議題。因此,本研究利用背向電子繞射儀(electron backscattered diffraction)分析錫銀銅銲料中添加不同含量的鎳與進行不同時間的熱處理後,銲料晶粒大小與方向性的變化,並利用場發射電子微探儀分析其微結構與成份,觀察銲料的晶粒變化與微結構及成份之關聯性。此外,亦將錫銀銅鎳銲料回焊於電鍍鎳金基板(electrolytic Ni/Au substrate)上,觀察基板對銲料的晶粒大小與方向性之影響性。
Contents................................................I
List of Tables..........................................IV
Figures Caption.........................................V
Abstract................................................XII
Introduction............................................1
1.1 Background..........................................1
1.2 Motivations and Goals in This Study.................2
Chapter II Literature Review............................6
2.1 Electronic Package..................................6
2.2 Solder Bump.........................................7
2.2.1 SnPb Solder.......................................8
2.2.2 Lead-Free Solder..................................9
2.2.3 SnAgCu Solder with 4th Minor Addition.............11
2.3 Under Bump Metallization............................12
2.4.1 Cu-Based UBM......................................12
2.4.2 Ni-Based UBM......................................13
2.4.2.1 Electroplated Ni................................13
2.4.2.2 Electroless Ni-P................................13
2.4.2.3 Sputtered Ni(V).................................14
2.4 Interfacial Reactions in Solder Joints..............14
2.4.1 Interfacial Reactions between Solders and Cu-Based
UBM...........................................14
2.4.2 Interfacial Reactions between Solders and Ni-Based
UBM.....................................................15
2.5 Reliability Test in Solder Joint....................17
2.5.1 Ball Shear Test...................................17
2.5.2 Ball Shear Test...................................17
2.5.3 High-Speed Test...................................17
2.6 Orientation of β-Sn in Solder Joint.................18
Chapter III Experimental Procedure......................44
3.1 Sputtered Ti/Ni(V)/Cu UBM with Sn3.0Ag0.5Cu Solder..44
3.1.1 Fabrication and Heat Treatment....................44
3.1.2 Sample Preparation................................46
3.1.3 Characterization and Analysis.....................46
3.1.3.1 Microstructure Evolution........................46
3.1.3.2 Composition Analysis............................47
3.1.3.3 Structure evaluation............................47
3.1.3.4 Reliability test................................47
3.2 Orientation Image of Sn3.0Ag0.5Cu-xNi Solder Joint with and without Electrolytic Ni/Au Surface Finish...........48
3.2.1 Fabrication and Heat Treatment....................48
3.2.2 Sample Preparation................................49
3.2.3 Characterization and Analysis.....................49
3.2.3.1 Microstructure Evolution........................50
3.2.3.2 Composition Analysis............................50
3.2.3.3 Orientation evaluation..........................50
Chapter IV Results and Discussion.......................56
4.1 Interfacial reaction of SnAgCu solder joint with Ti/Ni(V)/Cu UBM after aging..................................56
4.2 Formation mechanism of Sn-patch in SnAgCu solder joint with Ti/Ni(V)/Cu UBM....................................64
4.2.1 Composition and microstructure evolution of Sn-patch...................................................64
4.2.2 Formation mechanism of Sn-patch...................68
4.3 The Sn-patch effect on the reliability test of SnAgCu solder joint with Ti/Ni(V)/Cu UBM.......................80
4.3.1 Ball shear and ball pull Test.....................80
4.3.2 High-speed Impact Test............................82
4.4 Suppressing the Sn-patch formation and growth during reflow and aging........................................99
4.4.1 Sn-patch formation during reflow..................99
4.4.2 Sn-patch growth during aging......................100
4.4.3 Optimal Cu thickness in Ti/Ni(V)/Cu UBM...........104
4.5 Orientation Imaging of Sn3.0Ag0.5Cu Solder Joint
with Various Ni Doping after Aging......................124
4.5.1 OIM of SAC-xNi solder ball after fabrication and aging...................................................125
4.5.2 OIM of SAC-xNi/Au/Ni solder joint after reflow and
aging...................................................128
Chapter V Conclusions...................................138
References..............................................140
個人簡歷................................................155
Publication Lists.......................................156
International Conference Presentation...................158
1.L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
2.J.H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996, pp. 26-30.
3.G.R. Blackwell, The Electronic Packaging Handbook, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
4.M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, “Investigation of multi-component lead-free solders”, J. Electron. Mater. 23 (1994) 741.
5.A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774.
6.H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
7.S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders” J. Electron. Mater., 25 (1996) 1113.
8.J.W. Nah and K.W. Paik, “Investigation of flip chip under bump metallization systems of Cu pads” IEEE Trans. Compon. Packag. Technol. 25 (2002) 32.
9.C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish”, J. Electron. Mater. 29 (2000) 1175.
10.C.E. Ho, L.C. Shiau and C.R. Kao, “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints”, J. Electron. Mater. 31 (2002) 1264.
11.K.L. Lin and Y.C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps”, IEEE Trans. on Adv. Packag. 22 (1999) 575.
12.J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization”, J. Electron. Mater. 30 (2001) 1165.
13.J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85 (1999) 8456.
14.B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
15.C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
16.M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17 (2002) 1612.
17.K.S. Bae and S.J. Kim, “Microstructure and adhesion properties of Sn-0.7Cu/Cu solder joints”, J. Mater. Res. 17 (2002) 743.
18.H.W. Miao and J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys. 71 (2001) 255.
19.D.R. Frear, J.W. Jang, J.K. Lin and C. Zang, “Pb-free solders for flip-chip interconnects”, JOM, 53 (2001) 28
20.M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15.
21.K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001) 55.
22.K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng., A 333 (2002) 106.
23.C.S. Chang, A. Oscilowski and R.C. Bracken, “Future challenges in electronics packaging”, IEEE Circuits Devices Mag. 14 (1998) 45.
24.I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, J. Electron. Mater 30 (2001) 1050.
25.I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, J Mater Sci: Mater Electron 18 (2007) 55.
26.I.E. Anderson, J. Walleser and J.L. Harringa, “Observations of Nucleation Catalysis Effects during Solidification of SnAgCuX Solder Joints”, JOM (2007) 38.
27.W. Liu and N.C. Lee, “The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints”, JOM (2007) 26.
28.R.S. Pandher, B.G. Lewis, R.V. and B. Singh, “Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives”, Electronic Components and Technology Conference 2007 Proceedings, p.669.
29.S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, J. Yu and W.K. Choi, “Controlling Ag3Sn Plate Formation in Near-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying”, JOM (2004) 34.
30.S.C. Yang, C.E. Ho, C.W. Chang and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res. 21 (2006) 2436.
31.C.Y. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Dewetting of molten Sn on Au/Cu/Cr thin-film metallization”, Appl. Phys. Lett. 69, 4014 (1996).
32.G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Microstructures of phased-in Cr-Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders”, Appl. Phys. Lett. 71, 2946 (1997).
33.K.Z. Wang and C.M. Chen, “Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering”, J. Electron. Mater. 34, 1543, (2005).
34.C.M. Chen, K.J. Wang and K.C. Chen, “Isothermal solid-state aging of Pb-5Sn solder bump on Ni/Cu/Ti under bump metallization”, J. Alloys and Compd. 432, 122 (2007).
35.C.H. Tung, P.S. Teo and C. Lee, “Interface microstructure evolution of lead-free solder on Ni-based under bump metallizations during reflow and high temperature storage”, IEEE Trans. Device Mater. Reliab. 5, 212 (2005).
36.F. Zhang, M. Li, C.C. Chum and K.N. Tu, “Influence of substrate metallization on diffusion and reaction at the under-bump metallization/solder interface in flip-chip packages”, J. Mater. Res. 17, 2757 (2002).
37.F. Zhang, M. Li, C.C. Chum and C-H. Tung, “Effects of substrate metallizations on solder/underbump metallization interfacial reactions in flip-chip packages during thermal aging”, J. Mater. Res. 18, 1333 (2003).
38.A.T. Wu and F. Hua, “Interfacial stability of eutectic SnPb solder and composite 60Pb40Sn solder on Cu/Ni(V)/Ti under-bump metallization”, J. Mater. Res. 22, 735 (2007).
39.G.Y. Jang, J.G. Duh, H. Takahashi, S.W. Lu and J.C. Chen, “Influence of Cu content on compound formation near the chip side for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump during aging”, J. Electron. Mater. 35, 1745 (2006).
40.G.Y. Jang and J.G. Duh, “Elemental redistribution and interfacial reaction mechanism for the flip chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump with Al/Ni(V)/Cu under-bump metallization during aging”, J. Electron. Mater. 35, 2061 (2006).
41.S.W. Chen and C.C. Chen, “Interfacial reactions in Sn-0.7wt.%Cu/Ni-V couples at 250 degrees C”, J. Electron. Mater. 36, 1121 (2007).
42.S.W. Chen, C.C. Chen and C.H. Chang, “Interfacial reactions in Sn/Ni-7 wt.%V couple”, Scr. Mater. 56, 453 (2007).
43.F. Zhang, M. Li, B. Balakrisnan and W.T. Chen, “Failure mechanism of lead-free solder joints in flip chip packages”, J. Electron. Mater. 31, 1256 (2002).
44.T.R. Bieler and H. Jiang L.P. Lehman, T. Kirkpatrick and E.J. Cotts, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints” Electronic Components and Technology Conference 2006 Proceedings, p.1462.
45.T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts and B. Nandagopal, “Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-free Solder Joints”, IEEE Trans. Compon. Packag. Technol. 31 (2008) 370.
46.T.K. Lee and K.C. Liu and T.R. Bieler, “Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints”, J. Electron. Mater. 38 (2009) 2685.
47.R.R. Tummala and E. J. Rymaszewski, Microelectronics packaging handbook, 2nd edition, Van Nostrand Reihold, New York, 1997.
48.J.H. Lau, Ball grid array technology, McGraw-Hill, New York, 1995.
49.P.A. Totta, R. P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13 (1969) 226.
50.J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, 1999.
51.K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng. R 34 (2001) 1.
52.C.A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
53.J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45 (1993) 25.
54.R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, PWS, Boston, 1994.
55.W.R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961.
56.M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27 (2000) 95.
57.S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423.
58.J.S. Hwang, Modern solder technology for competitive electronics manufacturing, McGraw-Hill, New York, 1996.
59.K. Suganuma, Environmentally Conscious Design and Inverse Manufacturing, Piscataway, NJ: IEEE, 1999, p. 620.
60.Y. Kariya, Y. Hirata and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, J. Electron. Mater. 28 (1999) 1263.
61.M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155.
62.I.E. Anderson and J.L. Harringa, “Elevated Temperature Aging of Solder Joints Based on Sn-Ag-Cu: Effects on Joint Microstructure and Shear Strength”, J. Electron. Mater. 33 (2004) 1485.
63.S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K.J. Puttlitz, “Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu”, JOM 55 (2003) 61.
64.K.J. Zeng, R. Stierman , T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
65.C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Empirical correlation between package-level ball impact test and board-level drop reliability”, Microelectron. Reliab. 47 (2007) 1127.
66.I.E. Anderson and J.L. Harringa, “Suppression of Void Coalescence in Thermal Aging of Tin-Silver-Copper-X Solder Joints”, J. Electron. Mater. 35 (2006) 94.
67.L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen and S.L. Yu, “Effects of rare earths on properties and microstructures of lead-free solder alloys”, J. Mater. Sci: Mater. Electron. 20 (2009) 685.
68.R.G. Werner, D.R. Frear, J. DeRosa and E. Sorongon, “Flip chip packaging” 1999 Int. Symp. on Advanced Packaging Materials (Braselton, GA, USA, 1999), pp. 246-251.
69.F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
70.S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
71.J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
72.K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
73.T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1990, pp. 1481-1483.
74.G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Microstructures of phased-in Cr–Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders”, Appl. Phys. Lett. 71 (1997) 2946.
75.P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils”, J. Appl. Phys. 86 (1999) 6746.
76.C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao and D.S. Jiang, “Effects of Limited Cu Supply on Soldering Reactions Between SnAgCu and Ni”, J. Electron. Mater. 35 (2006) 1017.
77.J.G. Maveety, P. Liu, J. Vijayen, F. Hua and E.A. Sanchez, “Effect of Cooling Rate on Microstructure and Shear Strength of Pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-37Pb Solders”, J. Electron. Mater. 33 (2004) 1355.
78.J.W. Kim and S.B. Jung, “Design of Solder Joint Structure for Flip Chip Package with an Optimized Shear Test Method”, J. Electron. Mater. 36 (2007) 690.
79.A. Bansal, S. Yoon, J. Xie, Y. Li and V. Mahadev, “Comparison of Substrate Finishes for Flip Chip Packages”, Electronic Components and Technology Conference 2005 Proceedings, p.30.
80.H. Nishikawa, A. Komatsu and T. Takemoto, “Morphology and Pull Strength of Sn-Ag(-Co) Solder Joint with Copper Pads, J. Electron. Mater. 36 (2007) 1137.
81.JEDEC STANDARD, “Solder Ball Shear”, JESD22-B117A (2000).
82.JEDEC STANDARD, “Solder Ball Pull”, JESD22-B115 (2007).
83.F. Song, S.W.R. Lee, K. Newman, B. Sykes and S. Clark, “High-Speed Solder Ball Shear and Pull Tests vs. Board Level Mechanical Drop Tests: Correlation of Failure Mode and Loading Speed”, Electronic Components and Technology Conference 2007 Proceedings, p.1504.
84.C.L. Yeh, Y.S. Lai, H.C. Chang and T.H. Chen, “Correlation Between Package-level Ball Impact Test and Board-level Drop Test”, Electronic Components and Technology Conference 2005 Proceedings, p.270.
85.Y. Xu, S. Ou and K.N. Tu, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester”, J. Mater. Res 23 (2008) 1482.
86.T. Morita, R. Kajiwara, I. Ueno and S. Okabe, “New Method for Estimating Impact Strength of Solder-Ball-Bonded Interfaces in Semiconductor Packages”, Jpn. J. Appl. Phys. 47 (2008) 6566.
87.B.F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, J. Appl. Phys. 37, 2375 (1966).
88.D.C. Yeh, and H.B. Huntington, “Extreme Fast-Diffusion System - Nickel in Single-Crystal Tin”, Phys. Rev. Lett. 53, 1469 (1984).
89.B.F. Dyson, T.R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, J. Appl. Phys. 37, 3408 (1967).
90.W.P. Mason, and H.E. Bommel, “Ultrasonic Attenuation at Low Temperatures for Metals in the Normal and Superconducting States”, J. Acoust. Soc. Am. 28, 930 (1956).
91.J.A. Rayne and B.S. Chandrasekhar, “Elastic Constants of Beta-Tin from 4.2-Degrees-K to 300-Degrees-K”, Phys. Rev. 120, 1658 (1960).
92.M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith and D.W. Henderson, “Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders”, Appl. Phys. Lett. 92 (2008) 211909.
93.M. Lu, D.Y. Shih, S.K. Kang, C. Goldsmith and P. Flaitz, “Effect of Zn doping on SnAg solder microstructure and electromigration stability”, J. Appl. Phys. 106 (2009) 053509.
94.C.Y. Li, G.J. Chiou and J.G. Duh, “Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich corner in the ternary Sn-Cu-Ni isotherm at 240 degrees C”, J. Electron. Mater. 35 (2006) 343.
95.C.Y. Li and J.G. Duh, “Phase equilibrium in the Sn-rich corner of the Sn-Cu-Ni ternary alloy system at 240 degrees C”, J. Mater. Res. 20 (2005) 3118.
96.W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin and C.R. Kao, “Solid-state reactions between Ni and Sn-Ag-Cu solders with different Cu concentrations”, Mater. Sci. Eng. A 396 (2005) 385.
97.G.Y. Jang, C.S. Huang, L.Y. Hsiao and J.G. Duh, “Mechanism of interfacial reaction for the Sn-Pb solder bump with Ni/Cu under-bump metallization in flip-chip technology”, J. Electron. Mater. 33 (2004) 1118.
98.G.Y. Jang and J.G. Duh, “The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu under-bump metallization”, J. Electron. Mater. 34 (2005) 68.
99.Y.H. Zhao, “Thermodynamic model for solid-state amorphization of pure elements by mechanical-milling” J. Non-Cryst. Solids 352 (2006) 5578.
100.Z.J. Zhang and B.X. Liu, “Solid-state Reaction to synthesize Ni-Mo metastable alloys” J. Appl. Phys. 76 (1994) 3351.
101.K.W. Kwon, H.J. Lee and R. Sinclair, “Solid-state amorphization at tetragonal-Ta/Cu interfaces” Appl. Phys. Lett. 75 (1999) 935.
102.A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman, Y. Xing and E.J. Cotts, “Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys”, J. Electron. Mater. 33 (2004) 1412.
103.S.K. Seo, S.K. Kang, D.Y. Shih and H.M. Lee, “An Investigation of Microstructure and Microhardness of Sn-Cu and Sn-Ag Solders as Functions of Alloy Composition and Cooling Rate”, J. Electron. Mater. 38 (2009) 257.
104.W.P. Liu and N.C. Lee, “The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints”, JOM 59 (2007) 26.
105.W. Peng and M.E. Marques, “Effect of thermal aging on drop performance of chip scale packages with SnAgCu solder joints on Cu pads”, J. Electron. Mater. 36 (2007) 1679.
106.H.R. Roh and Y.H. Kim, “Intermetallic compound formation and solder joint reliability of Sn-Ag-Cu solder ball on Cu-Zn substrate” IEEE Trans. International conference of electronic materials and package, 127 (2007).
107.Y.C. Lin, T.Y. Shih, S.K. Tien and J.G. Duh, “Morphological and microstructural evolution of phosphorous-rich layer in SnAgCu/Ni-P UBM solder joint”, J. Electron. Mater. 36 (2007) 1469.
108.Y.C. Lin, T.Y. Shih, S.K. Tien and J.G. Duh, “Suppressing Ni-Sn-P growth in SnAgCu/Ni-P solder joints”, Scr. Mater. 56 (2007) 49.
109.Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih and T.Y. Lee, “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization”, J. Mater. Res. 19 (2004) 2428.
110.K. Zeng, V. Vuorinen, J.K. Kivilahti, “Interfacial reactions between lead-free SnAgCu solder and Ni(P) surface finish on printed circuit boards”, IEEE Trans. Electron. Packag. Manufact. 25 (2002) 162.
111.C.E. Ho, S.C. Yang and C.R. Kao, “Interfacial reaction issues for lead-free electronic solders”, J. Mater. Sci.-Mater. Electron. 18 (2007) 155.
112.D.R. Flanders, E.G. Jacobs and R.F. Pinizzotto, “Activation energies of intermetallic growth of Sn-Ag eutectic solder on copper substrates”, J. Electron. Mater. 26 (1997) 883.
113.C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, Y.E. Shin, “Intermetallic compound layer formation between Sn-3.5 mass%Ag BGA solder ball and (Cu, immersion Au/electroless Ni-P/Cu) substrate”, J. Mater. Sci.-Mater. Electron. 14 (2003) 487.
114.J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur and S.B. Jung, “Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints”, J. Alloy. Compd. 486 (2009) 142.
115.D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang and J.K.L. Lai, “Effects of Cu contents in Sn-Cu solder on the composition and morphology of intermetallic compounds at a solder/Ni interface”, J. Alloy. Compd. 392 (2005) 192.
116.M. Mita, M. Kajihara, N. Kurokawa and K. Sakamoto, “Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures”, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 403 (2005) 269.
117.M. He, Z. Chen and G. Qi, “Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization”, Acta Mater. 52 (2004) 2047.
118.Z. Chen, M. He and G. Qi, “Morphology and kinetic study of the interfacial reaction between the Sn-3.5Ag solder and electroless Ni-P metallization”, J. Electron. Mater. 33 (2004) 1465.
119.D.G. Kim and S.B. Jung, “Microstructure and mechanical properties of Sn-0.7Cu flip chip solder bumps using stencil printing method”, Mater. Trans. 46 (2005) 1295.
120.V. Vuorinen, H. Yu, T. Laurila, and J.K. Kivilahti, “Formation of intermetallic compounds between liquid Sn and various CuNix metallizations”, J. Electron. Mater. 37 (2008) 792.
121.S.K. Seo, S.K. Kang, D.Y. Shih, and H.M. Lee, “The evolution of microstructure and microhardness of Sn-Ag and Sn-Cu solders during high temperature aging”, Microelectron. Reliab. 49 (2009) 288.
122.P. Yao, P. Liu, and J. Liu, “Interfacial reaction and shear strength of SnAgCu-xNi/Ni solder joints during aging at 150 degrees C”, Microelectron. Eng. 86 (2009) 1969.
123.S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, “The Crystal Orientation of beta-Sn Grains in Sn-Ag and Sn-Cu Solders Affected by Their Interfacial Reactions with Cu and Ni(P) Under Bump Metallurgy”, J. Electron. Mater. 38 (2009) 2461.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *